
Fundamentos de programação

Tratamento de exceções

Edson Moreno

edson.moreno@pucrs.br

http://www.inf.pucrs.br/~emoreno

mailto:edson.moreno@pucrs.br

Exception Handling

 There are two aspects to dealing with run-time

program errors:
1) Detecting Errors

This is the easy part. You can ‘throw’ an exception

2) Handling Errors

This is more complex. You need to ‘catch’ each

possible exception and react to it appropriately

 Handling recoverable errors can be done:
▪ Simply: exit the program

▪ User-friendly: As the user to correct the error

Use the throw statement to

signal an exception

if (amount > balance)
{
// Now what?

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 2

Throwing an Exception

 When you throw an exception, you are throwing an

object of an exception class
▪ Choose wisely!

▪ You can also pass a descriptive String to most exception

objects

When you throw an exception, the

normal control flow is terminated.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 3

Exception Classes

 Partial hierarchy of

exception classes

▪ More general are

above

▪ More specific are

below

▪ Darker are Checked

exceptions

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 4

Catching Exceptions

 Exceptions that are thrown must be ‘caught’
somewhere in your program Surround method calls

that can throw exceptions

with a ‘try block’.

Write ‘catch blocks’ for

each possible exception.

FileNotFoundException

NumberFormatException

NoSuchElementException

It is customary to name the

exception parameter either

‘e’ or ‘exception’ in the

catch block.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 5

Catching Exceptions
 When an exception is detected, execution ‘jumps’

immediately to the first matching catch block

▪ IOException matches both FileNotFoundException
and NoSuchElementException is not caught

FileNotFoundException

NoSuchElementException

NumberFormatException

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 6

Catching Exceptions

 Some exception handling options:
▪ Simply inform the user what is wrong

▪ Give the user another chance to correct an input error

▪ Print a ‘stack trace’ showing the list of methods called

exception.printStackTrace();

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 7

Checked Exceptions

Checked exceptions are due to circumstances

that the programmer cannot prevent.

 Throw/catch applies to three

types of exceptions:
▪ Error: Internal Errors

• not considered here

▪ Unchecked: RunTime Exceptions
• Caused by the programmer

• Compiler does not check how you

handle them

▪ Checked: All other exceptions
• Not the programmer’s fault

• Compiler checks to make sure you

handle these

• Shown darker in Exception Classes

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 8

The throws Clause

 Methods that use other methods that may throw
exceptions must be declared as such

▪ Declare all checked exceptions a method throws

▪ You may also list unchecked exceptions

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 9

The throws Clause (continued)

▪ If a method handles a checked exception internally, it

will no longer throw the exception.

• The method does not need to declare it in the throws clause

▪ Declaring exceptions in the throws clause ‘passes the

buck’ to the calling method to handle it or pass it along.

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 10

The finally clause

 finally is an optional clause in a try/catch block
▪ Used when you need to take some action in a method

whether an exception is thrown or not.
• The finally block is executed in both cases

▪ Example: Close a file in a method in all cases

public void printOutput(String filename) throws IOException
{

PrintWriter out = new PrintWriter(filename);
try
{

writeData(out); // Method may throw an I/O Exception
}
finally
{

out.close();
}

}

Once a try block is entered, the

statements in a finally clause are

guaranteed to be executed, whether

or not an exception is thrown.

Copyright © 2013 John Wiley & Sons. All rights reserved. Page 11

The finally Clause

 Code in the finally block is always executed

once the try block has been entered

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 12

Programming Tip 7.1

 Throw Early

▪ When a method detects a problem that it

cannot solve, it is better to throw an exception

rather than try to come up with an imperfect fix.

 Catch Late

▪ On the other hand, a method should only catch

an exception if it can really remedy the

situation.

▪ Otherwise, the best remedy is simply to have

the exception propagate to its caller, allowing it

to be caught by a competent handler.
Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 13

Programming Tip 7.2

 Do Not Hide Exceptions

▪ When you call a method that throws a checked

exception and you haven’t specified a handler,

the compiler complains.

▪ It is tempting to write a ‘do-nothing’ catch

block to ‘hide’ the compiler and come back to

the code later. Bad Idea!

• Exceptions were designed to transmit problem

reports to a competent handler.

• Installing an incompetent handler simply hides an

error condition that could be serious..

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 14

Programming Tip 7.3

 Do not use catch and finally in the

same try block

▪ The finally clause is executed

whenever the try block is exited in

any of three ways:

1. After completing the last statement of

the try block

2. After completing the last statement of a

catch clause, if this try block caught an

exception

3. When an exception was thrown in the

try block and not caught

try

catch

finally

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 15

Programming Tip 7.3
 It is better to use two (nested) try clauses to

control the flow

try

catch

finally

try
{
PrintWriter out = new PrintWriter(filename);
try
{ // Write output }
finally
{ out.close(); } // Close resources

}
catch (IOException exception)
{
// Handle exception

}

try

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 16

Handling Input Errors
 File Reading Application Example

▪ Goal: Read a file of data values
• First line is the count of values

• Remaining lines have values

▪ Risks:

• The file may not exist
– Scanner constructor will throw an exception

– FileNotFoundException

• The file may have data in the wrong format
– Doesn’t start with a count

» NoSuchElementException

– Too many items (count is too low)

» IOException

3

1.45

-2.1

0.05

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 17

Handling Input Errors: main
 Outline for method with all exception handling
boolean done = false;
while (!done)
{
try
{
// Prompt user for file name
double[] data = readFile(filename); // May throw exceptions
// Process data
done = true;

}
catch (FileNotFoundException exception)
{ System.out.println("File not found."); }
catch (NoSuchElementException exception)
{ System.out.println("File contents invalid."); }
catch (IOException exception)
{ exception.printStackTrace(); }

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 18

Handling Input Errors: readFile

▪ Calls the Scanner constructor

▪ No exception handling (no catch clauses)

▪ finally clause closes file in all cases (exception or not)

▪ throws IOException (back to main)

public static double[] readFile(String filename) throws IOException
{

File inFile = new File(filename);
Scanner in = new Scanner(inFile);
try
{

return readData(in); // May throw exceptions
}
finally
{

in.close();
}

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 19

Handling Input Errors: readData

▪ No exception handling (no try or catch clauses)

▪ throw creates an IOException object and exits

▪ unchecked NoSuchElementException can occur

public static double[] readData(Scanner in) throws IOException
{

int numberOfValues = in.nextInt(); // NoSuchElementException
double[] data = new double[numberOfValues];
for (int i = 0; i < numberOfValues; i++)
{

data[i] = in.nextDouble(); // NoSuchElementException
}
if (in.hasNext())
{

throw new IOException("End of file expected");
}
return data;

}

Copyright © 2013 by John Wiley & Sons. All rights reserved. Page 20

Exercício

 Crie um programa, o qual deverá ter um

método chamado getInt. O método deve

solicitor que o usuário entre com um valor

inteiro. Capture este valor, e caso ele não

seja um valor inteiro (e.g. string/double),

lance uma exceção do tipo

IllegalArgumentException; Caso o valor

esteja ok, retorne o valor inteiro.

Page 21

Exercício

 Modifique o programa anterior de tal forma

que o método getInt lance uma exceção do

tipo IOException ao invés de

IllegalArgumentException. Modifique o

corpo principal do programa (i.e. a main)

de tal forma que ela capture a exceção e

imprima a exceção IOException.

Page 22

