IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO. 4, JULY 1982

a9

Echo Algorithms: Depth Parallel Operatiohs
on General Graphs

ERNEST I. H. CHANG

Editor’s Note: The referees have noted and the author agrees that this paper contains
information related to that contained in the paper, “Termination Detection for Diffusing
Computations,” by E, W. Dijkstra and C. 5. Scholten. However, since this information
was independently developed by the author and was submitted for publication prior to
the appearance of the cited paper, fairness to the author requires its publication.

Abstract —This paper describes a method for the detection of proper-
ties of general graphs in an environment in which each node can be
considered an autonomous processor, interacting with its neighbors by
passing messages,

These algorithms are decentralized in that they depend on no central
controlling process nor on global storage. No node is required to know
the configuration or extent of the graph, and no global clock is required.
The algorithms are inherently asynchronous, and in general require exe-
cution time proportional to the diameter of the graph.

Index Terms-Computer networks, decentralized control, distributed
computing, graph algorithms.

I. INTRODUCTION

HE technique of depth-first search is well known in
graph algorithms [1]. For example, finding the strong
components of a directed graph [9] or the biconnected com-
ponenis of a general graph [1] are based on this method.
However, depth-first search is a technique which assumes that
only one operation at a time is performed on a graph, We ask
whether, given the possibility of parallel graph operations,
there is a paraltel traversal method which is analogous to depth-
fitst search. In theory, such a traversal method could cover
the graph in time linearly proportional to the traversal of the
digmeter of the graph, the longest of the shortest paths be-
tween all pairs of nodes. A sequential algorithm can do no
better than visit each node in turn. Furthermore, if there is a
procedure which can logically be separated into independent
parts, it is reasonable to execute these parts simultaneously
rather than sequentially.
We will present a class of algorithms for detecting properties
of general graphs which are based on the following model.

Manuscript received July 24, 1980,
The author is with the Department of Computer Science, University
of Victoria, Victoria, B.C., Canada.

A distributed computer system is a connected graph in which
each node is a processor and each edge is a bidirectional com-
munications link. Let each processor have its own local storage,
and assume that it is capable of supporting multiple local pro-
cesses, so that while some application tasks are executing, it is
also capable of sending and receiving messages, and of initiat-
ing control algorithms. We assume a message-passing capability
which can send in parallel to the immediate neighbors of a
node, and has enough memory at each node to store all incom-
ing messages. We do not presume any fixed speed for trans-
mission between nodes, and we do not allow messages {o over-
take one ancther on a link. Furthermore, we will assume that
message passing between two ends of a link use a protocol
requiring positive acknowledgment. Thus, either the message
has been sent successfully or the sender knows it has not and
retries. Any permanent message loss therefore occurs not in
transmission, but in association with node failures. Further-
more, there is no shared memory, global clock, or central
controller, nor does any node know the extent or membership
of the entire graph. The algorithms we will present are decen-
tralized, and they function through the cooperative behavior
of the nodes, They are based on message passing, and they use
a parallel graph traversal technique which takes advantage of
potential simultaneous activity.

The coordination of a loosely coupled multiprocessor system
presents interesting new problems. Coordination implies
knowledge of global properties, which is usually not present
@ priori in a loosely coupled system having no global mecha-
nisms. Decentralized algorithms, existing at all processors,
must operate asynchronously through message passing to
coordinate the system as a whole. Some control functions
which are useful in a distributed system are: assigning an iden-

ity to a new processor, finding the ordering of all processor
identities in the system, finding the configuration of the
system, providing a mutual exclusion mechanism which pg'r

0098-3589/82/0700-0391$00.75 © 1982 IEEE

392

mits only sequential access to a critical set of resources, find-
ing the clusters of nodes (subgraphs} which are interconnected
by single links, and broadcasting a message quickly to all nodes.
Clearly, many of these control functions correspond to the
detection of simple graph properties of the multiprocessor
system. While we have studied decentralized algorithms for
these problems and others not included in this brief list, it is
our purpose in this paper only to present the fundamental
techniques underlying all such algorithms. We will then use
three of them to illustrate specific aspects of decentralized
control. A complete description of all the algorithms is outside
the scope of this paper, and can be found elsewhere [3]-[5].

The algorithms te be described are called Single-Source Sort,
Multisource sort, and Biconnected Component Detection. As
we present each algorithm, we will indicate its relevance to the
control requiremnents of a distributed system.

The decentralized nature of our method makes these algo-
rithms quite different from other parallel models which have
been proposed for finding graph properties. For example, a
parallel depth-first method in the literature is based on k-
processors sharing common memory [6]. The studies of
paralielism for graph algorithms by Arjomandi [2] also assume
k-processors and common memory. Rosenstiehl’s [8] distrib-
uted algorithms based on a network of finite state machines
are very close in concept to ours, but assume a synchronous
systemm with simultaneous transitions based on sensing the
states of all neighbors at each step.

Fully parallel algorithms on graphs must solve some basic
problems. If several edges lead to one node, and the parallel
traversal of edges starting from some initial node should arrive
at that node simultaneously, how is this to be handled? Does
the message from each of the edges get passed on, and if not,
what is to be done with the ones which are aborted? How
does information get back to the starting node in a coordi-
nated fashion? We shall show that the class of parallel graph
algorithms which we call echo algorithms address these prob-
lems in simple and efficient ways.

Il, ECHO ALGORITHMS

The basic ideas behind echo algorithms are simple, and will
be described informally in this section. Given a general graph
with intelligent nodes which can communicate along its edges,
the first idea is that message passing is the fundamental opera-
tion of any echo algorithm. Traversal of the graph therefore
means passing messages from one nede to another. For any
particular node { which starts the execution of an echo algo-
rithm, the messages originating from i form a family, sharing
the identity of { in common.

The second idea is that there are two phases in the traversal
of a graph: a forward phase and an echo phase. The forward
traversal of a graph from a starting node is accomplished by
explorers, and the echo phase by echoes. Let us confine cur-
selves at this point to single-source echo algorithms, those
which are started by one node, so that we can study the be-
havior of one family of explorers and echoes.

The third idea, then, is that each node which is visited for
the first time by an explorer will propagate explorers in paral-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL, SE-8, NO. 4, JULY 1982

le] along all the out-edges of that node. For a connected un-
directed graph, these would be ali edges except the edge at
which the first explorer arrived. This edge is called the first
edge. Explorers coming to an already visited node will tumn
into echoes, as will explorers coming to a sink node, one which
has no other edges. In general, echoes travel in a direction
opposite to that of explorers,

The fourth idea is that of arbitration, We assume a mecha-
nism at each node such that if two or more explorers arrive
at an unvisited node simultaneously, one and only one of them
is chosen as the first explorer to the node, and its edge of
arrival as the first edge of the node, The other explorers are
then considered as subsequent explorers to a visited node,
and turn into echoes.

The fifth principle is that of synchronization. A node will
echo on its first edge after it receives an echo for each explorer
sent out. This is called the echo-merge mechanism. We as-
sume that there is an arbiter mechanism at each node such
that if messages should arrive simultaneously, they are given
some arbitrary sequential ordering.

Last, but not least, explorers and echoes will carry informa-
tion with them about those parts of the graph which they have
traversed. A node which synchronizes echoes will process this
information, and will send the result with the echo from that
node. The starting node will finally receive all its echoes from
its out-edges, and after processing this information, will obtain
the result of the algorithm.

An echo algorithm, then, is started by some initiating node
sending out in parallel as many explorers as there are out-edges,
each one carrying the identity of the starting node.

A. Definitions

Given a graph G = <V, £> where V is a nonempty set of
nodes and £ is a set of edges of the form (x,) where x and y
are members of V, let n be the cardinality of V¥ and e the
cardinality of £. We distinguish several classes of graphs. All
connected undirected graphs are called Cgraphs. For directed
graphs, there are several possible subgraph relationships. A
directed graph G is type { or digraph I if it is a strongly con-
nected graph in which every node is reachable from every
other node. We call the reack set of a node v the set of nodes
in G to which there exists a directed path from . Then a
digraph il is a directed graph whose reach sets are dissimilar,
but one of which is the entire set of nodes of the graph. A
digraph [II is a directed graph which has no reach set contain-
ing all the nodes of the graph. Thus, there exists no node from
which all other nodes can be reached. A sink node in a C-graph
is a node with only one edge, while for a digraph, it is a node
with no edges leading out from it,

An initiator node 8 is a member of ¥ which produces, in an
execution of an echo algorithm, a family of explorer and echo
messages. Let explorer[a,b] represent the explorer going

from node @ to node b. Then if @ represents an arbitrary node,
explorerfa,b] is any explorer coming to noede b, and explor-
er[a,a] would be any explorer leaving node a. We adopt the
same convention for echoes, and use { }to represent a set in
the usual manner, with a suffix -$ to indicate the initiator.

CHANG: ECHO ALGORITHMS

Thus, {echo{e,b]} - S would refer to all the echoes going to
node & belong to the family of messages of initiator .

By [a,b] we will mean the edge going from @ to node 5,
and by [b,a] we will mean the same edge, but in the sense
of & to a. To convey a neutral sense of an edge connecting
@ and b, we use (a,b).

An explorer which is the first to arrive at a node is called a
primary explorer. An edge carrying a primary explorer is a
P-edge. A node may have several P-edges, but the P.edge on
which it was itself first visited is called its frst edge. Its other
P-edges are first edges to their successor nodes. Non-P edges
clearly carry explorers to already visited nodes. Every node
has a first edge except the initiator, which is considered visited
a priori. A node which has P-edges leading out of it is called
a P-node, and a node which does not is a non-P node.

Echoes arise in two situations: at the termination of an ex-
plorer, and from a node which has received an echo for every
explorer it has sent out, and then itself echoes on its first edge.
In the first case, such an echo is cailed an initial echo, and the
node at which its corresponding explorers terminated is called
the origin of the initial echo.

B. General Properties

In order to elicit some properties general to most of the echo
algorithms, let us first describe the pure traversal algorithm.
This will also establish a prototype for the description of other
algorithms to follow.

Algorithm 0 is a traversal of a graph from an initiator node,
and we cannot traverse nodes which are not reachable, Hence,
for a digraph, we can only study the subgraph G' induced
from G by the reach set of the initiator node S in G. Call this
the S-reach graph of the original graph G. Therefore, Algorithm
0 can apply to any C-graph or diagraph I, and to the S-reach
graphs of digraph II and digraph III. Fig. 1 illustrates these
different types of graphs.

Explorers and echoes represent messages of two types going
from node to node. The basic identity of each is thus fype
and family name S, Implicit to the message is the TO and
rROM node information, and other protocols which the com-
munications system may require. These are constant, and we
include them under the notion of basic identity. Algorithm O
requires no more than basic identity on a message.

Algorithm 0—Pure Traversal: First, assume that initiator §
sends explorers in parallel on all its out-edges, where an out-
edge is a directed edge from § for digraphs and all the edges of
S for a C-graph. We must consider the activity at each node
for the arrival of an explorer or an echo in a particular edge.

1) If the explorer is the first to arrive at the node, mark the
edge as first, and send explorers in parallel from the node on
the out-edges of the node. For a digraph, these are edges
directed from the node. For a C.graph, these are all edges
except the first edge.

2) If the explorer is not the first or if there are no out-
edges, then echo back along the edge on which the explorer
arrived.

3) If an echo comes to the node, then mark the edge as
having received an echo. If all echoes for the node have ar-

393

A Digraph IT G The b-reach graph of G

: a :
o The a-reach graph of G°
¢ ° i

d

A Digraph 111 G°
The d-reach graph of &7

Fig. 1. Some reach graphs.

rived, then send an echo back along the first edge of the node,
unless the node is the initiator, in which case we are finished.,
Let us look at the properties of the pure traversal algorithm.
These are based on the three fundamental mechanisms of echo
algorithms: explorers are sent in parallel from a node, each
node has only one edge on which it is first visited by an ex-
plorer, and a node waits for all its echoes to come back before
it itself echoes on its primary edge.
Property 1: Eunch node receives at least one explorer.
Argument: By assumption, only those graphs and sub-
graphs in which all nodes are reachable from § are in question.
Therefore, every node has a path from S. If any node did not
receive an explorer, then its predecessor on the path from §
could not have received one. By induction, either § did not
emit any or else the node is not reachable. In any case, pre-
suming no loss of explorers, a contradiction arises, Hence,
there is no such node. a8}
FProperty 2: Eventually, all explorer activity will terminate,
Argument: We are only concerned with finite graphs. By
Property 1, every node will eventually be visited, and any
explorers generated thereafter can only come to sink nodes
or visited nodes, turning into echoes, - 0O
Property 3: There exist non-P nodes which have no P-edges
leading from them.
Argument: We ate referring to edges which are first edges
to their successor nodes. Trivially, sink nodes have no out.

394

edges. Furthermore, by Property 1, all nodes eventually get
visited for the first time by an explorer. Hence, the last such
node can send explorers only to visited nodes. Thus, there
are no P-edges leading from it. (]

Property 4: A P-node sending a primary explorer to its
successor ean be said to precede it. Then there can be no cycle
of precedence. N

Argument: |If node @ sends a primary expiorer to b, then
this will cause b to send explorers from 4. Hence, the activa-
tion of @ could not have been from one of these explorers,
Thus, if @ precedes &, then b could not precede a.

Corollary 1. It follows immediately that an edge (a,b), if it
is a P-edge, can only carry an explorer in one direction, either
from a to & or vice versa.

Corollary 2: 1t also follows that a non-P edge must carry
explorers in both directions. For if and b are not activated
one by another, they must have both sent out explorers on
all their nonfirst edges. Clearly, the edge (a,) is such an edge.
Thus, it must carry explorer[a, 5] as well as explorer[b,a]. O

Property 5: Every explorer on an edge induces a corre-
sponding echo.,

Argument: Consider all non-P edges. They carry explorers
to visited nedes, and immediately induce an echo, For those
P-edges which lead to sink nodes, a corresponding echo is also
generated at that node. It follows that a node which only has
non-£ edges leading from it will get all its echoes, and be able
to send an echo on its first edge, or else it is a sink node, and
also echoes,

A P.node has a primary edge leading out of it, and a non-P
node does not. Consider an explorer on a P-edge from a P-node.
It either leads to another P-node or to a non-P node. By in-
duction on the finite size of the graph, all P-nodes must even-
tually lead to non-P nodes. In the previous paragraph, we have
shown that non-P nodes will echo on their firsz edges. Hence,
the P-edges leading to non-P nodes will receive echos. By
induction, all P-edges will eventually receive an echo. O

III. PERFORMANCE OF ALGORITHM 0

The efficiency of this algorithm can be considered using
three metrics: total number of message passes in the system,
elapsed communication time for the algorithm, and the amount
of storage required at each node, We make some important
assumptions about elapsed time. First, we assume that pro-
cessor time is very small compared to communications time.
Second, in an asynchronous system, we have no guarantees
as to how fast messages move, except that all messages take
a bounded time to traverse a link. For purposes of analysis,
we will consider the average case where messages take approxi-
mately the same time to traverse an edge.

Consider number of message passes first, It is bounded by 4e
where ¢ is the number of edges in the graph, Since each edge
(a,b) can have at most iwo explorers, one in each direction,
and two corresponding echoes, the total number is bounded
by 4e. Note that for a digraph, it is 2e, since there are no
symmetrical pairs of explorers which travel on directed edges.

Assume that each edge takes approximately one unit of time
to traverse, so that we can estimate bounds for the communi-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL, SE-8, NO. 4, JULY 1582

cation cost of a decentralized algorithm. Define the S-span of
a graph as the jongest of the shortest paths from § to any ele-
ment in the reach set of §. When the metric of weight used is
message travel time, we used the term timed S-span.

It follows that the timed S-span of a graph represents the
time it takes for explorers to reach every node of the graph,
called the forward phase of the echo algorithm, If we assume
that explorers and echoes have the same speeds, then the tra-
versal of the graph from § will take twice the timed S-span of
the graph.

For a C-graph or a digraph |, traversals starting from any
node { will have the same reach set. The largest of the i-spans
is referred to as the diameter of the graph. The timed diameter
is then the maximum of all traversals of the graph for afl start-
ing nodes, We extend this notion to include digraph IT’s, even
though the reach sets of different nodes may be different. The
largest i-span will be taken to be the diameter of a digraph I1.
From this point on, unless otherwise specified, we will mean
timed path length when we refer to path length, and timed
diameter when we refer to diameter.

In the execution of a pure traversal algorithm from a initi-
ator §, the communication time is less than or equal to fwice
the diameter of the graph. This result follows immediately
from the definition of diameter and the parallel activity of
the algorithm.

The storage required at each node for a pure traversal algo-
rithm is @ (n) bits where » is the number of nodes in the graph.
This follows from observing that a node/ has at most » edges,
each of which needs one bit to mark the arrival of its echo.
To mark the primary edge of / requires log 1 bits, and to main-
tain the name of the node only uses log » bits. Finally, each
message carries the basic identity of the initiator and a type,
which is (log # + 1) bits. Finally, one bit is needed to mark a
node as visited, Thus, the total is (n + 3 log 1 + 2) bits, which
is O(n) hits.

IV. TrRAVERSAL ExrcuTioN GraPH

Since we have not made any particular assumptjons as to the
exact speed of explorers or echoes, a particular execution of
an echo algorithm may cause different sequences of arrivals of
explorers and different edges to be primary edges. Each exe-
cution of a graph G by a pure traversal algorithm can be repre-
sented by an execution graph EG drawn as follows,

Draw the node S’ in £G to correspond to the node § in G,
and for each explorer which goes from S to a successor node {
in G, create a new node i’ in £G, and draw a directed arc from
S to i'. Do this for each explorer coming from a node i in G,
creating a new nede in EG to correspond to its successor in G,
If an explorer terminates at a visited node or a sink node in G,
its corresponding directed edge in £G terminates in a leaf node
of EG. Nodes in EG are labeled according to the names of
their corresponding nodes in G,

The execution graphs for different types of graphs share the
same general characteristics, but differ in some details. We will
introduce their salient features by considering the execution
graphs of connected undirected graphs first, and then seeing
what the differences are in the case of directed graphs. Fig. 2

) - l.“.. H! -

CHANG: ECHO ALGORITHMS

Fig. 2. A C-graph and some of its execution graphs.

shows a C-graph and several of its possible execution graphs.
In spite of the differences in the topology of these execution
graphs, however, they exhibit some remarkably regular proper-
ties.

First of all, it is easy to see that each is a directed tree in
which the root is the initiator S and directed edges represent
the movement of explorers from a node which is the root of
a subtree to its successors. The movement of echoes is up the
tree EG, with the echo-merge mechanism operating at each
root of a subtree, to produce a new echo. A leaf node in EG
which has a corresponding internal node in £¢ represents
the stopping of an explorer at a visited node in G. In fact, if
@ is the leaf node and b is its immediate predecessor in EG,
then not only do @ and b exist as internal nodes in £G, but
there also exists, by Property 4, the edge [4,b] in £G, with b
being a jeaf. A leaf in £G with no corresponding internat node
represents a sink node in G,

A. The Leaves of EG

The number of leaves of EG is equal to the number of dis-
tinct explorers in £G, which is also the number of distinct
paths taken in the traversal of ¢. The graph £G has a number
of internal nodes £G.int and a number of leaf nodes EG. leaf.
The original graph G has # nodes, one of which is §, the initi-
ator of the algorithm. The number of edges of S is called the
degree of S, written S.d. Let ¥' be the set of nodes of G with
S removed. Then the sink nodes of G among V' can be desig-
nated ¥ sink, Each of these corresponds to a leaf node in EG
which has no matching internal node. Note that although the
initiator node § may be a sink node in &, nevertheless, it will

395

always be an internal node of EG, being the root of the tree
EG. The internal nodes in EG are exactly the nodes of G
which are not sinks in V', i.e.,

EGint=n- V' sink.

The number of leaves of £G can be found by the following
calculation for C-graphs. '
Let 5.d be the degree of S, let n be the number of nodes of
G, let {R} be the set of nodes in G which are not sinks or' §,
with cardinality r, and let @ be the sum of the degrees of the
nodes in {R}.
Proposition 1:

EGleaf=8.d+ [8-2r].

Argument: Start with the degree of 5. There are at least
that many explorers in the execution of G. Consider the re-
maining nodes. A node with two edges has one primary in-
edge and one out-edge. Thus, an explorer coming to such a
node does not create an additional path, but merely extends
an existing one,

Therefore, the number of edges in excess of two at each of
the remaining nodes represents the number of additional paths
created by explorers starting from S. However, if a node isa
sink in G, clearly it does not add any more paths since it onty
has one edge. Thus, we exclude all sink nodes and the initiator
node from consideration. Call this remaining set of nodes R,
with cardinality . For each of these nodes, the number of
additional paths is the number of edges at the node, i.e., the
degree of the node, in excess of two, For all nodes in {R},
then, the additional paths are the sum of the degrees of these
nodes less twice their number {2r). 0

B. The Edges of EG

Each edge in £G represents the movement of an explorer,
and therefore the total number of edges in EG is a measure
of the total work done in one execution of a pure traversal
algorithm. It turns out that this number is dependent only on
the original graph G, and not at all on the manner of traversal.
Furthermore, the number of edges in £G can be computed
from a C-graph G as follows.

If £G.e is the number of distinct edges of £G we wish to
count, and FG. leaf is the number of leaves of EG which we
can compute from & as above, then given that we also know
G.e, the total number of edges in G, and V", sink, the number
of sink nodes in G not including S, we have the following.

Proposition 2;

EG.e=G.e+(EG.leaf - V' sink)f2.

Argument: Note first that every edge of G is in EG, either
as an edge leading to an internal node or an edge leading to a
leaf node which is & sink. Thus, the number of edges in £G
is at least . e, the number of edges in &,

Now consider those leaf nodes in £G which represent the
stopping of an explorer at a visited node. If such a path is
[a,b], from a to b, then by Property 5, there must be a sym-
metric path [b,¢] which holds an explorer going the oppaosite

396

way which stops at node ¢. Each edge in & carrving an ex-
plorer to a visited node therefore contributes an additional
edge 1o £,

The number of such additional edges is easily found. The
leaf nodes of EG represent either explorers stopping at sinks
or at visited nodes, in which case such explorers occur in pairs.
Therefore, if we know the number of sink nodes in G which
contribute to the leaves of £G, the remaining leaves of G are
those from explorers stopping at visited nodes. The number
of sinks in G can be counted by simply examining G, with the
provise that if the detector nede S is a sink node (has only one
edge), then it is not included, for it cannot contribute to a leaf
of £G, being by definition the root of £G.

The number of leaf nodes in £¢ from visited nodes in & is
then EG.leaf - V'.sink, and the number of additional edges of
EG in excess of G.e is half this number. But EG. leaf can be
found, by Proposition 1, from knowing some parameters of
the original graph . Therefore, the number of distinet edges
in E€; can also be determined from the graph & alone. |

For directed graphs, a similar execution graph can be drawn,
The number of leal nodes is found by taking the out-degree
of § (the number of out-edges of §), and adding the number
of out-edges in excess of one at each of the remaining nodes,
This follows from the simple observation that additional paths
are created only at nodes which have mare than one out-edge.

The EG for a directed graph has the nice property that the
number of edges in £G is exactly the number of edges in (.
This is so because each node can only send ene explorer on
an out-edge, and each edge, being directed, can get an ex-
plorer only from its source node.

C. The Traversal Spanning Tree

Observe that if we remove from E¢G all the Jeaf nodes repre-
senting the termination of explorers at visited nodes and the
edges directed into them, we are left with a tree in which each
node of & is represented only once, and each edge is a first edge
to its successor node. This is exactly a spanning free of G, We
call it a traversed spanning tree and for brevity, a P-tree, since
each edge is a P-edge. Thus, we see that the parallel traversal
method guarantecs the construction of a spanning trce in
which every node is visited once, The traversal execution
graph not only includes a spanning tree, but also an cdge-
spanning tree in which each edge is traversed. Note that in a
P-tree, all internal nodes are P-nodes and all leaf nodes are
non-P nodes, since none of their out-edges in £G is a P-edge.

This is the main reason why echo algorithms will be seen to
be a basic technique for distributed systems. [t uses a method
of constructing a spanning trec in paralie], with communica-
tion time just twice the diameter of the graph. It is, further-
more, a method in which, regardless of the exact sequencing of
the messages, the total number of message passes (a measure
of overall work), is constant for a given graph, and can be
precomputed,

In a computer network, it may be argued that once a mini-
mum spanning tree has been found, it is the fastest way to
broadcast a message to all nodes. However, because of the
variability of communication delays, any predetermined span-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-8, NO, 4, JULY 1482

ning tree may not, in fact, represent the fastest current set of
paths which reach all nodes. On the other hand, a pure traver-
sal echo algorithm always takes the minimum amount of time
o span the entire graph, and thus, in general, may be expected
to perform slightly better than any given minimum spanning
tree. This does not presume that the echoes for the pure tra-
versal also take the minimum time to return. However, we note
that an echo algorithm requires 2 e messages, while a minimum
spanning tree traversal only needs » messages once it has been
established,

V. Srec1r1c ECHO ALGORITHMS

The basic traversal algorithm can be modified to yield a large
number of decentralized parallel graph algorithms. In this
section, we will present three echo algorithms. The first one is
a simple Single-Source algorithm in which a particular node
initiates the algorithm, which executes in parallel, the required
answer finally being obtained by the initiator node. The task
to be perfermed is to get the identities of all the processors in
the system in sorted form (assuming a total ordering on identi-
ties).

The second is a simple Multiple-Source echo algorithm. Mul-
tiple-Source algerithms are designed to take into account the
situation in which several nodes may initiate an activity which
has a common globa! end, In this case, all nodes which initiate
this algerithm within a certain functional time bound partici-
pates in the algorithm, which produces a distributed ordering
by identity (or priority) of the participants, By this, we mean
that each node becomaes aware of the identities of its predeces-
sor and successor in the ordering, with the highest and lowest
nodes being aware of their distinctive rank,

The third is a nontrivial Single-Source algorithm for finding
the biconnected components of an undirected and connected
graph. The answer will be {ound in a member of cach bicon-
nected component, and is thus in distributed form.

A, Algorithm 1-Single-Source Sort

In order for a new node to be added to a distributed system,
it is necessary for it to obtain a uniquc identity. Assume that
the set of all possible identities has a total ordering, Then a
node can simply take an identity currently unused or larger
than the current largest one. Although the new processor
cannot itself participate in the system, we can postulate a
mechanism by which it asks its nearest processor in the net-
work to obtain an identity for it. To avoid duplicates, this
mechaaism should only be used sequentially in a global sense.
We have previously [3], [4] indicated how a decentralized
mutual exclusion mechanism might be implemented and as-
sume its existencce for the present. Once a node is allowed to
proceed, it need only obtain a sorted list of all nodes presently
in the network, find an unassigned number, and initiate the
new node into the network, The algorithm which follows
describes how such a sorted list is easily obtained. It applies
to C-graphs and S-reach graphs of directed graphs. Each echo
needs to be able to carrying the names of all the nodes, Every
initial echo carries the name of its origin. Explorers only need
basic identification, i.e., the name of the initiator, and a type.

CHANG: ECHO ALGORITHMS

Each node holds a current list initially containing only its own
name,

1) Let the initiator S start the forward phase of a pure tra.
versal by sending explorers in parallel on its edges.

2) An explorer coming to a node for the first time marks
the edge as first, and sends explorers in parallel on the other
edges of the node. If the node is a sink, the explorer termi-
nates, and an iritial echo is sent instead on the first edge of the
node.

3) A subsequent explorer at a node terminates, and an ini-
tial echo is sent on the edge on which the explorer arrived.

4} Each initial echo carries the name of its origin.

5) As an echo arrives at a node, the list of names carried
by that echo is merged into the current list at the node, delet-
ing duplicates.

6) After all echoes have arrived at a node, it sends off its
echo, on its first edge, containing its current list,

7) If the node in 6) is the initiator, then the current list is
the sorted list of all the nodes of the graph.

In considering the execution graph, clecarly the algorithm is
collecting a2 merged list of the nodes in each subtree, progres-
sively towards the root. We are not proposing this as an im-
proved sorting algorithm, but rather pointing out that a simple
eche algerithm can perform a basic function effectively.

In terms of communication time and message passes, this is
the same as a basic traversal. In terms of storage, each echo
may have to carry # names, and hence each node needs at least
2n log» bits to accommodate its own current list and the list
carried by an arriving echo.

We can improve the algorithm by a simple modification. Let
only P-nodes include their names in the sublists being con-
structed. Since P-nodes form a spanning tree, each node is
included once and only once in any list. There is no redun-
dancy, and the number of operations in the merges is the
same as in a conventional merge-sort, This change is ac-
complished by having echoes which arise from explorers
at visited nodes carry an empty list,

B. Adigorithm 2—Muitisource Sort

If a subset K of processors simultaneously requires access to
a set of resources which exist in distributed form, but only one
processor is to proceed at a time, a serializing mechanism will
be needed. Such a mechanism cannot be placed at any specific
resource because the set of required resources is distributed.
Instead, the contending processors must agree among them-
selves as to who proceeds and in what order. One class of
problems in which this situation arises is the multiple-copy
update of distributed databases. A rational and simple way
in which such an agreement might be reached is for the pro-
cessors to enter into an ordering cycle, following which an
update ¢yele can occur, each processor executing in order of
priority. For simplicity, consider the case in which priority
is equivalent to the identity of the processor. The algorithm
below produces a distributed ordering of those nodes which
wish to update, and are included in this cycle of updates.
There are two mechanisms, one to include candidates for a

a7

particular cycle, and the other to produce the distributed
ordering.

The inclusion mechanism works as follows. Each node has a
stefits which is either asleep, awake, or shutoff. Initially, all
nodes are asleep