
Fundamentos de programação

Orientação a Objeto

Classes, atributos e métodos

Edson Moreno

edson.moreno@pucrs.br

http://www.inf.pucrs.br/~emoreno

mailto:edson.moreno@pucrs.br

Contents

 Object-Oriented Programming

 Implementing a Simple Class

 Specifying the Public Interface of a Class

 Designing the Data Representation

 Implementing Instance Methods

 Constructors

 Testing a Class

 Problem Solving:
 Tracing Objects, Patterns for Object Data

 Object References

 Static Variables and Methods
Page 2Copyright © 2013 by John Wiley & Sons. All rights reserved.

8.1 Object-Oriented Programming

 You have learned structured programming

 Breaking tasks into subtasks

 Writing re-usable methods to handle tasks

 We will now study Objects and Classes

 To build larger and more complex programs

 To model objects we use in the world

A class describes objects with the same

behavior. For example, a Car class describes

all passenger vehicles that have a certain

capacity and shape.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 3

Objects and Programs

 Java programs are made of objects that interact

with each other
 Each object is based on a class

 A class describes a set of objects with the same

behavior

 Each class defines a specific set of methods to

use with its objects
 For example, the String class provides methods:

• Examples: length() and charAt() methods

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 4

String greeting = “Hello World”;
int len = greeting.length();
char c1 = greeting.charAt(0);

Diagram of a Class

 Private Data
 Each object has its own private

data that other objects cannot

directly access

 Methods of the public interface

provide access to private data,

while hiding implementation

details:

 This is called Encapsulation

 Public Interface
 Each object has a set of

methods available for other

objects to use

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 5

Class

Private Data

(Variables)

Public Interface

(Methods)

8.2 Implementing a Simple Class

 Example: Tally Counter: A class that models

a mechanical device that is used to count people

 For example, to find out how many people attend a

concert or board a bus

 What should it do?

 Increment the tally

 Get the current total

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 6

Tally Counter Class

 Specify instance variables in the class

declaration:

 Each object instantiated from the class has its own

set of instance variables

 Each tally counter has its own current count

 Access Specifiers:

 Classes (and interface methods) are public

 Instance variables are always private

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 7

Instantiating Objects

 Objects are created based on classes
 Use the new operator to construct objects

 Give each object a unique name (like variables)

 You have used the new operator before:

 Creating two instances of Counter objects:

Use the new operator to

construct objects of a class.

Scanner in = new Scanner(System.in);

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 8

Counter concertCounter = new Counter();
Counter boardingCounter = new Counter();

Object nameClass name Class name

public class Counter
{

private int value;

public void count()
{
value = value + 1;

}

public int getValue()
{
return value;

}
}

Tally Counter Methods

 Design a method named count that adds 1 to the

instance variable

 Which instance variable?
 Use the name of the object

• concertCounter.count()

• boardingCounter.count()

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 9

8.3 Public Interface of a Class

 When you design a class, start by specifying the

public interface of the new class
 Example: A Cash Register Class

• What tasks will this class perform?

• What methods will you need?

• What parameters will the methods need to receive?

• What will the methods return?

Task Method Returns

Add the price of an item addItem(double) void

Get the total amount owed getTotal() double

Get the count of items purchased getCount() int

Clear the cash register for a new sale clear() void

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 10

Writing the Public Interface
/**
A simulated cash register that tracks the item count
and the total amount due.

*/
public class CashRegister
{
/**
Adds an item to this cash register.
@param price: the price of this item

*/
public void addItem(double price)
{
// Method body

}
/**
Gets the price of all items in the current sale.
@return the total price

*/
public double getTotal() ...

The method declarations make up

the public interface of the class

The data and method bodies make up

the private implementation of the class

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 11

Javadoc style comments

document the class and the

behavior of each method

public static void main(String[] args)
{

// Construct a CashRegister object
CashRegister register1 = new CashRegister();
// Invoke a non-static method of the object
register1.addItem(1.95);

}

Non-static Methods Means…

 We have been writing class methods using the static
modifier:

 For non-static (instance) methods, you must instantiate

an object of the class before you can invoke methods

 Then invoke methods of the object

public static void addItem(double val)

public void addItem(double val)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 12

Accessor and Mutator Methods

 Many methods fall into two categories:

1) Accessor Methods: 'get' methods

• Asks the object for information without changing it

• Normally return a value of some type

2) Mutator Methods: 'set' methods

• Changes values in the object

• Usually take a parameter that will change an instance variable

• Normally return void

public void addItem(double price) { }
public void clear() { }

public double getTotal() { }
public int getCount() { }

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 13

8.4 Designing the Data Representation

 An object stores data in instance variables
 Variables declared inside the class

 All methods inside the class have access to them
• Can change or access them

 What data will our CashRegister methods need?

Task Method Data Needed

Add the price of an item addItem() total, count

Get the total amount owed getTotal() total

Get the count of items purchased getCount() count

Clear the cash register for a new

sale

clear() total, count

An object holds instance variables

that are accessed by methods

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 14

Instance Variables of Objects
 Each object of a class has a separate set of

instance variables.

The values stored in

instance variables make up

the state of the object.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 15

Accessing Instance Variables

public static void main(String[] args)
{
. . .
System.out.println(register1.itemCount); // Error
. . .

}
The compiler will not allow

this violation of privacy

 private instance variables cannot be accessed

from methods outside of the class

 Use accessor methods of the class instead!
public static void main(String[] args)
{
. . .
System.out.println(register1.getCount()); // OK
. . .

}
Encapsulation provides a public interface

and hides the implementation details.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 16

8.5 Implementing Instance Methods

 Implement instance methods that will use the

private instance variables

Task Method Returns

Add the price of an item addItem(double) void

Get the total amount owed getTotal() double

Get the count of items purchased getCount() int

Clear the cash register for a new sale clear() void

public void addItem(double price)
{
itemCount++;
totalPrice = totalPrice + price;

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 17

Syntax 8.2: Instance Methods
 Use instance variables inside methods of the class

 There is no need to specify the implicit parameter

(name of the object) when using instance variables

inside the class

 Explicit parameters must be listed in the method

declaration

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 18

Implicit and Explicit Parameters

 When an item is added, it affects the instance

variables of the object on which the method is

invoked

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 19

The object on which a

method is applied is the

implicit parameter

8.6 Constructors

 A constructor is a method that initializes instance

variables of an object
 It is automatically called when an object is created

 It has exactly the same name as the class

public class CashRegister
{
. . .
/**
Constructs a cash register with cleared item count and total.

*/
public CashRegister() // A constructor
{
itemCount = 0;
totalPrice = 0;

}
}

Constructors never return values, but

do not use void in their declaration

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 20

Multiple Constructors
 A class can have more than one constructor

 Each must have a unique set of parameters

public class BankAccount
{

. . .
/**

Constructs a bank account with a zero balance.
*/
public BankAccount() { . . . }
/**

Constructs a bank account with a given balance.
@param initialBalance the initial balance

*/
public BankAccount(double initialBalance) { . . . }

}

The compiler picks the constructor that

matches the construction parameters.

BankAccount joesAccount = new BankAccount();
BankAccount lisasAccount = new BankAccount(499.95);

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 21

Syntax 8.3: Constructors
 One constructors is invoked when the object is created

with the new keyword

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 22

The Default Constructor

 If you do not supply any constructors, the compiler

will make a default constructor automatically
 It takes no parameters

 It initializes all instance variables

public class CashRegister
{

. . .
/**

Does exactly what a compiler generated constructor would do.
*/
public CashRegister()
{

itemCount = 0;
totalPrice = 0;

}
}

By default, numbers are initialized to 0,

booleans to false, and objects as null.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 23

CashRegister.java

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 24

Common Error 8.1
 Not initializing object references in constructor

 References are by default initialized to null

 Calling a method on a null reference results in a runtime
error: NullPointerException

 The compiler catches uninitialized local variables for you

public class BankAccount
{
private String name; // default constructor will set to null

public void showStrings()
{
String localName;
System.out.println(name.length());
System.out.println(localName.length());

}
}

Compiler Error: variable localName might

not have been initialized

Runtime Error:

java.lang.NullPointerException

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 25

Common Error 8.2

CashRegister register1 = new CashRegister();

 Trying to Call a Constructor

 You cannot call a constructor like other methods

 It is ‘invoked’ for you by the new reserved word

 You cannot invoke the constructor on an existing object:

 But you can create a new object using your existing

reference

register1.CashRegister(); // Error

CashRegister register1 = new CashRegister();
Register1.newItem(1.95);
CashRegister register1 = new CashRegister();

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 26

Common Error 8.3

 Declaring a Constructor as void

 Constructors have no return type

 This creates a method with a return type of void which

is NOT a constructor!

• The Java compiler does not consider this an error

public class BankAccount
{

/**
Intended to be a constructor.

*/
public void BankAccount()
{

. . .
}

}

Not a constructor…. Just another

method that returns nothing (void)

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 27

