
Distributed Termination

NISSIM FRANCEZ

University of Southern California, Los Angeles

Discussed is a distributed system based on communication among disjoint processes, where each
process is capable of achieving a post-condition of its local space in such a way that the conjunction
of local post-conditions implies a global post-condition of the whole system. The system is then
augmented with extra control communication in order to achieve distributed termination, without
adding new channels of communication. The algorithm is applied to a problem of constructing a
sorted partition.

Key Words and Phrases: concurrent programs, distributed processes, disjoint memories, communi-
cation, input-output, distributed termination
CR Categories: 4.32, 5.24

1. INTRODUCTION

R e c e n t l y , H o a r e d e s i g n e d a new p r o g r a m m i n g l a n g u a g e for c o n c u r r e n t p r o g r a m -
m i n g ca l l ed C S P [7], w h i c h di f fers s ign i f i can t ly f r o m p r e v i o u s l y s u g g e s t e d lan-
guages such as C o n c u r r e n t P a s c a l [1] or M o d u l a [10] in t h a t p r o c e s s e s a r e
disjoint, i.e., s h a r e no k ind o f v a r i a b l e s w h a t s o e v e r . Al l c o m m u n i c a t i o n a m o n g
c o n c u r r e n t p r o c e s s e s is b y m e a n s of i n p u t - o u t p u t , w h i c h a lso s e rves for s y n c h r o -
n iza t ion . A s im i l a r k ind of c o m m u n i c a t i o n is e m p l o y e d b y M i l n e a n d M i l n e r [8],
w i t h o u t sugges t ing a n y speci f ic l a n g u a g e for exp re s s ing it. S in t zo f f [9] u ses s im i l a r
p r i m i t i v e s w i t h a d i f f e ren t s y n c h r o n i z a t i o n b a s e d on c h a n n e l t es t ing . B r i n c h
H a n s e n [2] sugges t s p r o c e d u r e cal ls as a m e a n s of c o m m u n i c a t i o n a m o n g o t h e r -
wise d i s j o i n t p rocesses . T h u s t h e s u b j e c t of distributed programs ga ins m o r e a n d
m o r e in t e re s t , in c o n c e r t w i t h d e v e l o p m e n t s in m i c r o p r o c e s s o r t e c h n o l o g y , t h e
f u t u r e i m p l e m e n t a t i o n tool .

S o m e of t h e t h e o r e t i c a l p r o b l e m s i n v o l v e d in t h e s e m a n t i c s of d i s t r i b u t e d
p r o g r a m s a re d i s cus sed in [8], as wel l as in [6], a n d we a re c u r r e n t l y w o r k i n g on
p r o o f ru les for s t r o n g (to ta l) c o r r e c t n e s s o f such p r o g r a m s . One of t h o s e ques t ions ,
t h e p r o b l e m of distributed termination, is d i s c u s s e d in th i s p a p e r , a n d a n
a l g o r i t h m for a c h i e v i n g such t e r m i n a t i o n is sugges ted .

T h e n e e d for such a n a l g o r i t h m a r i ses because , in genera l , t e r m i n a t i o n is a
p r o p e r t y of t h e g loba l s t a t e of a c o n c u r r e n t p r o g r a m . I t m a y be h a r d to d i s t r i b u t e

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This work was supported in part by the National Science Foundation under Grant MCS 78-673.
A revision of this paper was presented at the International Symposium on Semantics of Concurrent
Computations, Evian les Bains, France, July 2-4, 1979.
Author's present address: Department of Computer Science, Technion--Israel Institute of Technol-
ogy, Haifa, Israel.
© 1980 ACM 0164-0925/80/0100-0042 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980, Pages 42-55.

Distributed Termination 43

the decision to terminate to processes tha t are aware of their local state but have
only limited information about the state of other processes with which they are
connected along a channel of communication. On the other hand, it may be fairly
easy to distribute a global post-condition into Ca conjunction of) local post-
conditions. We discuss an example, an algori thm for achieving a sorted part i t ion
into n subsets, which is a generalization of a problem solved by Dijkstra [5] for
n = 2 .

2. THE PROBLEM

Suppose we want to design a concurrent program P, which has to achieve upon
terminat ion a post-condition BC)7), where)7 is the (global) state vector. Suppose
also tha t it is possible to part i t ion y into n(_>2) disjoint substates ~1)7,, and
to find n predicates Cover those substates) BiC)7~), i = 1 n, so tha t we have
the following property.

Property 1: (Ai~I,, Bi(yi)) D B(y) .

Finally, suppose we can design relatively easily n processes P ~ , . . . , Pn, which
have as their state vectors)7~, respectively, and which, by means of some
communicat ions with each other, exchanging data, can respectively achieve a
state Bi(yi) after a finite amount of time. We call this communicat ion the basic
communication.

Then, the concurrent program P :: [P~][. . . IIP-] would be a natural solution to
the original problem, provided we can enforce terminat ion as soon as all Pi's
achieve their favorable state satisfying Bi. Such states are called final. Partial
correctness follows from Proper ty 1. Each Pe is repetitive, of the form

Pi = * [gi 1 ----> Si 1
0

D
gik, ---> Si~,
]

(where gij may involve basic communication). 1
When the stable state Vi. Bi(Jvi) is reached, all P~'s are in their outer level, with

no guard ready. We assume another natural property.

Property 2: No two processes in final states conduct basic communication.

Since there is no central control which can inspect all Pi's from the outside and
decide when to terminate, the Pi's have to establish the required fact by means
of some extra control communication. We call the problem of designing such
control communicat ion the problem of distributed termination.

Obviously, a solution in which each P~ terminates as soon as it finds its own

In this notat ion, which follows Hoare [7], * [. . .] is used, ra ther t han the d o . . . o d of Dijkstra, to
denote repet i t ion unti l all guards are false.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. l, January. 1980.

44 Nissim Francez

B~(yi) t rue is not correct, since there may exist another Pj, which needs additional
basic communicat ion with Pi in order to establish the t ru th of Bj(Yi).

The required solution should be, of course, independent of the specific problem
P is trying to solve. I t should be a communicat ion scheme tha t could be inserted
into any partially correct solution as above with the slightest possible additions
to the basic communicat ion par t (for interface with the control communication).
The solution should, therefore, also be independent of the number of processes
involved n and independent of the specific neighborhood relationships holding
among the Pi's (here "neighbors" means processes with which some Pi is con-
nected by means of a communicat ion channel).

Another impor tant requi rement from the solution is tha t it does not add new
neighborhood relationships, or equivalently, new communicat ion channels. This
requi rement is impor tan t for physical realizations of such a solution. Simpler
solutions can be obtained if the requi rement is deleted.

3. THE PATTERN OF DISTRIBUTED TERMINATION

Let P :: [P1 II . . . II P .] be a concurrent program with processes Pi, i = 1 n.
Let 3 7 denote the global state of P, and 37~, i = 1, . . . , n, the total state of P~.
Assume tha t all the processes are disjoint and are communicat ing in some way
along channels.

For a process P~, endotermination is terminat ion depending only on the
reachabil i ty of some final state, determined by some predicate B~(37i) over the
initial local state. Endoterminat ion is similar to the terminat ion of a sequential
program, e.g., as described in [3]. Exotermination is terminat ion depending on
the condition tha t every member of a prespecified set T--- {Pi~ , Pi,), k > 0,
has terminated.

T is called the termination dependency set (TDS), and T -- ~ by convention
in the case of endoterminat ion. Let TDSi denote the terminat ion dependency set
of process Pi. If Pj E TDSi, Pi is connected to Pj. We avoid here discussion of
how the T D S is specified and how the terminat ion of its members is sensed, since
there are language-dependent issues.

In general, the kind of terminat ion a process exhibits may depend on its own
initial state as well as on the initial state of its companions. If the processes
contain also local (internal) nondeterminism [6], then the dependency is on each
initial state and each computation! As an example, consider a process P1, which
is ready to accept no more than m messages from its neighbor P2, where m is
locally determined, and TDS1 -- {P2). If P2 terminates before delivering m
messages, P1 will te rminate in an exotermination. If P2 is willing to send m or
more messages, P1 will te rminate in an endoterminat ion. 2

The concepts of endononterminat ion and exononterminat ion are defined anal-
ogously. Thus, endononterminat ion means the unreachabil i ty of any final local
state. Exononterminat ion means nonterminat ion of at least one process from the
TDS.

Some processes are always ei ther endoterminat ing or endononterminat ing, or

In the sequel, we assume that processes have no local nondeterminism in order to simplify the
discussion.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

Distributed Termination 45

are always ei ther exoterminat ing or exononterminating. ("Always" here means
for each tuple of initial states and each computation.) We call such processes
endoprocesses and exoprocesses, respectively. I t is a useful language feature to
allow syntactically imposed restrictions on a process as to what kind of termina-
tion it should exhibit. In CSP [7], one can use a guarded command containing
only inpu t -ou tpu t guards in a way which implies tha t the process is an exoprocess.
Using a mixture of Boolean and inpu t -ou tpu t guards does not allow such a
syntactical distinction.

For each program P as above, we now define its communication graph Gp. Gp
contains one node for each Pi in P and an edge (Pi, Pj) for each pair of processes
Pi, Pj such tha t a channel of communicat ion exists between Pi and Pj. Note tha t
channels of communicat ion are directed and tha t the Gp is a directed graph tha t
may contain both (Pi, Pj) and (Pj, Pi). We assume tha t Gp has no self-loops, since
no process communicates with itself. For convenience, we assume tha t Vp is
weakly connected, i.e., tha t the underlying undirected graph is connected. Other-
wise, one has to discuss propert ies of the weakly connected components. We also
assume tha t the channels are not created and destroyed dynamically and tha t Gp
can be determined syntactically f rom P. Various propert ies of P can be expressed
in terms of Gp, which characterizes all potential communications. For example,
if Gp is a tree, then P obviously cannot deadlock. In Dijkstra [4] some dynamic
propert ies are expressed with respect to such a graph, again in a context of
deadlock freedom characterization.

We are also interested in another graph Tp, derived from Gp and the various
TDS's . Tp will reflect all the terminat ion dependencies within P. The nodes of Tp
are the same as those of Gp, one for each process Pi E P. However, the edges of
Tp are not in general syntactically determined, since they may depend on the
initial states. Let 3 7 = (~ Yn) be a fixed initial state vector.

For each edge (Pi, Pj) ~ Gp,

(1) (Pi, Pj) E Tp iff Pi E TDSj;
(2) (Pj, Pi) E Tp iff Pj E TDS~.

Thus, Tp contains some of the directed edges of Gp an d /o r their reversals. All
nodes corresponding to endoterminat ing processes will be sources, having no
incoming edges.

DISTRIBUTED TERMINATION PATTERNTHEOREM. P terminates for (yi :)7,)
only if Tp is acyclic.

PROOF. If Tp contains a cycle, then a deadlock situation occurs, since no
process whose corresponding node lies on the cycle can possibly terminate.
(Obviously all nodes on such a cycle correspond to processes which are exonon-
terminating for y.)

The meaning of this theorem is tha t whenever P terminates for ~, it has a
partial order induced on its processes, which describes a wave of termination,
where once endoterminat ing processes (for tha t y) terminate, all processes whose
TDS ' s contain only those endoterminat ing processes terminate, and so on.

The acyclicity of Tp is of course not sufficient, because of the possibility of
dynamic deadlocks and infinite computations. However, even the necessary

ACM Transact ions on Programming Languages and Systems, Vol. 2, No. 1, J anua ry 1980.

46 Nissim Francez

condition gives one the general feeling of the way dis tr ibuted te rmina t ion is
achieved.

Methodologically, it m a y be easier to impose such a part ial ordering syntacti-
cally and let the required " te rmina t ion wave" be appa ren t f rom the p rogram text.
A similar observat ion is ment ioned by Di jks t ra [5], who suggests an a lgor i thm
containing one {syntactically) endotermina t ing process (in our terms) and one
{syntactically) exoterminat ing process. He indicates tha t an a l ternat ive design of
the a lgor i thm is possible, involving two endotermina t ing processes, which would
use a different te rminat ion pa t t e rn but would be harder to verify.

Finally, consider a s imple example, expressed by CSP [7] notation. Consider
again the process P~ ment ioned above, which is ready to consume no more than
m inputs and to t e rmina te if its companion P2 does so before rn messages have
been passed. Le t P2 be a process ready to produce no more than k outputs and
te rmina te if its companion P~ does so before k messages have been passed.

For brevi ty in the program, we omit var iable declarations, as well as the
port ions of p rogram which process input or generate ou tpu t wi thout fur ther
communicat ion. We let P :: [P1 II P2], where 3

P1 :: a := 0;

P2 :: b := 0;

For this p rogram P we have

* [a < m ; P 2 ? x----> a := a + 1]

* [b < k ; P~ ! y---> b : = b + l].

o<
Vp = P1 P2

reflecting the directed channel of communica t ion be tween P2 and P1, along which
P2 sends outputs to P1, and P1 receives input f rom P2.

For Tp, we have three possible cases.

(1) k = m. Tp has no edges at all, since no te rmina t ion dependencies exist.

O O
Tp = P1 P2

(2) k < m. In this case, P2 is endotermina t ing and P1 is exoterminat ing with
TDS1 = (P2}.

o(
Tp = P1 P2

P2 will induce te rmina t ion on P~.
(3) k > m. This is the symmet r ic case, and TDS2 = {P1}.

O)O
T~ --- P1 P2.

Tp is acyclic in all three cases, as expected, since P t e rmina tes for every initial
s ta te (m, k).

As an example of the insufficiency of the acyclicity of Tp, consider the following

3 In this notation P2 ? x means that a value is input from process P2 and assigned to x; P~ ! y means
that the value ofy is output to process P~.

A C M T r a n s a c t i o n s on P r o g r a m m i n g L a n g u a g e s and Sys t ems , Vol. 2, No. l, J a n u a r y 1980.

Distributed Termination 47

program in CSP [7]:

P :: [P1 :: P2 ? x [[P2 :: P1 ? y II P3 :: *[P1 ? z ~ skip D P2 ? u --* skip]]

Tp=P1 P2

l ° which is acyclic (syntactically!)
O

P3

However, P~ and P2 are engaged in a deadlock, each waiting for an input from the
other, thus preventing P3 from (exo)termination.

Note tha t in CSP [7] the T D S is implicit, dependencies being determined by
means of inpu t -ou tpu t guards. Exoterminat ion is expressed by making the whole
program an inpu t -ou tpu t guarded loop. We shall extend this convention.

4. A SOLUTION

Our strategy is to arrange terminat ion dependencies among Pi P , so tha t Tp
is acyclic. We assume that in the original Pi's no dependencies are specified. We
want to designate an arbi t rary Pio which will "collect" all the information about
the rest of the Pi's having reached a state satisfying Bi(yi). Having reached the
conclusion tha t all Pi's are in a final state, P~o will terminate, thus initializing the
terminat ion wave, which will eventually reach all P~'s.

The basic idea in the design of the algorithm is to find a spanning tree in Gp's
underlying undirected graph {thus not adding new channels!). The control com-
municat ion has the following phases.

(1) When in a final state, the root process initiates a control wave to all its
descendants in the spanning tree.

(2) The wave propagates through a node Pj as long as B~(~) is t rue too. Th e
passage of the control wave through a node "freezes" the basic communicat ions
of the node (except for communicat ions introduced by this algorithm).

(3) Each node notifies its parent (in the tree) whether all nodes in its subtree
have reached final state. If Bj(:~) itself is false, there is no need to propagate the
control wave, and an immediate negative notification can be delivered.

(4) If a positive answer (i.e., tha t all nodes are in a final state) reaches the root,
it initiates the implicit terminat ion wave by terminating itself. Th e TDS ' s will be
induced by the spanning tree so tha t this wave will spread all the way to the
leaves. Note tha t contrary to the control waves and answers which are par t of the
algorithm, the terminat ion wave will be derived from the TDS's .

In the case of a negative answer (meaning that some nodes are not in a final
state yet), an "unfreezing" wave is propagated, allowing the resumption of basic
communication.

(5) One has to take care tha t at least one basic communicat ion is performed
between two consecutive control waves to eliminate the possibility of an endless
control loop. Hence a fourth wave is initiated by the leaves and passes each node
not yet in final state only after having performed at least one basic communica-
tion. When reaching the root, a new control cycle may start.

Let Gp be the communicat ion graph and Tp* be any spanning tree in the

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

48 Nissim Francez

underlying undirected graph of Gp. We now modify P1 P , to P1 P , .
First, we define for each Pi its TDS to be the singleton set containing its parent
in Tp*. The root of Tp* is specified as an endoterminating process. We have
thereby made the dependency graph Tp coincide with the spanning tree Tp*, thus
guaranteeing that it is acyclic, in accordance with the pattern theorem.

Next, we add to each P~ a control section Ci to be executed as a set of

alternatives to the basic communications, and we add a small interface section to
the basic communication part of Pi.

C, will depend on the relative position of the node i (corresponding to Pi) in
Tp*. We distinguish among three cases: the root, an intermediate node, and a
leaf.

In order to describe Ci, we use a liberal extension of the CSP [7] notation. Let
J = {fi jk} be an index set.

I1 Sj ~ IS+, II S+2 I I . . . II Sj ,
j E J

df
A qJ = qJ, & "'" & qJ, (conjunction).

j e J

[] qj--+ Sj ~ qj -+ Sj,
j E J

[3

E]

For a node Pi in Tp*, let f (i) be the index of Pi's parent and let Fi be the set of
indices of Pi's children. We assume that all the variables in Ci are new, not
appearing in Pi (except the arguments of the process predicate B~, which are not
stated). Also, we assume that the main loop is exited once all processes in the
T D S (addressed by some input-output guard in the loop) have terminated. This
extends the CSP convention

Case 1. Pi is the root. {initially, n e w w a v e = true, Vj: r e a d y (j) = false}.

C~ :: Bi; n e w w a v e ~ H PJ ! ok; ~r pj ? a(j);
jer~ j

r : = A a(j); [r--~halt
J~Fi D

r ---> n e w w a v e := false;
y~r, pj ! r e s u m e

]
[] PY ? r e a d y (j) ---> [A r e a d y (j) ---> n e w w a v e := true;

jEF i JEFi

l I r e a d y (j) false
JEFi

D
A r e a d y (j) ---> skip

j EF i

]

ACM Transact ions on Programming Languages and Systems, Vol. 2, No. 1, J a n u a r y 1980.

Distributed Termination 49

a is a Boolean array, while o k is a new (control) communicat ion signal, of a type
different from b o o l e a n and i n t e g e r (to meet the matching of types required by
CSP [7] for input-output) .

Thus, whenever Pi is in a Bi state, it may initiate a control cycle by sending a
control signal o k to each of its children in Tp* (in any order tha t the children are
ready to accept it). Then it waits for each child to "answer" with a Boolean value.
If all answers are true,/5i halts. Otherwise, it sends each child a r e s u m e message
(to be interpreted by the children as a permission to resume some basic commu-
nication, af ter being "frozen" by the o k question) and may itself resume some
basic communicat ion or t ry to initiate another control cycle, once a ready signal
has arrived from each child. The meaning of ready(j) is explained in the sequel.
The Boolean newwave records the arrival of all ready(j) messages.

Case 2. Pi is an intermediate node (initially, crn = true, Vj: ready(j) = false,
advanced-- false}.

Ci ? o k false; :: __t'f,i) --+ cm :=
[~Bi--+ PI(i) ! false
D

Bi--+ j~eri P/ ! ok; ,eIIr, Pj ? a (j) ;

r := A a (j) ; Pf<i) ! r
JEPi

]
D
Pf(i) ? r e s u m e --+ cm := true; advanced : - false; .II Pj ! r e s u m e ;

u

[] P/? ready(j) -+ skip
JEri

(Bi k~ advanced) & A ready(j); Pf(i) ! t rue --) 1] ready(j) := false
JErl jEF~

The array a and the o k signal are as in Case 1. crn is a Boolean variable, whose
interpreta t ion is masking basic communications. Th e Pi basic communicat ion
par t is augmented with cm as a guard.

Thus as an alternative to its basic communication, Pi may accept an o k signal
from its parent as par t of the control wave. Upon receiving such a signal, Pi
immediately falsifies the basic communicat ion guard cm, which can be set again
to true only after a r e s u m e input from its parent, thus freezing itself. Then, Pi
checks its local state. If it is not a Bi state, it immediately responds with a false
to its parent, thereby breaking the control wave. Otherwise (in a Bi state) it
behaves like the root, propagating the control wave, except tha t instead of using
the value of r, the accumulated state of its subtree, it communicates r to its
parent.

Another set of alternatives is to receive a ready(j) (equal actually to true) from
each child, which means a permission to initiate a new control cycle. This message
is passed on to the parent, in case Pi is in a Bi state, or some basic communicat ion
occurred, an occurrence recorded by the Boolean variable advanced.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

50 Nissim Francez

Case 3. Pi is a leaf {initially, cm = true, ready = false}

Ci :: Pf(i) ? o k --* cm := false; Pf(i) ! Bi
U
Pfti~ ? r e s u m e --, cm := true; advanced := false; ready := t rue

ready & (Bi V advanced); Pfti~ ! t rue -* ready := false

Within leaf processes, ready is a Boolean variable whose task is to insure tha t a
ready signal to the pa ren t is sent only once per control cycle.

In all three cases, we also augmen t the basic communica t ion pa r t of each Pi
which is not the root (why?), with a s t a t emen t advanced := true, recording the
fact tha t some advance in basic communica t ion did occur.

Thus, the overall opera t ion of P is as follows. Processes are engaged in basic
communica t ion as long as possible. Occasionally, the root chooses to initiate an
o k message, to t raverse the t ree Tp*, and to wait for a Boolean result r, which
should be t rue only if Vi. B~(~i) = t rue holds. Whoever receives this o k signal
freezes its basic communica t ion and ei ther spreads the o k message down the t ree
or decides tha t its own s ta te is not a B~ state. Eventual ly, each process delivers an
answer r to its pa ren t such tha t r = t rue iff all the processes in its subt ree (all
frozen) are in a B~ state. Once the root receives its own r, it hal ts if r is t rue and
otherwise sends a r e s u m e signal to "unfreeze" the whole tree. Once a process
receives this message, it delivers it fur ther down the t ree and resumes basic
communicat ion. Each process not ye t in a B~ state, af ter doing at least one basic
communicat ion, signals tha t ano ther o k wave is possible. When this signal
reaches the root, the whole control cycle m a y s tar t again. This goes on until Vi.
Bi()7) = t rue is reached (this is assumed to occur!), which will cause the root to
hal t eventually, and then the required te rmina t ion wave will spread down Tp*
until it reaches all processes of P, since Tp* is a spanning tree. Thus, dis t r ibuted
te rmina t ion has been induced on the original P. We remind the reader tha t the
spreading of the wave of t e rmina t ion follows f rom an extension of the language
rules of i n p u t - o u t p u t guards and the construct ion of Tp* as a spanning tree. I t is
not pa r t of the addition. The control communica t ion is used only to de te rmine
when the root can terminate!

5. CORRECTNESS

We now want to prove tha t the preceding a lgor i thm has the required properties,
i.e., t ha t the augmented p r o g r a m / 5 _ [P1][.--]] Pn] terminates , with Vi. Bi(yi)
= true, given tha t P is such tha t Yi. Bi(yi) = t rue eventual ly occurs. The proof is
not in tended to be formal p rogram verification, but such a proof could be obta ined
f rom this sketch once the r ight proof rules are available.

By our construction, Tp = Tp*, and so it is acyclic. Since the root process is the
only endotermina t ing process, we have to prove its terminat ion. T h a t proof is
sufficient to establish overall t e rmina t ion because of the construct ion of Tp as a
spanning tree over P1 Pn and the de te rmina t ion of the T D S ' s accordingly.

Claim 1. Each nonroot Pi mus t eventual ly be ready for control (ok) commu-
nication with its parent . Otherwise, it will pe r fo rm an indefinite n u m b e r of basic

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

Distributed Termination 51

communications, which is impossible by assumption. Note that this alternative is
not conditioned and therefore cannot be blocked. Note, also, that this control
communication may take place earlier, before it becomes the only alternative,
depending on the guard scheduling rules.

Claim 2. Whenever some nonroot Pi receives the control signal ok from its
parent, it will ventually be ready to respond with a Boolean r, satisfying

true, iff for all Pj in Pi's subtree, Bj(yj) holds;
r = false, otherwise.

This claim follows by induction on the height of Pi in Tp*. If Pi is a leaf, then Pi
itself is the whole subtree, and the claim is obvious from the leaf program.
Otherwise, if Pi detects a non-B~ state and is ready to answer false, the claim is
true immediately. If Pi detects a B~ state, it will attempt to send ok control signals
to all its children. By Claim 1 applied to all the children, all of them will eventually
receive the ok signal, and by the induction hypothesis, since their height is
smaller by 1, they will eventually respond with an answer r as above. The claim
follows because the conjunction of such r's has the same property when Bi is
known to hold. Note that after the response with r, P~ is again at the top level,
but unable to perform basic communication, since cm = false, and the next
communication will be a r e sume signal.

Claim 3. The state of each P~ does not change between its response (r) to its
parent and the input of a r e sume signal. Upon receiving ok, cm is set to false
and thus disables any further basic communication, which might change its state.
Only the input of the r e sume signal causes setting cm to true and allows
resumption of basic communication.

Claim 4. (a) The root cannot initiate two consecutive control cycles unless
some process has performed some basic communication. (b) After each control
cycle, either the root terminates or another cycle will follow.

Claim 4(a) follows from the presence of the newwave guard, which is set to
true only after all the children reported with ready(j) = true. Each such response
of some P~ depends on receiving ready signals from its own children and reporting
to the parent. This reporting cannot be blocked and has to occur eventually,
again as the only alternative, because either B~ is true or it is false and then some
basic communication has to occur and set advanced to true. For a leaf, ready is
set to true upon receiving r e sume and does not depend on any input from other
processes. Hence claim 4(b) follows also.

PROPOSITION. Rio (io is the index of the root) terminates, a n d upon termination
Vi. Bi(yi) holds.

PROOF. By the same argument as in Claim 1 and since newwave is initially
true, P~o eventually reaches a state where it must send an ok signal to all its
children. By Claim 1, each child will eventually receive this signal, and by Claim
2, each child will eventually respond with some a. Let r = AjEr,~, a(j) . If r = true,
then Pio terminates, and by Claims 2 and 3, the property Vi. Bi(iyi) = true follows.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. l, January 1980.

52 Nissim Francez

If r = false, P~o will send r e s u m e signals to its children, etc. (this signal will be
accepted, by the note after Claim 2) until every process can resume basic
communication. By Claim 4, some basic communicat ion will necessarily have
been performed by some/5 i, before a new control cycle like this can be repeated.
Thus, only a finite number of such control cycles is possible, and again Pio will

terminate.
A simple analysis of the suggested algori thm shows tha t in the best case, where

Pi,, first a t tempts a communicat ion cycle only when Vi. B,(Yi) = true already
holds, the number of control communicat ions performed is 2(n - 1). Each /5 ,
receives once an o k signal and responds once with with an r answer. In the worst
case, a control communicat ion can occur between any two basic communications,
and hence the total number of communicat ions is 4b(n - 1), where b is the
number of basic communications. (The factor 4 is due to the additional unfreezing
wave and r e a d y response.) This number may grow very fast and is due to the
nonmonotonic behavior of the P~'s with respect to reaching a B, state. Th e actual
number of control communicat ions will depend on the guard scheduling algo-
rithm. Note tha t "best" and "worst" in this context refer to quantif ication over
all possible schedulings, and not over initial states. Fur ther complexity analysis
is beyond the scope of this paper.

6. AN EXAMPLE: SORTED PARTITION

Let S be a nonempty set (without repetitions) of natural numbers, and let S = S~
+ $2 + • -. + S, be a dis jo in t part i t ion of S into n _> 2 nonempty subsets. Also, let

mi = [Si] be the number of elements in Si.
Consider the following post-condition B(S~ S.):

B (S , 5;,) =- Vi, j(1 < i < j <_ n)Vp, q (p E Si & q ~ Sj D p < q)

& Vi(1 <_ i <_ n) [Sil = mi,

i.e., the final state is such tha t each subset S~ has the same number of elements
as it s tar ted with, and the part i t ion is sorted in ascending order of the natural

numbers.
The only basic communicat ion allowed is sending or receiving a natural

number.
This is a generalization of (a slight modification of) a program presented by

Dijkstra [5] for n = 2, there called a sorting problem.
One can easily verify tha t an equivalent specification is given by

B(S1, . . . , S ,) =- Vi(1 _ i < n)Vp, q (p ~ Si & q ~ Si+~ D p < q)

& Yi(1 <_ i <- n l S i I ~- mi.

Fur the rmore , if we introduce the functions max(Si) and min(S~) with the usual
meanings, this can be fur ther t ransformed to

B(S~ S ,) - Vi(1 <_ i < n) (max(S i) < min(Si+A)

& Vi(1 _ i _< n) I Si[= mi.

This last specification suggests a program organization in which each process
(except P~ and P,) has two neighbors with which it communicates , i.e., inter-

ACM Transact ions on Programming Languages and Systems, Vol. 2, No. 1, J a n u a r y 1980.

Distributed Termination 53

changes natural numbers (members of the corresponding sets). For 1 < i < n, the
left neighbor of Pi is Pi-~ and the right neighbor is Pi+~. The end processes in the
line will have only one neighbor each.

Now we may introduce an additional variable: lini = last input from right
neighbor, for 1 __ i < n. Then define for 1 _ i < n,

Bi(Si, lini) - max(S/) -_- lini &] Si l = mi ; B , - true.

Notice that for 1 _ i <_ n, the last input of P~ from Pi+l = the last output of Pi+l
to Pi, which is implied by the CSP semantics and the program below. With the
help of that fact, one can verify that

(A Bi(Si , lini)) D B (S ~ , . . . , S ,)
i~ l,n

which fits our requirement as described above.
Next we have to find processes Pi, i = 1 n, which after a finite amount of

basic communication reach their Bi states and which conform to Property 2 of
Section 2 and to the linear arrangement of the neighborhood relation.

By generalizing Dijkstra's algorithm in [5], one obtains the following for
l < i < n .

Pi :: update; lin := - oo;
,[

m x >

D
]

lin; Pi+l ! rnx -* S i :-- S i - (rex}; Pi+l ? lin;
S i := S i + {lin}; u p d a t e

Pi_~ ? 1 --* S i := S i + (/}; update; Pi-~ ! rnn;
S i := S i - (ran}; update; Pi-~ ! mn

Pi+l ? l in - , skip

where u p d a t e is defined by (rex := max(S/); m n := min(Si)). Each process Pi has
a choice between two alternatives:

(1) If the largest element in the current value of Si is larger than the last input,
send it to the right neighbor, remove it from Si, and include in S / an element
received from the right neighbor.

(2) Accept any number from the left neighbor, include it in Si, then send back
the smallest member of Si and remove it from Si.

(3) Accept a change in lin, after a change in the right neighbor's S.

In general, each process sends "large" numbers to the right, replacing them
with "small" numbers, and similarly, receives large numbers from the left,
replacing them by small numbers.

For the end processes we have the following.

P1 :: update; l in := - oo;
*[rex > lin, P2 ! r e x - - (as before} . . .

P,-1 ! rnn
]

P, :: update;
*[P~-I ? 1 ~ . . . (as before} . . .
N P~_I ! ran
]

ACM Transactions on Programming Languages and Systems, Vol. 2, No. l, January 1980.

54 Nissim Francez

By a slight generalization of Dijkstra's argument in [5], one indeed shows that
after a finite amount of time, each process reaches a Bi state. Furthermore, each
output guard is adjoined to a Boolean guard implying -Bi , and Property 2 in
Section 2 also holds.

Note again the nonmonotonic behavior of Pi with respect to Bi. It may be
possible that some Pi is in its B~ state, i.e., all its elements are smaller than its
right neighbor's and larger than its left neighbor's. However, the right neighbor
P~+I, for example, may exchange a number with its right neighbor Pi+2 and receive
an element smaller than max(S/-1). When this element is passed to P, Bi is no
longer true. The eventual stability is shown as in bubble sort, where the "big"
elements float to the right and the "small" ones float to the left.

7. CONCLUSION

We have formulated an algorithm that achieves a joint decision of a group of
communicating processes to terminate, where each of them is directly aware only
of its own local state. The algorithm is based on a general property of disjoint
processes, in which termination can be either achieved directly or induced by
other terminating processes. We have shown how to solve a problem of sorted
partition using the algorithm.

We feel that this kind of situation will occur often in various applications of
distributed programming. Recently, we: learned that in an unpublished manu-
script, Sintzoff dealt with a similar question and suggested a circular arrangement
of the Pi's instead of our spanning tree. He is not concerned with the problem of
avoiding new channels.

Currently a research project (jointly with W.P. de Roever) is attempting to
construct a formal system in which the formal counterpart of the sketch proof
presented here can be formulated.

ACKNOWLEDGMENTS

Zami Ben-Chorin suggested two-way control communication. Although his solu-
tion had some weakness, an improvement led to the current scheme. Conversa-
tions with Jorgen Staunstrup helped to clarify the general concept of distributed

termination.
Many thanks to Robin Milner, who detected a deadlock possibility in an early

version and who helped to improve the presentation, as did an anonymous
referee.

REFERENCES
1. BRINCH HANSEN, P. The Architecture of Concurrent Programming. Prentice-Hall, Englewood

Cliffs, N.J., 1977.
2. BRINCH HANSEN, P. Distributed processes--A concurrent programming concept. Commun.

ACM21, 11 (Nov. 1978), 934-941.
3. DE BAKKER, J.W. Semantics and termination of nondeterministic recursive programs. Proc. 4th

Conf. on Automata, Languages, and Programming, 1976.
4. DIJKSTRA, E.W. A class of simple communication patterns. EDW-643, 1978.
5. DIJKSTRA, E.W. A correctness proof for communicating processes--A small exercise. EDW-607,

1977.

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

Distributed Termination 55

6. FRANCEZ, N., HOARE, C.A.R., LEHMANN, J.D., DE ROEVER, W.P. Semantics ofnondeterminism,
concurrency, and communication. To appear in J. Comput. Syst. Sci.

7. HOARE, C.A.R. Communicating sequential processes. Commun. ACM21, 8 (Aug. 1978), 666-677.
8. MILNE, G., AND MILNER, R. Concurrent processes and their syntax. J. ACM 26, (April 1979),

302-321.
9. SINTZOFF, M. On language design for program construction. Centre de Recherche en Informa-

tique, Jan. 1978.

10. WIRTH, N. Modula--A programming language for modular programming. Softw. Pract. Experi.
7, 2 (March 1977).

Received July 1978; revised August 1979

ACM Transactions on Programming Languages and Systems, Vol. 2, No. 1, January 1980.

