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1. INTRODUCTION 

R e c e n t l y ,  H o a r e  d e s i g n e d  a new p r o g r a m m i n g  l a n g u a g e  for  c o n c u r r e n t  p r o g r a m -  
m i n g  ca l l ed  C S P  [7], w h i c h  di f fers  s ign i f i can t ly  f r o m  p r e v i o u s l y  s u g g e s t e d  lan-  
guages  such  as  C o n c u r r e n t  P a s c a l  [1] or  M o d u l a  [10] in t h a t  p r o c e s s e s  a r e  
disjoint, i.e., s h a r e  no  k ind  o f  v a r i a b l e s  w h a t s o e v e r .  Al l  c o m m u n i c a t i o n  a m o n g  
c o n c u r r e n t  p r o c e s s e s  is b y  m e a n s  of  i n p u t - o u t p u t ,  w h i c h  a lso  s e rves  for  s y n c h r o -  
n iza t ion .  A s im i l a r  k ind  of  c o m m u n i c a t i o n  is e m p l o y e d  b y  M i l n e  a n d  M i l n e r  [8], 
w i t h o u t  sugges t ing  a n y  speci f ic  l a n g u a g e  for  exp re s s ing  it. S in t zo f f  [9] u ses  s im i l a r  
p r i m i t i v e s  w i t h  a d i f f e ren t  s y n c h r o n i z a t i o n  b a s e d  on  c h a n n e l  t es t ing .  B r i n c h  
H a n s e n  [2] sugges t s  p r o c e d u r e  cal ls  as  a m e a n s  of  c o m m u n i c a t i o n  a m o n g  o t h e r -  
wise  d i s j o i n t  p rocesses .  T h u s  t h e  s u b j e c t  of  distributed programs ga ins  m o r e  a n d  
m o r e  in t e re s t ,  in c o n c e r t  w i t h  d e v e l o p m e n t s  in m i c r o p r o c e s s o r  t e c h n o l o g y ,  t h e  
f u t u r e  i m p l e m e n t a t i o n  tool .  

S o m e  of  t h e  t h e o r e t i c a l  p r o b l e m s  i n v o l v e d  in t h e  s e m a n t i c s  of  d i s t r i b u t e d  
p r o g r a m s  a re  d i s cus sed  in  [8], as  wel l  as  in [6], a n d  we  a re  c u r r e n t l y  w o r k i n g  on  
p r o o f  ru les  for  s t r o n g  ( to ta l )  c o r r e c t n e s s  o f  such  p r o g r a m s .  One  of  t h o s e  ques t ions ,  
t h e  p r o b l e m  of  distributed termination, is  d i s c u s s e d  in th i s  p a p e r ,  a n d  a n  
a l g o r i t h m  for  a c h i e v i n g  such  t e r m i n a t i o n  is sugges ted .  

T h e  n e e d  for  such  a n  a l g o r i t h m  a r i ses  because ,  in genera l ,  t e r m i n a t i o n  is a 
p r o p e r t y  of  t h e  g loba l  s t a t e  of  a c o n c u r r e n t  p r o g r a m .  I t  m a y  be  h a r d  to  d i s t r i b u t e  
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Distributed Termination 43 

the  decision to terminate  to processes tha t  are aware of their  local state but  have 
only limited information about  the state of other  processes with which they are 
connected along a channel  of communication.  On the other  hand, it may  be fairly 
easy to distribute a global post-condition into Ca conjunction of) local post- 
conditions. We discuss an example, an algori thm for achieving a sorted part i t ion 
into n subsets, which is a generalization of a problem solved by Dijkstra [5] for 
n = 2 .  

2. THE PROBLEM 

Suppose we want  to design a concurrent  program P, which has to achieve upon 
terminat ion a post-condition BC )7), where )7 is the (global) state vector. Suppose 
also tha t  it is possible to part i t ion y into n(_>2) disjoint substates ~1 . . . . .  )7,, and 
to find n predicates Cover those substates) BiC )7~), i = 1 . . . . .  n, so tha t  we have 
the following property.  

Property 1: (Ai~I,, Bi(yi)) D B(y) .  

Finally, suppose we can design relatively easily n processes P ~ , . . . ,  Pn, which 
have as their  state vectors )7~, respectively, and which, by means of some 
communicat ions with each other, exchanging data, can respectively achieve a 
state Bi(yi) after  a finite amount  of time. We call this communicat ion the basic 
communication. 

Then,  the concurrent  program P :: [P~ ][ . . .  IIP-] would be a natural  solution to 
the original problem, provided we can enforce terminat ion as soon as all Pi's 
achieve their  favorable state satisfying Bi. Such states are called final. Partial  
correctness follows from Proper ty  1. Each Pe is repetitive, of the form 

Pi = * [gi 1 ----> Si 1 
0 

D 
gik, ---> Si~, 
] 

(where gij may involve basic communication).  1 
When the stable state Vi. Bi(Jvi) is reached, all P~'s are in their  outer  level, with 

no guard ready. We assume another  natural  property.  

Property 2: No two processes in final states conduct  basic communication.  

Since there  is no central  control which can inspect all Pi's from the outside and 
decide when to terminate,  the Pi's have to establish the required fact by means  
of some extra control communication. We call the problem of designing such 
control  communicat ion the problem of distributed termination. 

Obviously, a solution in which each P~ terminates  as soon as it finds its own 

In this  notat ion,  which follows Hoare  [7], * [ . . . ]  is used, ra ther  t han  the  d o . . . o d  of Dijkstra,  to 
denote  repet i t ion unti l  all guards  are false. 
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44 Nissim Francez 

B~(yi) t rue is not  correct,  since there  may  exist another  Pj, which needs additional 
basic communicat ion with Pi in order  to establish the t ru th  of Bj(Yi). 

The  required solution should be, of course, independent  of the specific problem 
P is trying to solve. I t  should be a communicat ion scheme tha t  could be inserted 
into any partially correct  solution as above with the slightest possible additions 
to the basic communicat ion par t  (for interface with the control communication).  
The  solution should, therefore,  also be independent  of the number  of processes 
involved n and independent  of the specific neighborhood relationships holding 
among the Pi's (here "neighbors" means processes with which some Pi is con- 
nected by means  of a communicat ion channel). 

Another  impor tant  requi rement  from the solution is tha t  it does not add new 
neighborhood relationships, or equivalently, new communicat ion channels. This  
requi rement  is impor tan t  for physical realizations of such a solution. Simpler 
solutions can be obtained if the requi rement  is deleted. 

3. THE PATTERN OF DISTRIBUTED TERMINATION 

Let  P :: [P1 II . . .  II P . ]  be a concurrent  program with processes Pi, i = 1 . . . . .  n. 
Let  3 7 denote  the global state of P, and 37~, i = 1, . . . ,  n, the total  state of P~. 
Assume tha t  all the  processes are disjoint and are communicat ing in some way 
along channels. 

For  a process P~, endotermination is terminat ion depending only on the 
reachabil i ty  of some final state, determined by some predicate  B~(37i) over the 
initial local state. Endoterminat ion  is similar to the terminat ion of a sequential  
program, e.g., as described in [3]. Exotermination is terminat ion depending on 
the condition tha t  every member  of a prespecified set T--- {Pi~ . . . .  , Pi,), k > 0, 
has terminated.  

T is called the termination dependency set (TDS),  and T -- ~ by convention 
in the case of endoterminat ion.  Let  TDSi  denote  the terminat ion dependency set 
of process Pi. If  Pj E TDSi,  Pi is connected to Pj. We avoid here  discussion of 
how the T D S  is specified and how the terminat ion of its members  is sensed, since 
there  are language-dependent  issues. 

In general, the kind of terminat ion a process exhibits may  depend on its own 
initial state as well as on the initial state of its companions. If the processes 
contain also local (internal) nondeterminism [6], then  the dependency is on each 
initial state and each computation! As an example, consider a process P1, which 
is ready to accept no more  than  m messages from its neighbor P2, where m is 
locally determined,  and TDS1 -- {P2). If  P2 terminates  before delivering m 
messages, P1 will te rminate  in an exotermination.  If  P2 is willing to send m or 
more  messages, P1 will te rminate  in an endoterminat ion.  2 

The  concepts of endononterminat ion  and exononterminat ion are defined anal- 
ogously. Thus,  endononterminat ion  means the unreachabil i ty  of any final local 
state. Exononterminat ion  means  nonterminat ion  of at least one process from the 
TDS.  

Some processes are always ei ther  endoterminat ing or endononterminat ing,  or 

In the sequel, we assume that processes have no local nondeterminism in order to simplify the 
discussion. 
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are always ei ther  exoterminat ing or exononterminating.  ("Always" here  means 
for each tuple of initial states and each computation.)  We call such processes 
endoprocesses and exoprocesses, respectively. I t  is a useful language feature to 
allow syntactically imposed restrictions on a process as to what  kind of termina- 
tion it should exhibit. In CSP [7], one can use a guarded command containing 
only inpu t -ou tpu t  guards in a way which implies tha t  the process is an exoprocess. 
Using a mixture of Boolean and inpu t -ou tpu t  guards does not  allow such a 
syntactical  distinction. 

For  each program P as above, we now define its communication graph Gp. Gp 
contains one node for each Pi in P and an edge (Pi, Pj) for each pair of processes 
Pi, Pj such tha t  a channel  of communicat ion exists between Pi and Pj. Note tha t  
channels of communicat ion are directed and tha t  the Gp is a directed graph tha t  
may  contain both  (Pi, Pj) and (Pj, Pi). We assume tha t  Gp has no self-loops, since 
no process communicates  with itself. For  convenience, we assume tha t  Vp is 
weakly connected, i.e., tha t  the underlying undirected graph is connected.  Other- 
wise, one has to discuss propert ies of the weakly connected components.  We also 
assume tha t  the channels are not  created and destroyed dynamically and tha t  Gp 
can be determined syntactically f rom P. Various propert ies of P can be expressed 
in terms of Gp, which characterizes all potential  communications.  For example, 
if Gp is a tree, then  P obviously cannot  deadlock. In Dijkstra [4] some dynamic 
propert ies are expressed with respect  to such a graph, again in a context  of 
deadlock freedom characterization. 

We are also interested in another  graph Tp, derived from Gp and the various 
TDS's .  Tp will reflect all the terminat ion dependencies within P. The  nodes of Tp 
are the same as those of Gp, one for each process Pi E P. However,  the edges of 
Tp are not  in general syntactically determined,  since they  may depend on the 
initial states. Let  3 7 = ( ~  . . . . .  Yn) be a fixed initial state vector. 

For each edge (Pi, Pj) ~ Gp, 

(1) (Pi, Pj) E Tp iff Pi E TDSj;  
(2) (Pj, Pi) E Tp iff Pj  E TDS~. 

Thus,  Tp contains some of the directed edges of Gp an d /o r  their  reversals. All 
nodes corresponding to endoterminat ing processes will be sources, having no 
incoming edges. 

DISTRIBUTED TERMINATION PATTERNTHEOREM. P terminates for (yi . . . . .  :)7,) 
only if Tp is acyclic. 

PROOF. If Tp contains a cycle, then  a deadlock situation occurs, since no 
process whose corresponding node lies on the cycle can possibly terminate.  
(Obviously all nodes on such a cycle correspond to processes which are exonon- 
terminating for y.) 

The  meaning of this theorem is tha t  whenever  P terminates  for ~, it has a 
partial  order  induced on its processes, which describes a wave of termination, 
where once endoterminat ing processes (for tha t  y) terminate,  all processes whose 
TDS ' s  contain only those endoterminat ing processes terminate,  and so on. 

The  acyclicity of Tp is of course not  sufficient, because of the possibility of 
dynamic deadlocks and infinite computations.  However,  even the necessary 
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condition gives one the general feeling of the way dis tr ibuted te rmina t ion  is 
achieved. 

Methodologically,  it m a y  be easier to impose such a part ial  ordering syntacti-  
cally and let the required " te rmina t ion  wave"  be appa ren t  f rom the p rogram text. 
A similar observat ion is ment ioned  by Di jks t ra  [5], who suggests an a lgor i thm 
containing one {syntactically) endotermina t ing  process (in our terms) and one 
{syntactically) exoterminat ing process. He  indicates tha t  an a l ternat ive  design of 
the a lgor i thm is possible, involving two endotermina t ing  processes, which would 
use a different te rminat ion  pa t t e rn  but  would be harder  to verify. 

Finally, consider a s imple example,  expressed by CSP  [7] notation.  Consider  
again the process P~ ment ioned  above,  which is ready  to consume no more  than  
m inputs and to t e rmina te  if its companion  P2 does so before rn messages  have  
been passed. Le t  P2 be a process ready  to produce no more  than  k outputs  and 
te rmina te  if its companion  P~ does so before k messages  have  been passed. 

For  brevi ty  in the program,  we omit  var iable  declarations,  as well as the 
port ions of p rogram which process input  or generate  ou tpu t  wi thout  fur ther  
communicat ion.  We let P :: [P1 II P2], where 3 

P1 :: a := 0; 

P2 :: b := 0; 

For  this p rogram P we have  

* [ a < m ; P 2  ? x----> a := a + 1] 

* [ b < k ;  P~ ! y---> b : = b +  l]. 

o< 
Vp = P1 P2 

reflecting the  directed channel  of communica t ion  be tween  P2 and P1, along which 
P2 sends outputs  to P1, and P1 receives input  f rom P2. 

For Tp, we have  three  possible cases. 

(1) k = m. Tp has  no edges at  all, since no te rmina t ion  dependencies  exist. 

O O 
Tp = P1 P2 

(2) k < m. In this case, P2 is endotermina t ing  and P1 is exoterminat ing  with 
TDS1 = (P2}. 

o( 
Tp = P1 P2 

P2 will induce te rmina t ion  on P~. 
(3) k > m. This  is the symmet r ic  case, and TDS2 = {P1}. 

O )O  
T~ --- P1 P2. 

Tp is acyclic in all three  cases, as expected, since P t e rmina tes  for every initial 
s ta te  (m, k). 

As an example  of the insufficiency of the acyclicity of  Tp, consider the  following 

3 In this notation P2 ? x means that a value is input from process P2 and assigned to x; P~ ! y means 
that the value ofy is output to process P~. 
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program in CSP [7]: 

P :: [P1 :: P2 ? x [[ P2 :: P1 ? y II P3 :: *[P1 ? z ~ skip D P2 ? u --* skip]] 

Tp=P1 P2 

l ° which is acyclic (syntactically!) 
O 

P3 

However,  P~ and P2 are engaged in a deadlock, each waiting for an input from the 
other, thus preventing P3 from (exo)termination. 

Note tha t  in CSP [7] the T D S  is implicit, dependencies being determined by 
means of inpu t -ou tpu t  guards. Exoterminat ion is expressed by making the whole 
program an inpu t -ou tpu t  guarded loop. We shall extend this convention. 

4. A SOLUTION 

Our strategy is to arrange terminat ion dependencies among Pi  . . . . .  P ,  so tha t  Tp 
is acyclic. We assume that  in the original Pi's no dependencies are specified. We 
want to designate an arbi t rary Pio which will "collect" all the information about  
the rest  of the Pi's having reached a state satisfying Bi(yi). Having reached the 
conclusion tha t  all Pi's are in a final state, P~o will terminate,  thus initializing the 
terminat ion wave, which will eventually reach all P~'s. 

The  basic idea in the design of the algorithm is to find a spanning tree in Gp's 
underlying undirected graph {thus not  adding new channels!). The  control com- 
municat ion has the following phases. 

(1) When in a final state, the root  process initiates a control  wave to all its 
descendants in the spanning tree. 

(2) The  wave propagates through a node Pj as long as B~(~) is t rue too. Th e  
passage of the control  wave through a node "freezes" the basic communicat ions 
of the node (except for communicat ions introduced by this algorithm). 

(3) Each node notifies its parent  (in the tree) whether  all nodes in its subtree 
have reached final state. If Bj(:~) itself is false, there  is no need to propagate the 
control wave, and an immediate  negative notification can be delivered. 

(4) If a positive answer (i.e., tha t  all nodes are in a final state) reaches the root, 
it initiates the implicit terminat ion wave by terminating itself. Th e  TDS ' s  will be 
induced by the spanning tree so tha t  this wave will spread all the way to the 
leaves. Note tha t  contrary  to the control waves and answers which are par t  of the 
algorithm, the terminat ion wave will be derived from the TDS's .  

In the case of a negative answer (meaning that  some nodes are not  in a final 
state yet), an "unfreezing" wave is propagated, allowing the resumption of basic 
communication.  

(5) One has to take care tha t  at least one basic communicat ion is performed 
between two consecutive control  waves to eliminate the possibility of an endless 
control  loop. Hence a fourth wave is initiated by the leaves and passes each node 
not  yet  in final state only after  having performed at least one basic communica- 
tion. When reaching the root, a new control cycle may  start. 

Let  Gp be the communicat ion graph and Tp* be any spanning tree in the 
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underlying undirected graph of Gp. We now modify P1 . . . . .  P ,  to P1 . . . . .  P , .  
First, we define for each Pi its TDS to be the singleton set containing its parent 
in Tp*. The root of Tp* is specified as an endoterminating process. We have 
thereby made the dependency graph Tp coincide with the spanning tree Tp*, thus 
guaranteeing that  it is acyclic, in accordance with the pattern theorem. 

Next, we add to each P~ a control section Ci to be executed as a set of 

alternatives to the basic communications, and we add a small interface section to 
the basic communication part of Pi. 

C, will depend on the relative position of the node i (corresponding to Pi) in 
Tp*. We distinguish among three cases: the root, an intermediate node, and a 
leaf. 

In order to describe Ci, we use a liberal extension of the CSP [7] notation. Let 
J = {fi . . . . .  jk} be an index set. 

I1 Sj ~ IS+, II S+2 I I . . .  II Sj ,  
j E J  

df 
A qJ = qJ, & "'" & qJ, (conjunction). 

j e J  

[] qj--+ Sj  ~ qj -+ Sj, 
j E J  

[3 

E] 

For a node Pi in Tp*, let f ( i )  be the index of Pi's parent and let Fi be the set of 
indices of Pi's children. We assume that  all the variables in Ci are new, not 
appearing in Pi (except the arguments of the process predicate B~, which are not 
stated). Also, we assume that the main loop is exited once all processes in the  
T D S  (addressed by some input-output guard in the loop) have terminated. This 
extends the CSP convention 

Case  1. Pi is the root. {initially, n e w w a v e  = true, Vj: r e a d y ( j )  = false}. 

C~ :: Bi; n e w w a v e  ~ H PJ ! ok; ~r pj ? a(j);  
jer~ j 

r : =  A a(j);  [r--~halt  
J~Fi D 

r ---> n e w w a v e  := false; 
y~r, pj ! r e s u m e  

] 
[] PY ? r e a d y ( j )  ---> [ A r e a d y ( j )  ---> n e w w a v e  := true; 

jEF i JEFi 

l I  r e a d y ( j )  false 
JEFi 

D 
A r e a d y ( j )  ---> skip 

j EF i 

] 
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a is a Boolean array, while o k  is a new (control) communicat ion signal, of a type 
different from b o o l e a n  and i n t e g e r  (to meet  the matching of types required by 
CSP [7] for input-output) .  

Thus,  whenever  Pi is in a Bi state, it may  initiate a control  cycle by sending a 
control  signal o k  to each of its children in Tp* (in any order  tha t  the children are 
ready to accept it). Then  it waits for each child to "answer" with a Boolean value. 
If  all answers are true,/5i halts. Otherwise, it sends each child a r e s u m e  message 
(to be interpreted by the children as a permission to resume some basic commu- 
nication, af ter  being "frozen" by the o k  question) and may itself resume some 
basic communicat ion or t ry  to initiate another  control  cycle, once a ready signal 
has arrived from each child. The  meaning of ready( j )  is explained in the sequel. 
The  Boolean newwave records the arrival of all ready(j )  messages. 

Case 2. Pi is an intermediate  node (initially, crn = true, Vj: ready( j )  = false, 
advanced--  false}. 

Ci ? o k  false; :: __t'f,i) --+ cm := 
[~Bi--+ PI(i) ! false 
D 

Bi--+ j~eri P/ !  ok; ,eIIr, Pj ? a ( j ) ;  

r := A a ( j ) ;  Pf<i) ! r 
JEPi 

] 
D 
Pf(i) ? r e s u m e  --+ cm := true; advanced : -  false; .II Pj  ! r e s u m e ;  

u 

[] P/?  ready( j )  -+ skip 
JEri 

(Bi k~ advanced) & A ready(j);  Pf(i) ! t rue --) 1] ready(j )  := false 
JErl jEF~ 

The  array a and the o k  signal are as in Case 1. crn is a Boolean variable, whose 
interpreta t ion is masking basic communications.  Th e  Pi basic communicat ion 
par t  is augmented with cm as a guard. 

Thus  as an alternative to its basic communication,  Pi may  accept an o k  signal 
from its parent  as par t  of the control  wave. Upon receiving such a signal, Pi 
immediately falsifies the basic communicat ion guard cm, which can be set again 
to true only after  a r e s u m e  input from its parent,  thus freezing itself. Then,  Pi 
checks its local state. If  it is not  a Bi state, it immediately responds with a false 
to its parent,  thereby  breaking the control wave. Otherwise (in a Bi state) it 
behaves like the root, propagating the control wave, except tha t  instead of using 
the value of r, the  accumulated state of its subtree, it communicates  r to its 
parent.  

Another  set of alternatives is to receive a ready(j)  (equal actually to true) from 
each child, which means a permission to initiate a new control  cycle. This  message 
is passed on to the parent,  in case Pi is in a Bi state, or some basic communicat ion 
occurred, an occurrence recorded by the Boolean variable advanced. 
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Case 3. Pi is a leaf {initially, cm = true, ready = false} 

Ci :: Pf(i) ? o k  --* cm := false; Pf(i) ! Bi 
U 
Pfti~ ? r e s u m e  --, cm := true; advanced := false; ready := t rue 

ready & (Bi V advanced); Pfti~ ! t rue -*  ready := false 

Within leaf  processes, ready is a Boolean variable  whose task is to insure tha t  a 
ready  signal to the pa ren t  is sent  only once per  control  cycle. 

In all three  cases, we also augmen t  the  basic communica t ion  pa r t  of each Pi 
which is not  the  root  (why?), with a s t a t emen t  advanced := true, recording the 
fact  tha t  some advance  in basic communica t ion  did occur. 

Thus,  the overall  opera t ion of P is as follows. Processes are engaged in basic 
communica t ion  as long as possible. Occasionally, the root  chooses to initiate an 
o k  message,  to t raverse  the t ree Tp*, and to wait  for a Boolean result  r, which 
should be t rue only if Vi. B~(~i) = t rue  holds. Whoever  receives this o k  signal 
freezes its basic communica t ion  and ei ther  spreads the  o k  message down the t ree 
or decides tha t  its own s ta te  is not a B~ state. Eventual ly,  each process delivers an 
answer r to its pa ren t  such tha t  r = t rue iff all the processes in its subt ree  (all 
frozen) are in a B~ state. Once the root  receives its own r, it hal ts  if r is t rue and 
otherwise sends a r e s u m e  signal to "unfreeze" the whole tree. Once a process 
receives this message,  it delivers it fur ther  down the t ree and resumes  basic 
communicat ion.  Each  process not  ye t  in a B~ state, af ter  doing at  least  one basic 
communicat ion,  signals tha t  ano ther  o k  wave is possible. When  this signal 
reaches  the root, the whole control  cycle m a y  s tar t  again. This  goes on until  Vi. 
Bi()7) = t rue is reached (this is assumed to occur!), which will cause the root  to 
hal t  eventually,  and then  the required te rmina t ion  wave will spread down Tp* 
until  it reaches  all processes of P, since Tp* is a spanning tree. Thus,  dis t r ibuted 
te rmina t ion  has  been  induced on the original P. We remind  the reader  tha t  the 
spreading of the  wave of t e rmina t ion  follows f rom an extension of the  language 
rules of i n p u t - o u t p u t  guards and the  construct ion of Tp* as a spanning tree. I t  is 
not  pa r t  of the  addition. The  control  communica t ion  is used only to de te rmine  
when the  root  can terminate!  

5. CORRECTNESS 

We now want  to prove tha t  the preceding a lgor i thm has  the required properties,  
i.e., t ha t  the augmented  p r o g r a m / 5  _ [P1 ][.--]] Pn] terminates ,  with Vi. Bi(yi) 
= true, given tha t  P is such tha t  Yi. Bi(yi) = t rue eventual ly  occurs. The  proof  is 
not  in tended to be formal  p rogram verification, but  such a proof  could be obta ined 
f rom this sketch once the r ight  proof  rules are available. 

By  our  construction,  Tp = Tp*, and so it is acyclic. Since the  root  process is the  
only endotermina t ing  process, we have  to prove  its terminat ion.  T h a t  proof  is 
sufficient to establish overall  t e rmina t ion  because of the construct ion of Tp as a 
spanning tree over  P1 . . . . .  Pn and the de te rmina t ion  of the  T D S ' s  accordingly. 

Claim 1. Each  nonroot  Pi mus t  eventual ly  be ready  for control  (ok) commu-  
nication with its parent .  Otherwise, it will pe r fo rm an indefinite n u m b e r  of basic 
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communications, which is impossible by assumption. Note that this alternative is 
not conditioned and therefore cannot be blocked. Note, also, that this control 
communication may take place earlier, before it becomes the only alternative, 
depending on the guard scheduling rules. 

Claim 2. Whenever some nonroot Pi receives the control signal ok from its 
parent, it will ventually be ready to respond with a Boolean r, satisfying 

true, iff for all Pj in Pi's subtree, Bj(yj) holds; 
r = false, otherwise. 

This claim follows by induction on the height of Pi in Tp*. If Pi is a leaf, then Pi 
itself is the whole subtree, and the claim is obvious from the leaf program. 
Otherwise, if Pi detects a non-B~ state and is ready to answer false, the claim is 
true immediately. If Pi detects a B~ state, it will attempt to send ok control signals 
to all its children. By Claim 1 applied to all the children, all of them will eventually 
receive the ok signal, and by the induction hypothesis, since their height is 
smaller by 1, they will eventually respond with an answer r as above. The claim 
follows because the conjunction of such r's has the same property when Bi is 
known to hold. Note that after the response with r, P~ is again at the top level, 
but unable to perform basic communication, since cm = false, and the next 
communication will be a r e sume  signal. 

Claim 3. The state of each P~ does not change between its response (r) to its 
parent and the input of a r e sume  signal. Upon receiving ok, cm is set to false 
and thus disables any further basic communication, which might change its state. 
Only the input of the r e sume  signal causes setting cm to true and allows 
resumption of basic communication. 

Claim 4. (a) The root cannot initiate two consecutive control cycles unless 
some process has performed some basic communication. (b) After each control 
cycle, either the root terminates or another cycle will follow. 

Claim 4(a) follows from the presence of the newwave guard, which is set to 
true only after all the children reported with ready( j )  = true. Each such response 
of some P~ depends on receiving ready signals from its own children and reporting 
to the parent. This reporting cannot be blocked and has to occur eventually, 
again as the only alternative, because either B~ is true or it is false and then some 
basic communication has to occur and set advanced  to true. For a leaf, ready is 
set to true upon receiving r e sume  and does not depend on any input from other 
processes. Hence claim 4(b) follows also. 

PROPOSITION. Rio (io is the index of  the root) terminates, a n d  upon termination 
Vi. Bi(yi) holds. 

PROOF. By the same argument as in Claim 1 and since newwave is initially 
true, P~o eventually reaches a state where it must send an ok signal to all its 
children. By Claim 1, each child will eventually receive this signal, and by Claim 
2, each child will eventually respond with some a. Let r = AjEr,~, a( j ) .  If r = true, 
then Pio terminates, and by Claims 2 and 3, the property Vi. Bi(iyi) = true follows. 
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If r = false, P~o will send r e s u m e  signals to its children, etc. (this signal will be 
accepted, by the note  after Claim 2) until  every process can resume basic 
communication.  By Claim 4, some basic communicat ion will necessarily have 
been performed by some/5  i, before a new control cycle like this can be repeated.  
Thus,  only a finite number  of such control  cycles is possible, and again Pio will 

terminate.  
A simple analysis of the suggested algori thm shows tha t  in the best  case, where 

Pi,, first a t tempts  a communicat ion cycle only when Vi. B,(Yi) = true already 
holds, the number  of control  communicat ions performed is 2(n - 1). Each /5 ,  
receives once an o k  signal and responds once with with an r answer. In the worst  
case, a control communicat ion can occur between any two basic communications,  
and hence the total  number  of communicat ions is 4b(n - 1), where b is the 
number  of basic communications.  (The factor 4 is due to the additional unfreezing 
wave and r e a d y  response.) This  number  may  grow very  fast and is due to the 
nonmonotonic  behavior  of the P~'s with respect  to reaching a B, state. Th e  actual 
number  of control communicat ions will depend on the guard scheduling algo- 
rithm. Note  tha t  "best"  and "worst"  in this context  refer to quantif ication over 
all possible schedulings, and not  over initial states. Fur ther  complexity analysis 
is beyond the scope of this paper. 

6. AN EXAMPLE: SORTED PARTITION 

Let  S be a nonempty  set (without repetitions) of natural  numbers,  and let S = S~ 
+ $2 + • -. + S,  be a dis jo in t  part i t ion of S into n _> 2 nonempty  subsets. Also, let  

mi  = [ Si] be the number  of elements  in Si. 
Consider the following post-condition B(S~ . . . . .  S.): 

B ( S ,  . . . . .  5;,) =- Vi, j(1 < i < j <_ n)Vp,  q ( p  E Si & q ~ Sj D p < q) 

& Vi(1 <_ i <_ n) [ Sil = mi, 

i.e., the final state is such tha t  each subset S~ has the same number  of elements  
as it s tar ted with, and the part i t ion is sorted in ascending order  of the natural  

numbers.  
The  only basic communicat ion allowed is sending or receiving a natural  

number.  
This  is a generalization of (a slight modification of) a program presented by 

Dijkstra [5] for n = 2, there  called a sorting problem. 
One can easily verify tha t  an equivalent  specification is given by 

B(S1,  . . . ,  S , )  =- Vi(1 _ i < n)Vp,  q ( p  ~ Si & q ~ Si+~ D p < q) 

& Yi(1 <_ i <- n l S i  I ~- mi.  

Fur the rmore ,  if we introduce the functions max(Si) and min(S~) with the usual 
meanings, this can be fur ther  t ransformed to 

B(S~ . . . . .  S , )  - Vi(1 <_ i < n) (max(S i )  < min(Si+A) 

& Vi(1 _ i _< n) I Si[ = mi. 

This  last specification suggests a program organization in which each process 
(except P~ and P, )  has two neighbors with which it communicates ,  i.e., inter- 
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changes natural numbers (members of the corresponding sets). For 1 < i < n, the 
left neighbor of Pi is Pi-~ and the right neighbor is Pi+~. The end processes in the 
line will have only one neighbor each. 

Now we may introduce an additional variable: lini = last input from right 
neighbor, for 1 __ i < n. Then define for 1 _ i < n, 

Bi(Si,  lini) - max(S/) -_- lini & ] Si l = mi ; B ,  - true. 

Notice that for 1 _ i <_ n, the last input of P~ from Pi+l = the last output of Pi+l 
to Pi, which is implied by the CSP semantics and the program below. With the 
help of that fact, one can verify that 

( A Bi(Si ,  lini)) D B ( S ~ , . . . ,  S , )  
i~ l,n 

which fits our requirement as described above. 
Next we have to find processes Pi, i = 1 . . . . .  n, which after a finite amount of 

basic communication reach their Bi states and which conform to Property 2 of 
Section 2 and to the linear arrangement of the neighborhood relation. 

By generalizing Dijkstra's algorithm in [5], one obtains the following for 
l < i < n .  

Pi :: update;  lin := - oo; 
,[ 

m x  > 

D 
] 

lin; Pi+l ! rnx -*  S i  :-- S i  - (rex}; Pi+l ? lin; 
S i  := S i  + {lin}; u p d a t e  

Pi_~ ? 1 --* S i  := S i  + (/}; update;  Pi-~ ! rnn; 
S i  := S i  - (ran}; update;  Pi-~ ! mn 

Pi+l ? l in - ,  skip 

where u p d a t e  is defined by (rex := max(S/); m n  := min(Si)). Each process Pi has 
a choice between two alternatives: 

(1) If the largest element in the current value of Si is larger than the last input, 
send it to the right neighbor, remove it from Si, and include in S / an  element 
received from the right neighbor. 

(2) Accept any number from the left neighbor, include it in Si, then send back 
the smallest member of Si and remove it from Si. 

(3) Accept a change in lin, after a change in the right neighbor's S. 

In general, each process sends "large" numbers to the right, replacing them 
with "small" numbers, and similarly, receives large numbers from the left, 
replacing them by small numbers. 

For the end processes we have the following. 

P1 :: update;  l in := - oo; 
*[rex > lin, P2 ! r e x - - . . . .  (as before} . . .  

P,-1  ! rnn 
] 

P,  :: update;  
*[P~-I ? 1 ~ . . .  (as before} . . .  
N P~_I ! ran  
] 
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By a slight generalization of Dijkstra's argument in [5], one indeed shows that 
after a finite amount of time, each process reaches a Bi state. Furthermore, each 
output guard is adjoined to a Boolean guard implying -Bi ,  and Property 2 in 
Section 2 also holds. 

Note again the nonmonotonic behavior of Pi with respect to Bi. It may be 
possible that  some Pi is in its B~ state, i.e., all its elements are smaller than its 
right neighbor's and larger than its left neighbor's. However, the right neighbor 
P~+I, for example, may exchange a number with its right neighbor Pi+2 and receive 
an element smaller than max(S/-1). When this element is passed to P,  Bi is no 
longer true. The eventual stability is shown as in bubble sort, where the "big" 
elements float to the right and the "small" ones float to the left. 

7. CONCLUSION 

We have formulated an algorithm that  achieves a joint decision of a group of 
communicating processes to terminate, where each of them is directly aware only 
of its own local state. The algorithm is based on a general property of disjoint 
processes, in which termination can be either achieved directly or induced by 
other terminating processes. We have shown how to solve a problem of sorted 
partition using the algorithm. 

We feel that this kind of situation will occur often in various applications of 
distributed programming. Recently, we: learned that in an unpublished manu- 
script, Sintzoff dealt with a similar question and suggested a circular arrangement 
of the Pi's instead of our spanning tree. He is not concerned with the problem of 
avoiding new channels. 

Currently a research project (jointly with W.P. de Roever) is attempting to 
construct a formal system in which the formal counterpart of the sketch proof 
presented here can be formulated. 
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