
Using ItL Jape with X
(Third X edition, Jape version 3.2)

Richard Bornat, Department of Computer Science, QMW

October 1998

Contents
0. Preface to X edition ... 1
1. What is ItL Jape? .. 1

Forward or backward proof? .. 1
Premise, assumption, hypothesis: what’s in a word? .. 2
Differences from the course notes ... 2
Any comments? .. 3

2. Getting started ... 4
Buttons in the Conjectures panel... 4
Doing things in the session window .. 5
Selecting and choosing .. 5

3. Two proofs by forward reasoning using →→→→- elimination.. 6
Making a proof step ... 6
Registering your proof with Jape .. 7
Three different ways to make the same proof .. 7

4. A proof by backward reasoning using →→→→-introduction .. 10
5. Unknowns, unification and the hyp rule.. 13

Unification with the Unify command... 14
Unification with the hyp rule ... 15
More unknowns than you can shake a stick at .. 16

6. Scope boxing in Jape ... 18
Enforcing the scope box condition .. 21

7. Some useful rules of thumb .. 22
8. Using theorems and defining conjectures .. 23

Stating your own conjectures .. 23
9. Reviewing and altering proofs of theorems... 24

Prove starts a new proof .. 25
Beware circular arguments! .. 25

10. Printing a proof (File menu and more) .. 26
11. Saving and restoring your proofs (the File menu) .. 27

The “Select a top-level theory file” command .. 27
Appendix A: Using the mouse.. 28

Single-left-click .. 28
Double-left-click .. 28
Middle-click and middle-press-and-drag .. 28

Appendix B – Troubleshooting .. 30
What if a proof step goes wrong?... 30

Appendix C: The →→→→ rules ... 31
Forward reasoning with →-E .. 31
Backward reasoning with →-I ... 32
Backward reasoning with →-E .. 32

Appendix D: the ∧∧∧∧ rules .. 34
Forward reasoning with ∧-E (L or R) .. 34
Backward reasoning using ∧-I.. 35
Backward reasoning with ∧-E .. 36

Appendix E: the ∨∨∨∨ rules .. 37
Forward reasoning using ∨-E .. 37
Backward reasoning using ∨-I.. 38
Forward reasoning using ∨-I.. 39
Backward reasoning using ∨-E .. 40

Appendix F: the ¬ rules .. 43
Forward reasoning using ¬-E... 43
Backward reasoning using ¬-I .. 44
Proof by contradiction’: backward reasoning using ¬-E followed by ¬-I, then ∧-I and hyp 45

Appendix G: the ∀∀∀∀ rules .. 48
Backward reasoning using ∀-I .. 48
A trick with bound variables and scope boxing... 49
Forward reasoning using ∀-E... 50
Backward reasoning with ∀-E .. 51

Appendix H: the %%%% rules... 52
Forward reasoning using %-E ... 52
Backward reasoning with %-I .. 53
Backward reasoning with %-E ... 55

Appendix I: Internal secrets of Jape ... 56
Forward reasoning and trees .. 56
Predicate notation and substitution... 57
Provisos ... 57

Using ItL Jape (third X edition) Page 1 October 1998

0. Preface to X edition

This document was prepared in the first instance for the MacOS implementation of Jape. I should like to
produce a version which explained exactly how to use Jape under X, but X is so variable – from choice of
window manager to configuration of options – that it would be pointless to do so. Instead I have had to
produce a simplified version of the MacOS document, without any mention of how windows are
manipulated and managed.

The illustrations are from the MacOS version as well: I haven’t yet found out how, in the X world, to
make a picture which can be copied into a word-processed document. Apart from some minor differences
in the way that the Konstanz font is displayed on the Mac and under X, they should be recognisable to
any X user of Jape.

1. What is ItL Jape?

When I first came across Natural Deduction I found its rules seductively persuasive, but I found it hard to
construct a proof. Partly that was because I was trying to do it in the tree style of Reeves and Clarke,
trying to build a proof tree with assumptions at the top – some of them crossed out because they had bee
‘discharged’ – and a conclusion at the bottom. I found it hard to guess where and when and how many
times to write down an assumption, when to cross it out and when not. It wasn’t until I was introduced to
a mechanical proof assistant that I began to be able to make proofs for myself, and not until I got used to
the box presentation of proofs in Jape that I began to be totally relaxed about ‘natural’ deduction.

So I’ve been there, I know how it feels, and I would like to save you from the confusions that I suffered
from. As part of the QMW Calculator Project that brought MiraCalc to the world and introduced the
department to Tarski’s World, I offer you Jape; the name is an acronym for ‘just another proof editor’.
Jape handles the details of the application of rules in a formal proof, leaving you to think about which
rules to apply and to what and in what order. I hope that practice with ItL Jape will help you to
understand the rules of Natural Deduction and to become so familiar with them that you can then make
proofs on your own account without ItL Jape to help you.

When you are using ItL Jape I hope that you will quickly come to realise that Natural Deduction is
mainly about the simplification of formulas by the application of rules. To find a Natural Deduction proof
using ItL Jape you use rules to consume operators in the premises, assumptions premises and the
conclusions of a proof in progress. You have to choose the assumption, premise or conclusion to work on,
you have to choose the rule to apply, but ItL Jape does all the book-keeping, making sure that you have
chosen a rule that applies to the things you have selected and showing you a nice tidy version of the proof
as you build it.

Jape is a general proof editor, capable of handling many different logics. If you already know how to run
Jape, you know how to run ItL Jape and, to a certain extent, vice-versa – but I expect that most readers of
this document will be starting from scratch.

Forward or backward proof?

Just as I originally found it difficult to construct a Natural Deduction proof as a tree in the Reeves and
Clarke style, so I also found it difficult to decide, in a box-style proof, how and when to ‘introduce an
assumption’. I learnt, by using Jape and other mechanical proof aids, that it is hardly ever necessary to do
such a thing. In practice, as I hope you will discover, assumptions are introduced automatically and
naturally, as a consequence of the use of rules on formulæ that are already present in the proof. You don’t
have to introduce arbitrary assumptions ever: all that is necessary is that sometimes you are prepared to
work backwards – from conclusion towards assumption – rather than always forwards. The gain is that
when you introduce an assumption in this way you neverhave to guess what it might be.

It would be as wrong to say that backward proof is better than forward as it would be to say the opposite.
One of the things that I hope you will learn from ItL Jape is that you can’t choose in advance whether to
make a proof by working forwards from the assumptions or backwards from the conclusions. The

Using ItL Jape (third X edition) Page 2 October 1998

problem – the collection of premises, assumptions and conclusion and the theorems and rules you have
available – should dictate what you must do, not some orthodoxy.

Forward proof works well when you have a step which you can make entirely from the premises and
assumptions which you already have available. It is attractive, to the novice, because it makes it seem that
the proof is being developed line-by-line in the same order as the completed proof can be read.

Forward proof stops working well, and backward proof starts working better, when you run out of things
to do with the premises. When this happens, rigid-thinking forward provers will want to introduce an
assumption to relieve their difficulties, and will find that Jape doesn’t let them. That is because a proof is
really a structure of lines, not a sequence. Jape shows you that assumptions are introduced as the result of
using rules – in Natural Deduction these are the ∨-E and %-E rules going forward, and the →-I and ¬-I rules
going backward. When you use one of those rules you are, in effect, saying “I don’t know what the final
proof will be, but I know what its structure will be”. Jape helps you, in those cases, by calculating the
assumption that you need.

You will also find that when making a proof with ItL Jape, sometimes the first move you make must be a
step of backward reasoning. This isn’t ‘wrong’ or in any sense cheating: it is the way that proofs actually
get developed. In reality it is the line-by-line ‘forward’ reading of a completed proof that is deceitful,
because it hides from the novice the fact that a proof is a structure, not a sequence, of steps, and that its
construction sometimes needed forward and sometimes backward reasoning.

There is no best way nor even a ‘right way’ to develop a proof; nor is there a ‘wrong way’ – although of
course we may decide, once a proof is completed, that it might have been done better, and then ItL Jape
will let you try again. Forward reasoning isn’t better, or righter – or wronger – than backward reasoning:
each has its place, and in order to make natural Natural Deduction proofs it is often necessary to employ
both styles. ItL Jape was developed in order to help you learn by experience that most Natural Deduction
proofs are so natural as to be almost automatic, with a structure dictated by the structure of the premises,
assumptions and conclusion. In order to learn that lesson it is sometimes necessary to make use of
backward reasoning. I hope that you will find ItL Jape easy to use, and I hope that it will stimulate you to
think about the structures of proofs, about why the rules are the way they are, and about how Natural
Deduction works.

Premise, assumption, hypothesis: what’s in a word?

In the QMW course, your lecturer writes ‘premise’ or ‘premises’ next to any formulæ which are assumed
at the outermost level of a proof, and ‘assumption’ or ‘assumptions’ next to any which are assumed inside
the proof. ItL Jape does the same.

The distinction between ‘premise’ and ‘assumption’ is to my mind very fine, a nice distinction indeed. In
this manual I blur it in order to make my sentences shorter. I’ve used the word assumption where I would
otherwise have to write “premise or assumption”.

The word ‘hypothesis’ is, to my ear, synonymous with ‘assumption’.

Differences from the course notes

Jape isn’t really a Natural Deduction engine, and its internal mechanism is based on inference trees, not
the sort of line-and-box proofs that ItL Jape displays. Most of the time ItL Jape does a really good job of
pretending that it is a Natural Deduction engine and that it really does work with lines and boxes, but
sometimes the internal workings show through. You may notice the following:

• Jape doesn’t always allow you to appeal to an earlier line of the proof, even when the box
structure would let you;

• Jape’s implementation of ‘scope boxes’ associated with the %-E and ∀-I rules uses pseudo-
predicates ‘var x’ and ‘inscope x’, rather than annotated boxes;

• Jape’s syntax for quantification is ∀ variable formula. and ∃ variable formula. – in each case the
full stop (dot, period) is essential, and formula has to be bracketed unless it’s just a predicate
application.

Using ItL Jape (third X edition) Page 3 October 1998

So far as I know, those are the only significant differences between Jape’s treatment and the course notes.

Any comments?

If you have any comments about ItL Jape that you would like me or anybody else to hear, there’s a
dcs.jape newsgroup at QMW, or you can email me (richard@dcs.qmw.ac.uk). I’m especially interested to
hear from people who find any difficulty, no matter how slight, in using the program to do their work:
Jape will only improve if I get to hear of their problems. So if you see something wrong, tell me, put a
message in the newsgroup or email me. If you think Jape is wonderful, please let me know!

Using ItL Jape (third X edition) Page 4 October 1998

2. Getting started

Type the following to an xterm window:

itljape&

(if that doesn’t work try /import/jape/itljape&). Jape then starts and creates two windows:

• Jape conjectures;

• Jape session for theory “ItL”.

(you may also see a dialogue box quacking on about fonts: just click on the button marked with a red tick,
and click on the red tick in the box which follows). You may have to use your window manager to
arrange the windows conveniently on the desktop.

The session window looks something like this:

Switch Proof button

proof pane

proviso pane

menu buttons

proviso scroll bars

boundary marker

Most of the work goes on in the proof pane. The proviso pane shows provisos (sometimes called side-
conditions on a proof) which can arise as a result of using rules which deal with ∀ and % formulæ: most of
the time it’s blank. You can alter the boundary between the panes by dragging the boundary marker up
and down. You scroll around in the proviso pane with the proviso scroll bars; you can drag a proof in the
proof pane by pressing on a blank part of the pane and dragging the proof to the position you want.

If you have some saved proofs, now is the time to load them (use ‘Load a file of proofs’ from the File
menu).

If you are running Jape for the first time, read on.

Buttons in the Conjectures panel

The Conjectures panel has various parts (which I’d love to illustrate with a screen snapshot, but I don’t
know how). Most important is the list of conjectures – a collection of proof problems which we think you
might like to experiment with. The list is scrollable, using the scroll bar to its right. If you want to see

Using ItL Jape (third X edition) Page 5 October 1998

more, or less, of the list you can alter the size of the window using whatever gesture or gestures your
window manager provides.

The Conjectures window is described in this document as a panel, because it carries buttons and a list of
things to choose from. The buttons in the panel each have their particular use, discussed below. For the
moment we shall concentrate on the Prove button, which is used to start a proof. Select the first entry in
the panel (click on it) and then press the Prove button. A display describing the conjecture will appear in
the proof pane.

Doing things in the session window

You make your proofs in the proof pane: any provisos which might arise during the proof are displayed in
the proviso pane. You can move a proof around in its pane by moving the cursor to a blank part of the
background, holding down the middle button of the mouse1 and dragging the proof around. For some
reason X Jape always puts the proof too low down in the pane, and the first thing I do is always to lift it a
little. The motion is jerky and the proof moves faster than the mouse does, but with practice you can
position it where you like. If you lose the proof by dragging too fast or too far, press the Home key on the
keyboard, and it should pop up somewhere visible.

You can have more than one proof on the go at the same time. Only one of them will be active, and
shown in the session window, but each of them will be listed in the menu under Switch Proof (top right of
the session window). The active one has a highlighted check-box in that menu. By clicking on the entry
of an inactive proof in the Switch Proof menu, you make it active and it takes over the session window.
You can abandon the active proof at any time by clicking Abandon Proof in the Switch Proof menu.

Selecting and choosing

X Jape has various different ways of ‘gesturing’ at a proof with the mouse, introduced in the discussion
below (see appendix A for a complete list). When this manual uses one of the words ‘choose’, ‘select’ or
‘click’, you are supposed to click something with the left mouse button unless the context makes it clear
that something else is intended.

1 If your mouse doesn’t have a middle button you are perhaps running on an Apple Mac, and using Jape via an X server
program. Don’t bother: there’s a MacOS implementation which you can get from the Web.

Using ItL Jape (third X edition) Page 6 October 1998

3. Two proofs by forward reasoning using →→→→- elimination

If you haven’t already started the proof of the first conjecture in the Conjectures panel, do it now: select
the first entry in the list of conjectures and press the Prove button. Jape will display the problem to you in
the proof pane, as illustrated above. (If you already have a proof of that conjecture on the go, Jape will
tell you and you can then choose whether to start another. If you have already proved and registered the
proof of that conjecture, Jape will tell you and you can decide whether you want to attempt a new proof.)

If I showed a picture of a session window every time I wanted to include an example, this manual would
be far too large. From now on I shall save space by showing only the contents of the proof pane – and the
proviso pane, if it isn’t empty – like this:

premisesP→Q, P: 1

Q
. . .

: 2

You are asked to prove from premises P and P→Q the conclusion Q. The premises are listed on a single
line, separated by a comma. Jape uses one line rather than two so as to save screen space, which is a
precious resource, as you will see if ever the proof becomes so long that it exceeds the height of the proof
pane1. The line of dots between lines 1 and 2 indicates that there is something to prove – a ‘gap’ in the
proof so far. The lines of the proof are already numbered, but those numbers can be expected to change as
extra lines are added to the proof.

Making a proof step

You should already have an idea how to solve this problem: you use the →-E rule to derive Q from
premises P and P→Q (if you don’t know, you are about to learn, and if you’ve forgotten about the →E rule,
see the appendix on the → rules). In Jape’s language you simplify the P→Q premise using the →-E rule:
you don’t have to tell it about the P premise because it will find it automatically.

The rules of Natural Deduction are all in the Rules menu. As well as the rules that you already know,
there’s an extra entry ‘hyp’ at the bottom of the menu, whose use is discussed later.

To make the proof step you must ‘select’ the P→Q premise and then ‘apply’ the →-E rule. You select the
premise by clicking once on it with the left mouse button (move the mouse pointer over the premise,
press the left mouse button and immediately release2). A box will appear round the premise you have
selected, like this3

premisesP→Q, P: 1

Q
. . .

: 2

If you have selected the wrong premise, don’t panic: left-click on the one you really wanted to choose and
Jape will obey. If you clicked on the conclusion by accident, just left-click on some blank part of the
proof pane and Jape will cancel all your selections; then you can start again.

1 You can reduce the size of a proof somewhat by setting the font size, using the Set Font sizes command from the Files
menu. X fonts are always a bit unreadable at small sizes, so it’s a good idea to experiment.

2 Don’t double-click, or you will get an error message about ‘direct manipulation’. You can ignore that error message, but
you will have to select the assumption again once it has gone away.

3 From now I shall only show the contents of the proof window (and the proviso window, if there is anything in it). You can
imagine the rest of the screen.

Using ItL Jape (third X edition) Page 7 October 1998

Now pull down the ‘Rules’ menu and click →-E. Jape makes the step, and shows a justification for it. In
this case the result of the step is the conclusion we are trying to prove, so the proof is completed and the
line of dots disappears:

premisesP→Q, P: 1

 1.1,1.2→-EQ: 2

I hope you did get this effect: if not, use Undo (in the Edit menu, or use the keyboard Undo key) and try
again.

Notice the way that ItL Jape numbers justifications which refer to premises or assumptions: the step
which leads to line 2 depends on the first formula on line 1 (1.1 means P) and the second formula on line
1 (1.2 means P→Q).

That’s not the only way to make this proof, but it will do for now.

Registering your proof with Jape

Now that you have made a proof of a conjecture you can save it : pull down the Edit menu and select
Done. The proof disappears from the session window, and Jape records the fact that the conjecture is now
proved, marking its entry in the conjectures panel with ‘THM’ in the margin.

Proof of the conjecture has made it a theorem. You can use theorems in your proofs as if they were
additional Natural Deduction rules by using the Conjectures panel’s Apply button, and you can review
their proofs using Show Proof. But more of that later.

Three different ways to make the same proof

There are often several equally attractive ways to make the same proof – and just as often there are other
less desirable ways as well.

Select the second entry in the Conjectures panel and click Prove. You should see a proof pane containing

premisesP, Q→R, P→Q: 1

R
. . .

: 2

I shall show you three different ways to make the same proof (and there are still other ways in which it
can be done). The first starts by forward proof from P and P→Q, which are both premises, to make the
intermediate conclusion Q. Left-click to select P→Q and apply →-E from the Rules menu. The proof
becomes

premisesP, Q→R, P→Q: 1

 1.3,1.1→-EQ: 2

R
. . .

: 3

Notice how the line numbering has changed: the conclusion is now line 3, and line 2 is the result of the →-
E step. Notice also how the justification of line 2 identifies the premises it has used: P (1.3) and P→Q
(1.1). Now on line 2 we have Q and on line 1 we have Q→R: clearly we can derive R using the →-E rule.

Select Q→R and apply →-E once again, and the proof is completed:

premisesP, Q→R, P→Q: 1

 1.3,1.1→-EQ: 2

 2,1.2→-ER: 3

Using ItL Jape (third X edition) Page 8 October 1998

That’s one way of doing it. What are the others? To find out, apply Undo (from the Edit menu) twice, to
get back to the starting point. This time select Q→R and apply →-E. You will see

premisesP, Q→R, P→Q: 1

Q
. . .

: 2

 2,1.2→-ER: 3

This state of affairs has been reached by logical reasoning. If you want to break down Q→R by →-E, you
need a proof of Q and it leads to a proof of R; R was the conclusion you were working towards, so you
have already found out to reach R, but now you have a new problem: how do you reach Q, which is on the
way to R?.

In effect you know the structure of the proof, but you don’t yet know all the steps nor their order. So ItL
Jape shows you that the conclusion on line 3 has been derived from line 2 (Q) and premise 1.2 (Q→R).
Since there isn’t a premise Q you will have to provide a proof of it, and therefore line 2 is a new
conclusion to be proved. (This isn’t backward reasoning: it’s incomplete forward reasoning from the
premises, even though the reasoning reaches the conclusion. I show some examples of true backward
reasoning backwards below, using a different example.)

Now we’ve got an premise P→Q and an premise P, so we can proceed as in the first proof: select P→Q and
apply →-E, and the proof is once more completed:

premisesP, Q→R, P→Q: 1

 1.3,1.1→-EQ: 2

 2,1.2→-ER: 3

The same proof, a different way of deriving it with ItL Jape. That’s one of Jape’s strengths: it doesn’t
force you to apply rules in just one order. At least not always!

I have shown two ways of deriving the same proof. What’s the third? Undo twice to get back to

assumptionsP, Q→R, P→Q: 1

R
. . .

: 2

You have already proved a theorem P→Q, P ' Q. That theorem applies in this situation: we do have an
premise P and an premise P→Q, and, just as when you apply a rule, it doesn’t matter what order they
appear in, how many times they appear, or what other assumptions we have.

We want to apply the theorem to the premises P and P→Q. Select either of them (it doesn’t matter which);
then select the theorem (it’s the first entry in the Conjectures panel) and press Apply1. The proof pane
changes to show the effect of applying the theorem:

premisesP, Q→R, P→Q: 1

 1.3,1.1Theorem P, P→Q ' QQ: 2

R
. . .

: 3

1 If you press Prove by mistake, you will be offered the opportunity to start a new proof of P→Q, P ' Q: just click No in the
dialogue box and then press Apply. If you press Show by mistake the proof you have already made of P→Q, P ' Q will be
displayed in the session window: just choose Abandon Proof from the Switch Proof menu, and then press Apply.

Using ItL Jape (third X edition) Page 9 October 1998

Now the proof can be completed as before, using the →-E rule, or it can be completed using the same
theorem again. We now have Q (line 2) and Q→R (line 1, premise 2), and we want to prove R. The
theorem covers that possibility. Apply it once more1 and the proof is completed once again:

premisesP, Q→R, P→Q: 1

 1.3,1.1Theorem P, P→Q ' QQ: 2

 2,1.2Theorem P, P→Q ' QR: 3

Choose Done (Edit menu) to register the proof with Jape.

1 You don’t need to select a hypothesis, because Jape can work out which hypotheses are to be used from the theorem itself
and the conclusion Q.

Using ItL Jape (third X edition) Page 10 October 1998

4. A proof by backward reasoning using →→→→-introduction

Choose P→(Q→R) ' Q→(P→R) from the Conjectures panel (it’s the fifth entry). You should see a proof pane
containing

premiseP→(Q→R): 1

Q→(P→R)
. . .

: 2

This time you can’t use forward reasoning to simplify the premise,. If you think about it, you can see
why: to use the premise P→(Q→R) you need a proof of P, but there isn’t one available. If you do select the
premise and apply →-E as in the first two proofs, ItL Jape will show you that you need a proof of P to go
any further:

premiseP→(Q→R): 1

P
. . .

: 2

 2,1→-E(Q→R): 3

Q→(P→R)
. . .

: 4

Line 2, with the three dots above it, is an invitation to prove P. You can’t make a proof of P out of thin
air, even with the help of the premise P→(Q→R), and not even with the help of the theorems you have
already proved. Undo back to the beginning.

It’s at this point that a rigid-thinking forward reasoner would begin to bleat about the need to introduce
additional assumptions. ItL Jape can help, but it does so very straightforwardly, by backward reasoning
from the conclusion.

Observe that the → in the conclusion will almost certainly have to be introduced by the →I rule. Apply the
→I rule from the Rules menu (you can select the conclusion before applying the rule, but because there is
only one unproved conclusion in the proof you don’t have to select it) and you should see

premiseP→(Q→R): 1

assumptionQ: 2

(P→R)
. . .

: 3

 2-3→-IQ→(P→R): 4

What ItL Jape is done is to proceed as if the last line was produced by using the →I rule: that would have
to be because there is a proof of P→R from Q, and ItL Jape has drawn the corresponding box structure
with a gap which shows that the proof of P→R isn’t completed. Once again, you can see the structure of
the proof, even if it doesn’t have all its steps. Notice that you didn’t explicitly have to decide to ‘introduce
an assumption’, because the formula Q is part of the conclusion Q→(P→R), and it is just exactly the
assumption you need to prove that conclusion – no other formula would fit. You don’t have to decide
what conclusion to put in the box – that, too, can be calculated from the rule and the conclusion you
applied it to. This is an example of the way that assumptions are naturally introduced by backward
reasoning in Jape, and I believe that this kind of backward reasoning makes ‘Natural’ Deduction far more
natural. (This kind of helpfulness with the introduction of assumptions isn’t restricted to backward
reasoning steps, as some of the examples in the appendices on the ∨ and % rules show).

Notice that the last line in the proof is now marked with a justification and doesn’t have three dots above
it any more – that is, it is marked as ‘proved’, although we don’t yet have the complete proof of the lines

Using ItL Jape (third X edition) Page 11 October 1998

on which it depends. The justification for that line quotes the box on lines 2-3. That quotation will
expand, of course, as the proof develops and the box expands.

Now just because we know Q we don’t necessarily know P, so we still can’t use →E on line 1. But we can
see that line 3 is almost certainly produced by the →I rule. If you apply the →I rule again, you will see:

premiseP→(Q→R): 1

assumptionQ: 2

assumptionP: 3

R
. . .

: 4

 3-4→-I(P→R): 5

 2-5→-IQ→(P→R): 6

We have to prove R from the three assumptions P→(Q→R), Q and P: that’s pretty easy using forward
reasoning and the →-E rule. Choose the premise on line 1 and apply →-E. You will see

premiseP→(Q→R): 1

assumptionQ: 2

assumptionP: 3

 3,1→-E(Q→R): 4

R
. . .

: 5

 3-5→-I(P→R): 6

 2-6→-IQ→(P→R): 7

Now choose line 4 and apply →-E again:

premiseP→(Q→R): 1

assumptionQ: 2

assumptionP: 3

 3,1→-E(Q→R): 4

 2,4→-ER: 5

 3-5→-I(P→R): 6

 2-6→-IQ→(P→R): 7

The proof is complete.

Notice that by using backward reasoning Jape has been able to calculate what assumptions to introduce.
A forward reasoner, looking at line 1, might suppose that we need to introduce an assumption P to help
simplify P→(Q→R): but that is wrong: the proof doesn’t go through in that way. The assumption we need
is dictated by the shape of the conclusion, not the premise.

Using ItL Jape (third X edition) Page 12 October 1998

This example has also illustrated the general principle that backward reasoning with an introduction (-I)
rule essentially eliminates connectives from conclusions, just as earlier examples showed that forward
reasoning with an elimination (-E) rule eliminates connectives from premises and assumptions. In fact the
forward/backward process, and the way that it applies to logical connectives, is so nearly mechanical that
you can set Jape up so that it chooses the rule itself when you double-click on a conclusion, a premise or
an assumption. Because we want you to learn about Natural Deduction and not just the use of the mouse,
we’ve been heartless and ItL Jape is set up so that you have to choose the rules for yourself.

Using ItL Jape (third X edition) Page 13 October 1998

5. Unknowns, unification and the hhhhyyyypppp rule

Above I showed three different ways to prove P→Q, Q→R, P ' R. There is a fourth, which illustrates one of
the ways that Jape does its work behind the scenes.

The →-E rule is

i

j

k E i j

A

A B

B

: ...
...

: ...
...

: ,

→

→−

or

M M
A A B

B
E

→
→ −

– given a proof of A and a proof of A→B, make a proof of B. If you point to an assumption formula which
matches A→B, Jape can make the step and then, if you have a conclusion B or an assumption A, it can fit
the new step into the proof. If you point to a conclusion but not an assumption, Jape can match the
conclusion with B, but that doesn’t tell it what to use in place of A. In those circumstances, you have to
decide. But it would be oppressive to force you to decide before you are ready, so Jape makes up an
‘unknown’ name, which stands for some yet-to-be-decided formula A, and that allows you to defer your
decision .

To show you an example of what happens I will go through the proof of P→Q, Q→R, P ' R again. You may
have proved this already, but Jape lets you make a new proof if you want to: select its entry in the
Conjectures panel, press Prove1, and you will see

premisesP, Q→R, P→Q: 1

R
. . .

: 2

Apply the →-E rule without selecting a premise (you can select the conclusion on line 2 if you wish). You
will see2

premisesP, Q→R, P→Q: 1

_A
. . .

: 2

_A→R
. . .

: 3

 2,3→-ER: 4

What’s happened is backward reasoning: I’ve guessed that the last step in the completed proof will be an
application of →-E, and Jape has done its best to oblige. Because it doesn’t know all of the information it
needs, it has introduced an unknown _A3 to stand for the bit that’s missing: you have to find a proof of
_A and a proof of _A→R, and obviously that requires you to decide just what _A is.

You may find this display surprising, perhaps even confusing, and then you might ask: why is it
necessary? The answer is that the display tells you not only that the rule is applicable, but also that more
information is needed to make it clear just how it applies. Another way to look at it is that you must
decide, whenever you apply the →-E rule, just what formula to use in place of A, but Jape has allowed you
to defer that decision by introducing an unknown, a placeholder, _A. It can be very useful to defer such
decisions when exploring for possible proofs or trying out the effect of rules that you may not quite
understand.

1 If this conjecture is already a theorem, Jape will put up a dialogue box asking you if you want to prove it again. Yes, you
do.

2 On the X Jape implementation at the time of writing, the underscores on lines 2 and 3 are rather difficult to see. This is
regrettable.

3 All unknowns, and only unknowns, start with an underscore.

Using ItL Jape (third X edition) Page 14 October 1998

Now it is immediately obvious in this example that the unknown _A must stand for Q, so we must make it
do so. When we have done this, Jape will replace every occurrence of _A, which we don’t want to see,
with Q, which is quite acceptable. There are two basic ways to show Jape the correspondence.

Unification with the Unify command

Up to now we’ve selected whole formulæ by clicking on them. Now we want to tell Jape that _A, which
appears as a whole formula on line 2, and Q, which only appears as a sub-formula on line 1, are the same.
What you have to do is to ‘text-select’ a number of sub-formulæ and then use the Unify command from
the Edit menu to say that all those sub-formulæ are to be ‘unified’ – that is, to be made the same.

Text-selection uses the middle button with a press-and-drag action. You move the mouse cursor to one
end of the text you want to select, hold the middle button down, and wipe the cursor across the text you
are selecting.

Move the mouse to the beginning or the end of line 2; hold the middle button down and press-and-drag
with the mouse over _A: you should be able to make it light up like this1

premisesP, Q→R, P→Q: 1
. . .

: 2

_A→R
. . .

: 3

 2,3→-ER: 4

_A

It’s quite a simple action, but it takes a bit of practice. If you get it wrong you can double-middle-click
the bad selection with the middle button and start again. If you double-middle-click on a blank part of the
screen you cancel all the text selections, wherever they are in the proof pane.

Once you’ve successfully selected _A you can move on to Q. Just middle-clicking over one of the Qs in
line 1 does the job, and the proof should now look something like this:

premisesP, →R, P→Q: 1
. . .

: 2

_A→R
. . .

: 3

 2,3→-ER: 4

Q

_A

Now you can use the Unify command from the Edit menu to make the two sub-formulæ the same, and the
proof will change to

premisesP, Q→R, P→Q: 1

Q
. . .

: 2

 2,1.2→-ER: 3

Rather a lot happens in one step! Jape is told that _A is the same as Q, so line 2 changes from _A to Q, as
you might expect. Line 3 used to be _A→R, but Jape first made it Q→R (because _A is the same as Q), and
there is already an assumption Q→R: so references to that line can be re-directed to premise 1.2 instead;
then we don’t need the conclusion Q→R at all, and the last line can be numbered 3.

1 Text selection is indicated on different machines in different ways. On a colour screen it is usually shown by changing the
colour of the background. On a grey-scale screen, and in these notes, it can be shown by a grey background. On a black-
and-white screen it is shown by a black background with white text.

Using ItL Jape (third X edition) Page 15 October 1998

No matter that quite a lot happens in one step, and some of it is rather subtle – the total effect is just what
is needed, and we are back to something recognisable. What happened was that an unknown was
introduced by backward reasoning, and then eliminated by unification. It was all quite unnecessary in this
case, because forward reasoning from the assumption can produce the same effect in one step and without
any need for text selection, but it was worth the illustration because unification of an unknown with a
known formula is a very useful technique – as you will find when it comes to proofs involving negation,
if not before.

Now in the step above I made _A the same as Q, and that made _A→R the same as Q→R. If I had used text-
selection to choose those two sub-formulæ instead of _A and Q:

premisesP, , P→Q: 1

_A
. . .

: 2
. . .

: 3

 2,3→-ER: 4

_A→R

Q→R

then the effect of the Unify command would have been just the same. In unifying _A→R with Q→R, Jape
notes that the → and the R parts are the same, and unifies only _A with Q.

Unification can change only unknowns. If you text-select P and Q, say:

premisesP, Q→R, →: 1

_A
. . .

: 2

_A→R
. . .

: 3

 2,3→-ER: 4

P Q

then the Unify command will fail – Jape can’t unify P with Q, and it will say so.

Unification with the hyp rule

There’s another way – sometimes it’s a simpler way – to force Jape to unify _A with Q. In the display
with unknowns

premisesP, Q→R, P→Q: 1

_A
. . .

: 2

_A→R
. . .

: 3

 2,3→-ER: 4

the formula _A→R on line 3 is the same as the premise Q→R on line 1. The hyp rule, which means nothing
more nor less than ‘an assumption proves this conclusion’, is the extra entry at the bottom of the Rules
menu. In tree form the rule is

A
hyp

and it has no equivalent in box form, because it is equivalent to pointing to a particular assumption line.

Before you use the hyp rule, you select the relevant assumption and conclusion – sometimes you can use
the rule without selection if it’s obvious what you mean, but selection is essential if there is more than
one conclusion and/or more than one assumption which would fit the conclusion. In this case it would be

Using ItL Jape (third X edition) Page 16 October 1998

enough to select the conclusion on line 3 (because there is only one assumption which fits it), but it’s
good mental hygiene to select the matching second premise on line 1. When you’ve done that, the proof
pane should show:

premisesP, Q→R, P→Q: 1

 _A
. . .

: 2

_A→R
. . .

: 3

 2,3→-E R: 4

(Notice how the parts of the proof that aren’t relevant to proving line 3 are ‘greyed out1’ by the act of
selecting that conclusion). Now you can apply the hyp rule, and just as with the Unify command, all the
_As are replaced in a single step, and the _A→R line vanishes entirely:

premisesP, Q→R, P→Q: 1

Q
. . .

: 2

 2,1.2→-ER: 3

You can do the same thing again in the next step: apply →E to line 2

premisesP, Q→R, P→Q: 1

_A
. . .

: 2

_A→Q
. . .

: 3

 2,3→-EQ: 4

 4,1.2→-ER: 5

Now whether you say that _A is the same as P or that _A→Q is the same as P→Q, and whether you use
Unify or hyp to say it, the proof is completed just as before.

premisesP, Q→R, P→Q: 1

 1.3,1.1→-EQ: 2

 2,1.2→-ER: 3

More unknowns than you can shake a stick at

To see a slightly more complicated use of unknowns, go back a couple of steps to the first introduction of
_A and choose the conclusion on line 2:

premisesP, Q→R, P→Q: 1

_A
. . .

: 2

 _A→R
. . .

: 3

 2,3→-E R: 4

1 In some X Jape versions ‘greying out’ is implemented by a colour change. In this manual I can only use shades of grey and
black.

Using ItL Jape (third X edition) Page 17 October 1998

Now apply →-E:

premisesP, Q→R, P→Q: 1

_A1
. . .

: 2

_A1→_A
. . .

: 3

 2,3→-E_A: 4

_A→R
. . .

: 5

 4,5→-ER: 6

If _A is to be proved by →-E, which it eventually will be, then yet another unknown is needed. Jape
generates unknown names very simplistically, and comes up with _A1. To make the proof go through,
_A1 must be P, and _A must be Q. As soon as Jape knows both those things the proof will be over. We
can maintain Jape’s confusion as long as possible by telling it first that _A1 is P , either by Unify or hyp:

premisesP, Q→R, P→Q: 1

P→_A
. . .

: 2

 1.3,2→-E_A: 3

_A→R
. . .

: 4

 3,4→-ER: 5

Then you can tell it, again using either Unify or hyp, that P→Q is the same as P→_A, or that Q→R is the
same as _A→R, or that Q is the same as _A. Whichever way you choose, all the _As change into Qs and
the proof is completed.

premisesP, Q→R, P→Q: 1

 1.3,1.1→-EQ: 2

 2,1.2→-ER: 3

Using ItL Jape (third X edition) Page 18 October 1998

6. Scope boxing in Jape

The ∀-I rule of the QMW Introduction to Logic course looks something like this:

i

j I i

c

A c

x A x

:

:

...

() ...
...

. ()∀ → −∀ −

in which the little c in the margin next to the shows that it’s a ‘scope box’; scope boxing imposes a
condition on the proof that the name c doesn’t appear outside the box. That condition stops you proving
nonsense like ∀x.P(x) ' %x.P(x) – it’s not a theorem because an premise that P(x) holds universally
doesn’t prove that it holds at any particular position (the universe of possible values of x might be empty,
and then the left-hand side would be trivially true while the right-hand side would be false).

Jape can’t use scope-boxing directly, but it can imitate the mechanism reasonably well. It uses ordinary
boxing with a pseudo-predicate ‘var c’ that means ‘c is in scope’, and a side condition ‘inscope A’ that
demands that all the free names in formula A are in scope. To use it you have to be a bit agile with the
mouse, which is a pity but there it is.

Jape’s versions of the ∀-I and %-E rules are1

i

j

k I i j

c

A c

x A x

:

:

:

var

...

() ...
...

. ()∀ → −∀ − −

i

j

k

l

x A x

c A c

B

B E i j k

:

:

:

assumptions

:

. () ...
...

var ,

...

...
...

, ..

∃

()

∃ −

The box in these diagrams are ordinary boxes. The “var c” pseudo-predicate is part of Jape’s treatment of
scope boxing: you can’t appeal to var c outside the box in which it is introduced. Associated with each of
these rules is a proviso that c is a ‘fresh individual’, and that is the other part of Jape’s treatment. The
proviso stops you using c in most places outside the box.

When you apply the ∀-E and %-I rules you have to make use of the variables that are introduced by the
rules above. ∀-E and %-I use the “inscope c” pseudo-predicate to check that the name you use is in scope –
that is, that you are inside a scope box for it:

i

j

k

x A x

inscope c

A c E i j

:

:

:

. ...

...

...

...

,

∀ ()

() ∀ −

i

j

k I i j

A c

inscope c

x A x

:

:

: ,

() ...
...

...
...

. ()∃ ∃−

“Inscope c” is a side-condition, which is hidden when it is proved and displayed when it is not proved.
It’s a bit like an unknown formula, unwelcome in a proof. You can avoid seeing it at all if you select the
right argument formula when you apply the rule.

I recommend that you always give an argument to the ∀-E and %-I rules.

1 Behind the scenes Jape doesn’t use scope boxing and it doesn’t even use predicate notation. Those wo are interested may
read more of the gory details in appendix I. With luck, you will never notice the difference.

Using ItL Jape (third X edition) Page 19 October 1998

Here’s an example to illustrate Jape’s treatment of scope boxing. The starting point is:

premise∀x.(P(x)→Q(x)): 1

∀x.P(x)→∀x.Q(x)
. . .

: 2

First I break down the conclusion with →-I:

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

∀x.Q(x)
. . .

: 3

 2-3→-I∀x.P(x)→∀x.Q(x): 4

Next I use ∀-I on line 3:

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

assumptionvar c: 3

Q(c)
. . .

: 4

 3-4∀-I∀x.Q(x): 5

 2-5→-I∀x.P(x)→∀x.Q(x): 6

Line 3 is the first line of a scope box (it’s labelled ‘assumption’ but never mind). Next I can use ∀-E on
line 1 or line 2. It doesn’t matter which I do first , so I choose line 1. Before I make the step I text-select c
on line 3, because that’s the variable I want to use:

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

assumptionvar : 3

Q(c)
. . .

: 4

 3-4∀-I ∀x.Q(x): 5

 2-5→-I ∀x.P(x)→∀x.Q(x): 6

c

and then I apply the rule

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

assumptionvar c: 3

 1∀-E(P(c)→Q(c)): 4

Q(c)
. . .

: 5

 3-5∀-I∀x.Q(x): 6

 2-6→-I∀x.P(x)→∀x.Q(x): 7

Using ItL Jape (third X edition) Page 20 October 1998

If I hadn’t text-selected c, Jape would have used an unknown, and it would have had to show me the side-
condition

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

assumptionvar c: 3

_c1 inscope
. . .

: 4

 1,4∀-E(P(_c1)→Q(_c1)): 5

Q(c)
. . .

: 6

 3-6∀-I∀x.Q(x): 7

 2-7→-I∀x.P(x)→∀x.Q(x): 8

In this proof there is only one variable that is ever in scope, so it’s clear to me that I would like _c1 to be
c. But it isn’t clear to Jape (and there are lots of proofs where that’s a good thing, so Jape never tries to
guess what you mean). I can either unify _c1 and c (by text-selecting them and choosing Unify from the
Edit menu), or I can undo the last step, text-select c on line 3 and do the ∀-E step again. Either way, the
inscope condition disappears.

If I do the same thing again with line 2 (text-select c somewhere, select line 2, apply ∀-E) then the proof
moves one step farther forward:

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

assumptionvar c: 3

 1∀-E(P(c)→Q(c)): 4

 2∀-EP(c): 5

Q(c)
. . .

: 6

 3-6∀-I∀x.Q(x): 7

 2-7→-I∀x.P(x)→∀x.Q(x): 8

And finally a step of →-E finishes it off:

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

assumptionvar c: 3

 1∀-E(P(c)→Q(c)): 4

 2∀-EP(c): 5

 5,4→-EQ(c): 6

 3-6∀-I∀x.Q(x): 7

 2-7→-I∀x.P(x)→∀x.Q(x): 8

Using ItL Jape (third X edition) Page 21 October 1998

Enforcing the scope box condition

Suppose that I had done things in a slightly different order. Suppose that I had make a ∀-E step before the
∀-I step:

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

_c inscope
. . .

: 3

 1,3∀-E(P(_c)→Q(_c)): 4

∀x.Q(x)
. . .

: 5

 2-5→-I∀x.P(x)→∀x.Q(x): 6

There isn’t a variable that I can select which is in scope, so I’m bound to provoke a display of the side
condition.

Now I’m stuck. There is nothing I can do that will get rid of that side-condition. Even if I do the ∀-I step
next, it doesn’t help:

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

_c inscope
. . .

: 3

 1,3∀-E(P(_c)→Q(_c)): 4

assumptionvar c1: 5

Q(c1)
. . .

: 6

 5-6∀-I∀x.Q(x): 7

 2-7→-I∀x.P(x)→∀x.Q(x): 8

c1 NOTIN _c

That “var c1” is in the wrong place, and it’s inside a scope box. Jape won’t let you unify _c with c1,
because a condition on the ∀-I rule is that the name c1 is a ‘fresh individual’ in the proof: it has noticed
the unknown _c and imposed a proviso (bottom left) that c1 mustn’t appear free in _c. Even if it would let
you make the unification step, the box structure would still stop you completing the proof.

Some of the entries in the Conjectures panel – those which end with the word NOT – are included just so
that you can see how scope-boxing stops some kinds of nonsense proofs. Many other entries, particularly
those which are variations on De Morgan’s laws, require considerable care in the use of the ∀-I and %-E
rules, just to make things happen in the right order.

In general it is a good idea to use the ∀-I and %-E rules early, and the ∀-E and %-I rules
late, to avoid falling foul of scope-boxing restrictions.

Using ItL Jape (third X edition) Page 22 October 1998

7. Some useful rules of thumb1

Rules of thumb don’t always work, but you never know your luck. Try these, and if you don’t understand
them, look in the appendices for explanation:

• Get rid of → in conclusions as early as possible (using →-I)

• Get rid of ∨ in premises and assumptions as early as possible.

• Use ∀-I and %-E early, and ∀-E or %-I late, to avoid scope-boxing restrictions..

• As a last resort, use proof by contradiction: ¬-E backwards, followed by ¬-I backwards, followed by
∧-I and then perhaps by hyp – see the appendix on the ¬ rules for more explanation.

1 Some people believe that ‘rule of thumb’ refers to an ancient English law which governed the thickness of sticks which
could be used by a husband in chastising a wife, and they say that we shouldn’t use the phrase for that reason. That isn’t
where ‘rule of thumb’ comes from. The phrase derives from the fact that an inch is, originally by legal definition,
approximately the width of a human adult male thumb. The French word for ‘inch’ – pouce actually means ‘thumb’. So
you can use your thumb as an rule –nowadays we would say ruler – if you are prepared to put up with a bit of inaccuracy:
hence, by punning the meanings of ‘rule’, we get ‘rule of thumb’ for any procedure which sometimes works and sometimes
doesn’t.
Whilst I’m on the topic of measurement and its relation to body size, a foot was supposed to be the length of an adult male
person’s foot, and a yard the distance from his outstretched fingers to the tip of his nose. People were bigger when the
measures were invented - really they were, it is a matter of diet. I’m approximately Dark Age Saxon standard size, and
because of improved nutrition the average size of humans is rapidly increasing so that, in a generation or two, feet my size
may once again be the male norm. A cubit, by the way, in case you are thinking of building any Arks, is the distance from
elbow to finger end.
Belief in the existence of a law which allowed husbands to beat their wives with sticks of less than a particular thickness is
very ancient (E.P. Thompson, in “Customs in Common”, has a reference from the time of the enclosures in England) and it
was talked about as ‘the rule of thumb’. The name was, I suppose, a folk pun.

Using ItL Jape (third X edition) Page 23 October 1998

8. Using theorems and defining conjectures

The Apply button in the Conjectures panel lets you use theorems in proofs – ‘sequent substitution’ is the
phrase that is used in the Introduction to Logic course to describe this action. I illustrated it above, in the
last of the three alternative proofs of P→Q,(Q→R,(P('(R. In that proof I used the theorem P,(P→Q('(Q
twice: once to prove P ,(P→Q('(Q , and once to prove Q ,(Q→R('(R . Each of those sequents is a
‘substitution instance’ of the theorem; only the first happens to be identical to the theorem.

ItL Jape makes substitution instances of a theorem by replacing some or all of the names in its sequent.
But only some names are replaceable, and it uses a simple lexical convention to help it to decide. Names
in sequents fall into one of three classes:

• variables: any name starting with x, y, z or c;

• formulas: any name starting with A, B, C, P, Q, R or S.

Variable names in a theorem sequent can be replaced by any variable, formula names by any formula,
constant names by any constant. This means, for example, that P→(Q→R), P ' Q→R, a n d
(P1∧P2)→(Q1∨Q2), P1∧P1 ' Q1∨Q2 are each substitution instances of P→Q, P ' Q.

I use formula names A, B and C in rules, P, Q, R and S in theorems.

Stating your own conjectures

The (New) button at the bottom of the Conjectures panel lets you define your own conjectures. It brings
up a dialogue box (no illustration, I’m sorry to have to say again). You type the conjectured sequent into
the box labelled CONJECTURE. (Usually that is all you need to do, but if the conjecture has any provisos
you type them into the box labelled PROVISOS; if it has any parameter names you type them into the box
labelled (...).) The keypad buttons at the bottom of the box are there so that you don’t have to learn how
to type the special symbols that appear in logical formulæ and sequents. When you have finished, press
the State Conjecture button (you need also to press Cancel in the Conjecture Entry dialogue box, because
it doesn’t automatically disappear as it should): Jape adds your conjecture to the Conjectures panel and
selects it, so that you can press Prove to start a proof of it.

When you are stating a conjecture, don’t forget to distinguish between the various classes of name (see
above). If you use a name which is outside either class, Jape will refuse to accept the conjecture. If you
state a conjecture which has the wrong kind of name in it – one which contains a formula like ∀P.Q, for
example, which has a formula name where a variable name is required – Jape may accept it but you will
find that the rules don’t actually apply.

Never mind all those complications! It’s actually very easy to define a conjecture and then to start a proof
of it. For example, I typed P∧¬P→Q into the CONJECTURE box, pressed State Conjecture in the dialogue
window and then Prove in the Conjectures panel. Here’s the first step in the proof of that wild conjecture
– it’s provable, but I’m not going to tell you how.

assumptionP∧¬P: 1

Q
. . .

: 2

 1-2→-IP∧¬P→Q: 3

Using ItL Jape (third X edition) Page 24 October 1998

9. Reviewing and altering proofs of theorems

If you select a theorem in the Conjectures panel and press the Show button, you will be shown the last-
registered proof of that theorem – only its final stage, not the intermediate steps. If you don’t like what
you see you can change it if you like, and register the changed proof with Done. Because Jape doesn’t
register the intermediate steps of a proof, you can’t use Backtrack or Undo to trace through its
development, but you can ‘prune’ parts of it and do them differently.

For example, consider the following proof of P∧(Q∧R) ' (P∧Q)∧R:

premiseP∧(Q∧R): 1

 1∧-E(L)P: 2

 1∧-E(R)(Q∧R): 3

 3∧-E(L)Q: 4

 2,4∧-I(P∧Q): 5

 1∧-E(R)(Q∧R): 6

 6∧-E(R)R: 7

 5,7∧-I(P∧Q)∧R: 8

Because of the order in which I developed the proof (first several ∧-Is, backwards, to reduce the
conclusion, then ∧-Es , forwards, to simplify the premise), I’ve used ∧-E twice to get two lines which
state Q∧R – lines 3 and 6. I could have done things in another order. To show what I mean, I click on the
conclusion in line 8 and choose Prune from the Edit menu, to see

assumptionP∧(Q∧R): 1

(P∧Q)∧R
. . .

: 2

Then I can use ∧-E four times to reduce the premise:

assumptionP∧(Q∧R): 1

 1∧-E(L)P: 2

 1∧-E(R)Q∧R: 3

 3∧-E(L)Q: 4

 3∧-E(R)R: 5

(P∧Q)∧R
. . .

: 6

and then ∧-I twice to complete the proof:

premiseP∧(Q∧R): 1

 1∧-E(L)P: 2

 1∧-E(R)(Q∧R): 3

 3∧-E(L)Q: 4

 3∧-E(R)R: 5

 2,4∧-I(P∧Q): 6

 6,5∧-I(P∧Q)∧R: 7

Using ItL Jape (third X edition) Page 25 October 1998

This version is one line shorter. It’s not much of a difference, but I think it’s an improvement. In other
cases pruning and reproving can be much more effective.

Prove starts a new proof

If you select a theorem – a conjecture which you’ve already proved and registered with Jape – in the
Conjectures panel and press Prove, Jape will start a new proof of that theorem, after first checking that
that is what you really want to do.

Beware circular arguments!

Jape checks your proofs for circularity. It’s possible to make a proof of theorem A, then prove theorem B
using theorem A, then go back and re-‘prove’ theorem A using theorem B. The two proofs are now
nonsense– A depends on B depends on A depends on B1 ... – because you have made a ‘circular
argument’.

Jape doesn’t check your proof as you make it, but when you think you’ve finished and try to register the
new proof, it will refuse, telling you just how the proof is circular. Change the proof, or use Abandon
Proof to forget all about it!

1 Well, sometimes complicated meta-argument using induction on the structure of your proofs can make this kind of
circularity acceptable. It’s simplest to say that the proofs are nonsense.

Using ItL Jape (third X edition) Page 26 October 1998

10. Printing a proof (File menu)

If you choose Print from the File menu, you will be presented with a dialogue box with some strange
graphics on it, asking you to choose how your proof should be printed. Just press the Write File button if
– as normally – you don’t want to rotate or resize your proof before printing1. The proof will be sent to
your default printer (the one named in your PRINTER environment variable, the same one that output is
sent to when you use lpr to print a file from an xterm window). At the time of writing the proof that is
printed doesn’t have a title, but perhaps we will have fixed that before you read this sentence.

You may want to do more complicated things with your proof, and it’s possible to save your proof as an
EPS (Encapsulated PostScript) file (if you don’t know what that is, relax and skip to the next section).
This is what you do. Choose the “Output Proof as Scaled Postscript” entry in the File menu. A dialogue
box is shown to you, called “select a file for the postscript proof”, which for reasons cited above I
unfortunately can’t illustrate here. In that dialogue box you can enter a file name (next to File: at the
bottom), or you can just press OK and it will choose a file name for you.

Next you will see another dialogue box – the same one as in the Print dialogue – which invites you to
resize and/or rotate the printe. You can do wonderful things with this dialogue box – shrinking, growing,
rotating the image – but almost certainly you will just need to press Write File.

Now you have to go to a terminal window, and type a UNIX command. If necessary you will have to
create one – you’re on your own here. Type

jlpr filename

or, if you know how to choose a printer to send your output to, type

jlpr -Pprinter filename

The filenames that Jape uses will all be of the form ItLjapenn.jps. Printers in use in the ITL at QMW
are called itlaser1, itlaser3.

Good luck. It’s been so long since I used UNIX much that I’d forgotten how ghastly it all is.

1 If you do want to rotate or resize, I think the controls in the dialogue box are straightforward. Anyway, you can experiment.

Using ItL Jape (third X edition) Page 27 October 1998

11. Saving and restoring your proofs (the File menu)

On the File menu there are a collection of commands to open, close and save files of logic descriptions
and proofs. You won’t need, and shouldn’t use, the first, second and fourth commands (Select a top-level
theory file, Add a theory file to the current theory, load the file ./J): if you do use them by accident, be
sure to press Cancel in the file selection window or I shan’t be liable for the consequences.

Save Proofs and Save As… will save your completed proofs, and any proofs in progress in the session
window, in a file of your choice, using a file-selection dialogue (it’s best to save them in files called
somethingorother.jp). Load a file of proofs will load them back again (and it will automatically look for
files called whatsit.jp, which is why it’s best to save proofs in a file with that sort of name). If you have
any unsaved proofs when you quit, or any proofs in progress in the session window, Jape will ask you if
you want to save them.

If you want to build up a collection of proofs in a file, make sure you reload your old proofs before you
start adding to the collection. If you start a new collection and then save it to the same file, X Jape will –
without checking that it is what you want to do – overwrite the old collection.

Close seems to have the same effect as Quit Jape. Why do you need two identical commands on the same
window? Search me!

The “Select a top-level theory file” command

The “Select a top-level theory file” command on the File menu lets you erase the logic loaded into Jape –
both its rules and any proofs which you might have made – and load the rules of another logic. The
dialogue is a little confusing and, in particular, once you have pressed Ok in the file selection window,
pressing Cancel in later windows may not have the effect you expect.

There are some interesting logics encoded in Japeish, which can be found in the
/import/jape/examples directory. If you look at them then you are on your own: I take no
responsibility for any confusion which any of those logics may cause!

Using ItL Jape (third X edition) Page 28 October 1998

Appendix A: Using the mouse

X Jape understands various mouse gestures in the proof pane:

• a single left-button click selects a conclusion or an assumption to work on;

• a double left-button click can automatically apply a rule to a conclusion or assumption (not
available in ItL Jape);

• a single middle-button click to select a character as an argument to a rule;

• press and drag with the middle button down to select a sequence of characters as argument to
a rule;

• press and dragwith the middle button down over a blank portion of the pane to move the
proof within the pane.

In addition, various mouse gestures cancel the effect of some of the above:

• a single left-button click in a blank area of the screen cancels all conclusion, assumption,
character and text selections;

• a double middle-button click over a text selection cancels it (and, currently, any other text
selections in the same formula, but not any in other formulæ);

• a double middle-button click in a blank area of the screen cancels all text selections.

Single-left-click

The effect of the single-click gesture is illustrated in the examples above. A square box is drawn round
the conclusion or assumption you clicked on, and it becomes a focus of attention for the command you
apply. You can select both a conclusion and an assumption, but no more than one of each kind.

When you select a conclusion, all the other conclusions are greyed-out to show that you can’t use them.
Only the assumptions appropriate to that conclusion are still shown, and some conclusions proved by
forward reasoning are still shown – you can use them, as you would expect, just as if they were
assumptions.

When you select an assumption, the conclusions which aren’t associated with it are greyed-out.

If you select only an assumption, there may be many conclusions with which it is associated. In order to
make a proof step, Jape needs to know which conclusion you are trying to prove. It will ask you to select
a conclusion if necessary.

Left-clicking in a blank area of the pane cancels all formula and text selections.

Double-left-click

Jape allows the logic designer to define the effect of a double-click on an assumption or conclusion, so
that rules can be ‘automatically’ applied. We have decided not to use that facility in ItL Jape, because we
want you to think about, and learn about, the choice of rules.

Middle-click and middle-press-and-drag

If you click the middle button over a character it is text-selected; if you press the middle button over a
character and move the mouse left or right, that character and the others you drag over are text-selected;
in either case the selected text is highlighted. It looks like this:

premises∀x.(P(x)→Q(x)), P(): 1

Q(c)
. . .

: 2

c

Using ItL Jape (third X edition) Page 29 October 1998

When you next apply a rule, the highlighted text is given as an argument to that rule: that’s mainly useful
in the rules which have to do with ∀ and % (see below). If the text won’t do – for example because it isn’t
a proper logical formula, or because it is the wrong kind of formula – Jape will complain.

You can cancel a text selection that you have already made either by double-middle clicking it, or by
double-middle clicking in a blank area of the proof pane.

Jape is sometimes a bit fussy in its reading of the mouse position, especially if the text you are selecting
is at the very beginning or the very end of an assumption or conclusion.

Using ItL Jape (third X edition) Page 30 October 1998

Appendix B – Troubleshooting

I didn’t write the graphical interface to X Jape, so I can’t say much about what to do if it won’t start, or if
the windows don’t perform as described. Mail me (richard@dcs.qmw.ac.uk) if you have real difficulty,
and I’ll do my best to help.

If you lose your Jape windows, clicking on the screen background with the middle button gives you a list
of all your windows; if only one Jape window is shown, choose it and the others should appear.

What if a proof step goes wrong?

When you try to apply a rule one of two things can happen. Either the rule applies, and the step goes
through, or it doesn’t, and Jape shows you an error message. At first the error messages may seem very
complicated and rather confusing – indeed, they could do with some simplification1 – and often the best
thing is to read them as if they said “the rule doesn’t apply, so you will have to try something else”.

As always when using machinery, there can be more than one explanation for a rule’s failure. It may be
that the rule does apply, but you didn’t select the right formula for it to work on. Or it may be that you
have chosen the wrong rule. All you can do is to try to see why the rule didn’t work, and then go back and
try to fix the problem somehow, either by applying the same rule differently, or by applying a different
rule.

And then, even though a rule does apply and the proof step does go through, it may not turn out to be the
right thing to do. Sometimes a successful step now can lead to a dead end later. Sometimes a step works,
but not in the way that you expected – perhaps lots of unknowns suddenly appear in the proof, or there
are lots of extra lines that you didn’t expect, or lots of lines suddenly disappear.

Whenever something happens that isn’t what you intended, the first stage of a cure is to use the Undo
command (choose it from the Edit menu). Undo takes you back one step in the proof, two Undos take you
back two steps, and so on. Using Undo can reverse an unintended step; using several can move you back
from a dead end to an earlier position from which you can move forward in a different direction.

You can even recover from Undo! The Redo command (in the Edit menu) reverses the effect of Undo,
two Redos reverse two Undos, and so on. So if you decide, after Undoing, that you really did want to
make that surprising step after all, Redo will make it again. (If you Undo and make a new proof step, then
the one you Undid is gone for ever, like it or not.)

The Undo command allows you to explore if you don’t know what rule or theorem to apply in a proof:
you can experiment with different rules and theorems from the menus until you find one that works. That
can be a bad thing, if you just try things at random until you find one that happens to work, and indeed
such a search usually turns out to be a very slow way to make proofs. But sometimes we all need to
search for a proof, and then Undo and Redo are invaluable. I hope that when you do search and find a
surprising avenue that happens to work,. you will pause to ask yourself why it works. Jape is designed to
support that kind of ‘reflective exploration’ – it helps with the exploring part, and you learn by reflecting
on the results.

1 Even though they have improved a lot recently, Jape’s error messages are still awful and most of the time they are of very
little use at all. If you get a really bad one and I’m around you can show the problem to me, because there might be
something in Jape that I can fix. But quite often I may say that I can’t do anything about it this millenium. The messages
have even got a little worse over the summer. Ho hum!

Using ItL Jape (third X edition) Page 31 October 1998

Appendix C: The →→→→ rules

Normally you will use the → elimination rule to make a forward step from an assumption (or from a
conclusion already proved by a forward step) and you will use the → introduction rule to make a
backward step from a conclusion. In either case the assumption or conclusion should be of the form
something → something else, and in either case the effect is to simplify the assumption or conclusion you
selected by splitting it into two parts and eliminating the → connective.

You can use the → elimination rule backwards, and in that case it can make sense to give it an argument –
see below.

Forward reasoning with →-E

The →-E rule in box form is

i

j

k E i j

A

A B

B

: ...
...

: ...
...

: ,

→

→−

and in tree form

M M
A A B

B
E

→
→ −

– from a proof of A and a proof of A→B, make a proof of B.

Select an assumption (or a conclusion already proved by a forward step) which has an arrow you wish to
eliminate, select the conclusion if necessary, and apply the rule. For example in

premiseP→(Q→R): 1

Q→(P→R)
. . .

: 2

select the premise:

premiseP→(Q→R): 1

Q→(P→R)
. . .

: 2

and apply →-E:

premiseP→(Q→R): 1

P
. . .

: 2

 2,1→-E(Q→R): 3

Q→(P→R)
. . .

: 4

The selected assumption provides one of the antecedents of the rule. If there is an assumption (or a
conclusion already proved by forward reasoning) which corresponds to the other antecedent, Jape uses
that. If not, it introduces a new unproved conclusion, as in this example.

Don’t give an argument when using →-E for forward reasoning – it only confuses Jape.

Using ItL Jape (third X edition) Page 32 October 1998

Backward reasoning with →-I

The →-I rule in box form is

i

j

k I i j

A

B

A B

:

:

assumption

: ..

...

...
...

→ → −

and in tree form

[]A

B

A B
I

M

→
→ −

– from a proof of B, within which you are allowed to assume a proof of A, construct a proof of A→B.

Select an unproved conclusion which includes an arrow you want to eliminate, and apply →-I. For
example in

premiseP→(Q→R): 1

Q→(P→R)
. . .

: 2

select the conclusion

premiseP→(Q→R): 1

Q→(P→R)
. . .

: 2

and apply →-I:

premiseP→(Q→R): 1

assumptionQ: 2

(P→R)
. . .

: 3

 2-3→-IQ→(P→R): 4

The new assumption is automatically introduced, and the necessary enclosing box drawn. The application
would have the same effect even if you hadn’t selected the conclusion, because there is only one open
conclusion.

Notice how this step has automatically introduced the correct assumption in the new box. Jape relieves
you of the burden of inventing assumptions, like it or not.

Backward reasoning with →-E

It is possible to use the →-E rule to reason backwards from any conclusion B, whatever shape it is; Jape
will supply an unknown for the antecedent A. For example, in

premises∀x.(P(x)→Q(x)), P(c): 1

Q(c)
. . .

: 2

Using ItL Jape (third X edition) Page 33 October 1998

you can apply →-E immediately:

premises∀x.(P(x)→Q(x)), P(c): 1

_A
. . .

: 2

_A→Q(c)
. . .

: 3

 2,3→-EQ(c): 4

Jape will introduce an unknown _A (or some name like that) and demand that you provide a proof both of
_A and _A→the conclusion.

If you give an argument to the rule, by selecting text, Jape will use that argument instead of _A. For
example, in the same problem as above, it might be reasonable to use P(c) as the argument. Text-select
(middle-press-and-drag) that formula (but don’t formula-select it with a left-click!!!):

premises∀x.(P(x)→Q(x)), : 1

Q(c)
. . .

: 2

P(c)

and apply →-E

premises∀x.(P(x)→Q(x)), P(c): 1

P(c)→Q(c)
. . .

: 2

 1.1,2→-EQ(c): 3

Whichever way you do it, it doesn’t matter: this proof is doomed (see the discussion of scope boxing
above and of the ∀ rules below.

Using ItL Jape (third X edition) Page 34 October 1998

Appendix D: the ∧∧∧∧ rules

Normally you will use one of the ∧ elimination rules to make a forward step from an assumption (or from
a conclusion already proved by a forward step) and you will use the ∧ introduction rule to make a
backward step from a conclusion. In either case the assumption or conclusion should be of the form
something ∧ somethingelse, and in either case the effect is to simplify the assumption or conclusion you
selected by breaking it into two parts (and perhaps discarding one part) and eliminating the ∧ connective.

You can use the ∧ elimination rule backwards, and in that case it can make sense to give it an argument –
see below.

Forward reasoning with ∧-E (L or R)

The ∧-E rules in box form are:

i

j E L i

A B

A

:

: ()

...
...

∧

∧ −

i

j E R i

A B

B

:

: ()

...
...

∧

∧ −

and in tree form

M
A B

B
E L

∧
∧ − ()

M
A B

B
E R

∧
∧ − ()

– from a proof of A∧ B you can make a proof of A or a proof of B, as you wish. In lectures these may have
been presented as a single rule, or perhaps as two rules with a single name. Strictly speaking (and
machines have to be instructed very strictly) there are two similar but distinct rules, and therefore Jape
must be told about two rules.

Suppose there is an assumption, or a conclusion already proved by a forward step, of the form A∧ B and
you want to use either A or B in the proof. You select the assumption and apply the relevant rule. For
example, in

premise(P∨Q)∧(P∨R): 1

P∨(Q∧R)
. . .

: 2

select the premise

premise(P∨Q)∧(P∨R): 1

P∨(Q∧R)
. . .

: 2

and apply ∧-E(L):

premise(P∨Q)∧(P∨R): 1

 1∧-E(L)(P∨Q): 2

P∨(Q∧R)
. . .

: 3

Using ItL Jape (third X edition) Page 35 October 1998

Backward reasoning using ∧-I

The ∧-I rule in box form is

i

j

k I i j

A

B

A B

:

:

: ,

...
...

...
...

∧ ∧ −

and in tree form:

M M
A B

A B
I

∧
∧ −

– from a proof of A and a proof of B make a proof of A∧ B.

Select an unproved conclusion which contains an ∧ you want to get rid of, and apply the rule. Jape
introduces two new unproved conclusions, or uses assumptions if they are available. For example, in

premise(P∧Q)∨(P∧R): 1

assumption(P∧Q): 2

 2∧-E(L)P: 3

P∧(Q∨R)
. . .

: 4

assumption(P∧R): 5

P∧(Q∨R)
. . .

: 6

 1,2-4,5-6∨-EP∧(Q∨R): 7

select the conclusion on line 4

premise(P∧Q)∨(P∧R): 1

assumption(P∧Q): 2

 2∧-E(L)P: 3

P∧(Q∨R)
. . .

: 4

assumption (P∧R): 5

 P∧(Q∨R)
. . .

: 6

 1,2-4,5-6∨-E P∧(Q∨R): 7

Using ItL Jape (third X edition) Page 36 October 1998

and apply ∧-I:

premise(P∧Q)∨(P∧R): 1

assumption(P∧Q): 2

 2∧-E(L)P: 3

(Q∨R)
. . .

: 4

 3,4∧-IP∧(Q∨R): 5

assumption(P∧R): 6

P∧(Q∨R)
. . .

: 7

 1,2-5,6-7∨-EP∧(Q∨R): 8

Line 3 proves P, but you still have to make a proof of Q∨R.

Backward reasoning with ∧-E

Occasionally ∧ elimination might be the last step in a proof. You can then use the ∧ elimination rules
backwards to prove any conclusion A∧ something or something∧ B. Jape will normally introduce an
unknown for B in the (L) rule or A in the (R) rule, but you can provide an argument if you wish.

For example, consider

premisesP, P→(Q∧R): 1

Q
. . .

: 2

The obvious first step in this contrived example is to use → elimination on the first premise. But the last
step in the proof is bound to be ∧ elimination, to make a proof of Q from a proof of Q∧R. If you apply ∧-
E(L) backwards – no need to select the conclusion, because it is the only one – Jape will show you

premisesP, P→(Q∧R): 1

Q∧_B
. . .

: 2

 2∧-E(L)Q: 3

If you find that unknown offensive, or confusing, or messy, you can text-select R before you apply the
rule, and Jape will construct

premisesP, P→(Q∧R): 1

Q∧R
. . .

: 2

 2∧-E(L)Q: 3

Using ItL Jape (third X edition) Page 37 October 1998

Appendix E: the ∨∨∨∨ rules

Normally you will use the ∨ elimination rule to make a forward step from an assumption (or from a
conclusion already proved by a forward step) and you will use one of the ∨ introduction rules to make a
backward step from a conclusion. In either case the assumption or conclusion should be of the form
something ∨ somethingelse, and in either case the effect is to simplify the assumption or conclusion you
selected.

You can use the ∨ introduction rules to reason forwards, and in that case it usually makes sense to give
the rule an argument – see below. You can use the ∨ elimination rule backwards, but it is quite tricky and
you will normally have to use hyp or other even more arcane tricks to tidy up afterwards.

Forward reasoning using ∨-E

The ∨-E rule in box form is

i

j

k

l

m

n E i j k l m

A B

A

C

B

C

C

:

:

:

assumption

:

:

assumption

: , .. , ..

...
...

...
...

...

...
...

...

∨

∨ −

and in tree form

[] []A B

A B C C

C
E

M M M
∨

∨

– from a proof of A∨ B, a proof of C (which can assume a proof of A) and another proof of the same C
(which this time can can assume a proof of B), make a proof of C.

To use the rule, select an assumption, or a conclusion already proved by forward step, which includes a ∨
that you want to get rid of. For example, in

premise(P∨Q)∧(P∨R): 1

 1∧-E(L)(P∨Q): 2

P∨(Q∧R)
. . .

: 3

select the conclusion on line 2

premise(P∨Q)∧(P∨R): 1

 1∧-E(L)(P∨Q): 2

P∨(Q∧R)
. . .

: 3

Using ItL Jape (third X edition) Page 38 October 1998

and apply ∨-E:

premise(P∨Q)∧(P∨R): 1

 1∧-E(L)(P∨Q): 2

assumptionP: 3

P∨(Q∧R)
. . .

: 4

assumptionQ: 5

P∨(Q∧R)
. . .

: 6

 2,3-4,5-6∨-EP∨(Q∧R): 7

Jape copies the conclusion you are trying to prove (in this case it’s on line 3 in the original box) and
makes it the conclusion of each of two new boxes, introducing the two parts of the original formula as
additional assumptions in the new boxes.

Backward reasoning using ∨-I

The ∨ introduction rules in box form are

i

j I L i

A

A B

:

: ()

...
...

∨ ∨ −

i

j I R i

B

A B

:

: ()

...
...

∨ ∨ −

and in tree form

M
A

A B
I L

∨
∨ − ()

M
B

A B
I R

∨
∨ − ()

– from a proof of A or a proof of B you can make a proof of A∨ B. As with the ∧ elimination rules, there
really are two similar but distinct rules and therefore they need distinct Jape names.

Select an unproved conclusion which contains a ∨ which you want to get rid of, and apply one of these
rules. For example, in

premise(P∨Q)∧(P∨R): 1

 1∧-E(L)(P∨Q): 2

assumptionP: 3

P∨(Q∧R)
. . .

: 4

assumptionQ: 5

P∨(Q∧R)
. . .

: 6

 2,3-4,5-6∨-EP∨(Q∧R): 7

Using ItL Jape (third X edition) Page 39 October 1998

select the conclusion on line 4

premise(P∨Q)∧(P∨R): 1

 1∧-E(L)(P∨Q): 2

assumptionP: 3

P∨(Q∧R)
. . .

: 4

assumption Q: 5

 P∨(Q∧R)
. . .

: 6

 2,3-4,5-6∨-E P∨(Q∧R): 7

and apply ∨-I(L):

premise(P∨Q)∧(P∨R): 1

 1∧-E(L)(P∨Q): 2

assumptionP: 3

 3∨-I(L)P∨(Q∧R): 4

assumptionQ: 5

P∨(Q∧R)
. . .

: 6

 2,3-4,5-6∨-EP∨(Q∧R): 7

Forward reasoning using ∨-I

If you have an assumption P, or a conclusion P proved by a forward step, then you can conclude either
P∨B or A∨P for any formula A or B. If you don’t provide an argument by text selection then Jape will use
an unknown instead.

For example, in

premise¬(P∨Q): 1

assumptionP: 2

(P∨Q)∧¬(P∨Q)
. . .

: 3

 2-3¬-I¬P: 4

¬Q
. . .

: 5

 4,5∧-I¬P∧¬Q: 6

Using ItL Jape (third X edition) Page 40 October 1998

you can select line 2 and use ∨-I (L):

premise¬(P∨Q): 1

assumptionP: 2

 2∨-I(L)P∨_B1: 3

(P∨Q)∧¬(P∨Q)
. . .

: 4

 2-4¬-I¬P: 5

¬Q
. . .

: 6

 5,6∧-I¬P∧¬Q: 7

In this case it is clear that the unknown should be unified with Q, and you can achieve that effect in a
number of ways. If you select Q somewhere in the proof before you apply the rule:

premise¬(P∨): 1

assumptionP: 2

(P∨Q)∧¬(P∨Q)
. . .

: 3

 2-3¬-I ¬P: 4

 ¬Q
. . .

: 5

 4,5∧-I ¬P∧¬Q: 6

Q

then the ∨-I (L) rule will do all the work itself:

premise¬(P∨Q): 1

assumptionP: 2

 2∨-I(L)P∨Q: 3

(P∨Q)∧¬(P∨Q)
. . .

: 4

 2-4¬-I¬P: 5

¬Q
. . .

: 6

 5,6∧-I¬P∧¬Q: 7

Similar tricks work with the ∨-I (L) rule.

Backward reasoning using ∨-E

Consider the following conjecture:

(P→Q)∨(Q→P)
. . .

: 1

It is provable in ItL Jape, but it’s tricky. One way to prove it is to use ∨ elimination from a proof of P∨¬P.
Since that isn’t an assumption or a rule (and why should it be? it’s provable itself!) you have to describe
what you are doing to Jape.

Using ItL Jape (third X edition) Page 41 October 1998

The first step is to apply ∨-E:

_A∨_B
. . .

: 1

assumption_A: 2

(P→Q)∨(Q→P)
. . .

: 3

assumption_B: 4

(P→Q)∨(Q→P)
. . .

: 5

 1,2-3,4-5∨-E(P→Q)∨(Q→P): 6

Jape constructs a proof with two unknowns in it. You can soldier on with the proof, leaving the unknowns
unknown, keeping in mind that you actually meant P∨¬P, or you can tell it what is going on. Jape’s
argument mechanism isn’t much help here, because the rule needs two arguments, and Jape has no
mechanism which you can use to tell it what the two arguments are.

The neatest solution to this problem is to make a proof of P∨¬P, complete it with the Done command (so
that the proof makes an entry in the Theorems menu), go back to the the proof of (P→Q)∨(Q→P) and
prove line 1 by that theorem. Since you are proving _A∨_B by P∨¬P, _B must be ¬_A:

 Theorem P∨¬P_A∨¬_A: 1

assumption_A: 2

(P→Q)∨(Q→P)
. . .

: 3

assumption¬_A: 4

(P→Q)∨(Q→P)
. . .

: 5

 1,2-3,4-5∨-E(P→Q)∨(Q→P): 6

Sort out the confusion about unknowns – text-select both _A and P (see ‘Unknowns, unification and the
hyp rule’ above if you don’t know how to do this):

 Theorem P∨¬P_A∨¬_A: 1

assumption: 2

(→Q)∨(Q→P)
. . .

: 3

assumption¬_A: 4

(P→Q)∨(Q→P)
. . .

: 5

 1,2-3,4-5∨-E(P→Q)∨(Q→P): 6

P

_A

Using ItL Jape (third X edition) Page 42 October 1998

and then use the Unify command to get to the screen you really wanted:

 Theorem P∨¬PP∨¬P: 1

assumptionP: 2

(P→Q)∨(Q→P)
. . .

: 3

assumption¬P: 4

(P→Q)∨(Q→P)
. . .

: 5

 1,2-3,4-5∨-E(P→Q)∨(Q→P): 6

Then pick out the second half of line 3 by ∨-I(R):

 Theorem P∨¬PP∨¬P: 1

assumptionP: 2

(Q→P)
. . .

: 3

 3∨-I(R)(P→Q)∨(Q→P): 4

assumption¬P: 5

(P→Q)∨(Q→P)
. . .

: 6

 1,2-4,5-6∨-E(P→Q)∨(Q→P): 7

prove that implication by →-I:

 Theorem P∨¬PP∨¬P: 1

assumptionP: 2

assumptionQ: 3

 2hypP: 4

 3-4→-I(Q→P): 5

 5∨-I(R)(P→Q)∨(Q→P): 6

assumption¬P: 7

(P→Q)∨(Q→P)
. . .

: 8

 1,2-6,7-8∨-E(P→Q)∨(Q→P): 9

– and so on. Notice the justification quoted for line 4: this is one of the cases where an explicit hyp line
appears in a proof. It’s hard to see how it could be avoided.

I leave the second half of the proof to you: it involves a contradiction and, of course, uses the other side
of the conclusion. Of course, the proof would be almost the same shape if you took _A to be Q, because
the conclusion is symmetrical ...

Using ItL Jape (third X edition) Page 43 October 1998

Appendix F: the ¬¬¬¬ rules

I find the rules for ¬, as given in the ItL course, very unnatural. But you have to be able to use them just
as they are described in the course, and therefore ItL Jape has to include them just like that, so here goes.

You can use the ¬ elimination rule forward, and the ¬ introduction rule backward, like any of the other
rules. But often you use them as a pair, and then as a last resort, to construct a ‘proof by contradiction’.
I’ll explain what I mean below.

Forward reasoning using ¬-E

Sometimes, very occasionally, you may want to use ¬-E in this way. The rule in box form is

i

j E i

A

A

:

:

...
...
¬¬

¬ −

and in tree form

M
¬¬

¬ −
A

A
E

– from a proof of ¬¬ A you can conclude A.

If you have an assumption of the form ¬¬ A then you can select it and apply the ¬-E rule. For example, in

premise¬¬P: 1

Q→P
. . .

: 2

you can select the premise

premise¬¬P: 1

Q→P
. . .

: 2

and then apply ¬-E:

premise¬¬P: 1

 1¬-EP: 2

Q→P
. . .

: 3

You can take it from there ...

Using ItL Jape (third X edition) Page 44 October 1998

Backward reasoning using ¬-I

The ¬-I rule is

i

j

k I i j

A

B B

A

:

:

assumption

: ..

...
...

...
∧ ¬

¬ ¬ −

and in tree form

[]A

B B

A
I

M
∧ ¬
¬

¬ −

– if from assumption A you can prove the contradiction B∧ ¬B, then A can’t be valid and you have made a
proof of ¬A. The formula B is arbitrary, and if you apply this rule without providing an argument Jape
will introduce an unknown. In the case of the ¬-I rule you will often find that it is not helpful to try to
provide an argument: better to explore the proof a little farther to see what turns up before you decide
what B should be. In some cases A and B turn out to be the same formula, or one turns out to be the
negation of the other, which can be surprising but which makes things very simple indeed when it
happens!

Suppose that you have to prove

premiseP→Q: 1

¬(P∧¬Q)
. . .

: 2

The conclusion is of the form ¬something, so the ¬-I rule is applicable. Apply it and you see

premiseP→Q: 1

assumption(P∧¬Q): 2

_B∧¬_B
. . .

: 3

 2-3¬-I¬(P∧¬Q): 4

We can let the unknown _B ride along while we explore to see what the contradiction is going to be.

Now on line 1 there is an implication, and on line 2 the antecedent of that implication is part of a
conjunction, so it might be a good idea to try to simplify line 1. Use →-E on line 1:

premiseP→Q: 1

assumption(P∧¬Q): 2

P
. . .

: 3

 3,1→-EQ: 4

_B∧¬_B
. . .

: 5

 2-5¬-I¬(P∧¬Q): 6

Using ItL Jape (third X edition) Page 45 October 1998

and then select lines 2 and 3 and use ∧-E(L):

premiseP→Q: 1

assumption(P∧¬Q): 2

 2∧-E(L)P: 3

 3,1→-EQ: 4

_B∧¬_B
. . .

: 5

 2-5¬-I¬(P∧¬Q): 6

By now it should be clear: the contradiction is going to be Q∧¬Q, and the proof can be completed by a
few steps of ∧ elimination and introduction.

It is possible to provide an argument to the ¬-I rule, which Jape uses instead of the unknown _B. If I had
known what the contradiction was going to be at the beginning of the proof, I could have text-selected Q:

premiseP→Q: 1

¬(P∧¬)
. . .

: 2 Q

and then applied ¬-I:

premiseP→Q: 1

assumption(P∧¬Q): 2

Q∧¬Q
. . .

: 3

 2-3¬-I¬(P∧¬Q): 4

If you aren’t exploring, using an argument keeps the proof tidier, which reduces confusion and the
mistakes that confusion can cause. But I’m usually exploring when I use the ¬-I rule.

‘Proof by contradiction’: backward reasoning using ¬-E followed by ¬-I, then ∧-I and hyp

Sometimes you will be confronted with a problem which you can’t solve using the rules just as
simplification tools. Then you can – then you must! – fall back on a proof technique called ‘proof by
contradiction’: if ¬C is ridiculous – if it leads to an absurd conclusion, to a contradiction – then you can
say that C must hold. In the rules used in the ItL course, you have to use a slight variation on this
strategy: if ¬C leads to a contradiction, then ¬¬C holds (by ¬-I), and then C holds (by ¬-E).

You normally realise that you must try proof by contradiction because nothing else will work. For
example, you might have to prove

P∨¬P
. . .

: 1

Using ∨ introduction – throwing away either P or ¬P – gets you nowhere. The proof by contradiction
technique works backwards. You introduce the doubly-negated form to see if it is easier to prove, by
applying the ¬-E rule backwards:

¬¬(P∨¬P)
. . .

: 1

 1¬-EP∨¬P: 2

Using ItL Jape (third X edition) Page 46 October 1998

Line 1 might not seem to be easier to prove than line 2 – it looks more complicated – but using ¬-E has
opened up a new world of possibilities because now the ¬-I rule has something to chew on. Line 1 is of
the form ¬something, where something is ¬(P∨¬P). Apply ¬-I:

assumption¬(P∨¬P): 1

_B∧¬_B
. . .

: 2

 1-2¬-I¬¬(P∨¬P): 3

 3¬-EP∨¬P: 4

Already the proof has the shape of a proof by contradiction. From the negation of the conclusion we want
to prove, show that a contradiction follows. Conclude that the negation of the negation of the conclusion
must hold, and thus the negation of the conclusion.

Now the last step in the boxed proof must surely have been ∧-I. Apply that rule

assumption¬(P∨¬P): 1

_B
. . .

: 2

¬_B
. . .

: 3

 2,3∧-I_B∧¬_B: 4

 1-4¬-I¬¬(P∨¬P): 5

 5¬-EP∨¬P: 6

Now you have to make a proof of _B and a proof of ¬_B. At this point you usually look at the assumptions
you have available – and lo and behold, we actually have ¬something as an assumption. (That always
happens if you apply ¬-E backwards and then ¬-I backwards, if you think about it!)

So at this point I make a guess: I guess that ¬_B is the same as ¬(P∨¬P). To make the proof follow the
guess, I select the conclusion on line 3 and the assumption on line 1

assumption¬(P∨¬P): 1

 _B
. . .

: 2

¬_B
. . .

: 3

 2,3∧-I _B∧¬_B: 4

 1-4¬-I ¬¬(P∨¬P): 5

 5¬-E P∨¬P: 6

and unify them using hyp:

assumption¬(P∨¬P): 1

P∨¬P
. . .

: 2

 2,1∧-IP∨¬P∧¬(P∨¬P): 3

 1-3¬-I¬¬(P∨¬P): 4

 4¬-EP∨¬P: 5

Magic! I had to prove P∨¬P from no assumptions: by using ¬-E and ¬-I, then ∧-I and hyp I have
transformed that into the problem of proving P∨¬P assuming its own negation! I leave the rest of the

Using ItL Jape (third X edition) Page 47 October 1998

proof to you, with the hint that now the assumptions have changed it is worthwhile trying ∨ introduction
backwards.1

Those four steps – ¬-E backwards, ¬-I backwards, ∧-I backwards, finally hyp – are a very useful rule of
thumb. If you are stuck, they sometimes help (but not always).

If you know what _B should be, you may be able to provide it as an argument to ¬-I, which makes things a
bit tidier and misses out the hyp step. Usually, though, I like to leave the question open by allowing Jape
to invent an unknown for me.

(The proof which I have commenced above is the ‘direct’ proof, using just the rules of the logic. There is
a much nicer proof of P∨¬P, which uses the theorem ¬(P∨Q) ' ¬P∧¬Q – it’s a few lines lower down in the
Conjectures panel. Proof of the theorem itself is direct, and fairly easy. Proofs by contradiction are rarely
straightforward, even though they may be called ‘direct’.)

1 This approach leads to what I think is the ‘standard’ proof of P∨¬P. I think that proof stinks, but then I don’t really believe
in the ¬¬-E rule. There is a simpler proof which uses the theorem ¬(P∨Q)'¬P∧¬Q.

Using ItL Jape (third X edition) Page 48 October 1998

Appendix G: the ∀∀∀∀ rules

Jape can’t use precisely the syntax of the ItL notes for quantification: it requires a dot (full stop, period)
after the bound variable, and the body of the formula doesn’t need to be bracketed. Otherwise the
treatment is identical. You need to bracket the body of the formula if it isn’t a predicate or a negation, so
in Jape you write ∀x.(P(x)∧Q(x)), still with the extra dot.

Normally you will use the ∀ elimination rule to make a forward step from an assumption (or from a
conclusion already proved by a forward step) and you will use the ∀ introduction rule to make a
backward step from a conclusion. In either case the assumption or conclusion should be of the form
∀ variable . something, and in either case the effect is to simplify the assumption or conclusion you
selected.

You usually give an argument to the elimination rule by text-selecting some variable which has been
introduced by ∀ introduction or % elimination; it isn’t necessary or helpful to give an argument to the
introduction rule.

The order you use the quantification rules is important. The ∀ introduction rule, like the % elimination
rule, introduces variables into the proof; the ∀ elimination rule and the % introduction rule make use of
those variables. So you usually use ∀ introduction, and the % elimination, as early as possible. See the
discussion of scope boxing above, if you haven’t already read it.

Because the introduction rule, used backwards, introduces a variable into the proof and you have to use
such a variable in the elimination rule, in this appendix we discuss the introduction rule first.

Backward reasoning using ∀-I

The ∀-I rule in box form is

i

j

k I i j

c

A c

x A x

:

:

:

var

...

() ...
...

. ()∀ → −∀ − −

and in tree form

var

. ()
()

c

A c

x A x
c I

[]

()
∀

∀ −

M

FRESH

where A is some predicate, and c is a ‘fresh individual’ – a name you haven’t made any assumptions
about outside the box or outside the tree which proves A(c). (The proviso that c should be fresh actually
appears in the box form of the rule as well, but there isn’t any space on the diagram to put it.)

The name c is arbitrary, and in general you don’t care what name you use, provided it isn’t one that pops
up in an assumption. Jape will invent such a name for you – not an unknown, but a proper variable name.
If you really want to use a name of your own choice, you can give the rule an argument and Jape will
check that it doesn’t appear free in any of the assumptions – if it does, then it won’t let you apply the rule.

Because of the scope boxing, which restricts the area of the proof in which the variable c can be used, you
normally use the ∀∀∀∀ introduction rule as early as possible in a proof, so that the variable can be used in
later steps. If you try to break the scope rules, Jape will certainly stop you.

Using ItL Jape (third X edition) Page 49 October 1998

For example, in

premiseP(c): 1

∀x.(P(x)→Q(x))
. . .

: 2

you can simply apply ∀-I, and Jape will introduce the name c1 – not c because it is already in use –
without being prompted:

premiseP(c): 1

assumptionvar c1: 2

(P(c1)→Q(c1))
. . .

: 3

 2-3∀-I∀x.(P(x)→Q(x)): 4

It looks as if Jape has made a bad choice: if it had chosen c instead, you would have been able to go
ahead and complete the proof. But it won’t work: the name introduced in the scope box has to be new to
the proof, or at least it mustn’t appear in the assumptions which apply in the ∀-I step. If you backtrack,
text-select c in the top line

premiseP(): 1

∀x.(P(x)→Q(x))
. . .

: 2

c

and then try to apply the ∀-I rule, Jape won’t let you. It says that the ∀-I rule is not applicable, because a
proviso has been violated: the argument you have chosen does appear free in the assumption on line 1,
and so you can’t use the rule with that argument. For that reason, you can’t prove this conjecture in the
Natural Deduction system.

A trick with bound variables and scope boxing

Jape’s scope box restriction, and its FRESH proviso, apply to free occurrences of the variable c. You can
trick it, sometimes, by supplying an argument which is the bound variable itself. \For example, in proving

premise%x.∀y.P(x,y): 1

∀y.%x.P(x,y)
. . .

: 2

you can text-select y

premise%x.∀y.P(x,y): 1

∀ .%x.P(x,y)
. . .

: 2 y

and then apply ∀-I:

premise%x.∀y.P(x,y): 1

assumptionvar y: 2

%x.P(x,y)
. . .

: 3

 2-3∀-I∀y.%x.P(x,y): 4

Using ItL Jape (third X edition) Page 50 October 1998

Variable y does appear in the premise – twice – but it doesn’t appear free – one is a binding occurrence
and the other is a bound occurrence.

The trick is little more than an interesting curiosity – it’s just as easy to prove the theorem without it.

Forward reasoning using ∀-E

Be careful when you use this rule that you have already done all the ∀ introductions that you want to:
otherwise your proof can be blocked.

The ∀-E rule in box form is

i

j

k

x A x

inscope c

A c E i j

:

:

:

. ...

...

...

...

,

∀ ()

() ∀ −

and in tree form

M M
∀

∀ −
x A x c

A c
E

. () inscope
()

From a proof of ∀ x.Ax), make a proof of A(c), where A is some predicate and c is a variable which is in
scope – that is, var c must appear in the assumption line of a box enclosing lines j to k. (In the tree
version, var c must appear in the hypotheses used to prove A c().) The inscope line is a ‘side condition’,
which is hidden if it is proved and displayed if it is not. If you use the rule as recommended, you won’t
see the side condition.

Forward reasoning with the rule is straightforward: choose an assumption (or a conclusion proved on a
forward step) which is a universal quantification, give an argument by text-selection, and apply the ∀-E
rule. For example, in

premises∀x.(P(x)→Q(x)), P(c), var c: 1

Q(c)
. . .

: 2

select the third premise, text-select one of the cs:

premises∀x.(P(x)→Q(x)), P(c), var : 1

Q(c)
. . .

: 2

c

and apply ∀-E:

premises∀x.(P(x)→Q(x)), P(c), var c: 1

 1.3∀-E(P(c)→Q(c)): 2

Q(c)
. . .

: 3

Using ItL Jape (third X edition) Page 51 October 1998

If you make the step without supplying an argument, Jape will use an unknown and show you the side
condition of the rule:

premises∀x.(P(x)→Q(x)), P(c), var c: 1

_c1 inscope
. . .

: 2

 1.3,2∀-E(P(_c1)→Q(_c1)): 3

Q(c)
. . .

: 4

It’s pretty obvious that in this proof that the unknown _c1 should be c, both because that is the only
variable available and because Q(_c1) will eventually have to unify with Q(c). In this case, then, the
problem will resolve itself eventually and the side condition will disappear, but I recommend that you
always provide an argument when applying the rule, just to avoid ugly and confusing displays like this
one. Perhaps Jape should insist that you supply an argument ...

Backward reasoning with ∀-E

It is possible to use the ∀-E rule backwards to prove an arbitrary conclusion. If you provide the argument
B then the result may be comprehensible. If not, maybe not, and arbitrary amounts of nonsense revealing
Jape’s internal workings may appear in the session window. I give no examples here.

Using ItL Jape (third X edition) Page 52 October 1998

Appendix H: the %%%% rules

Jape can’t use precisely the syntax of the ItL notes for quantification: it requires a dot (full stop, period)
after the bound variable. Otherwise the treatment is identical. You need to bracket the body of the
formula if it isn’t a predicate or a negation, so in Jape you write %x.(P(x)∧Q(x)), still with the extra dot.

Normally you will use the % elimination rule to make a forward step from an assumption (or from a
conclusion already proved by a forward step) and you will use the % introduction rule to make a backward
step from a conclusion. In either case the assumption or conclusion should be of the form
∃ variable . something, and in either case the effect is to simplify the assumption or conclusion you
selected.

You usually give an argument to the introduction rule by text-selecting some variable which has been
introduced by % elimination or ∀ introduction; it isn’t necessary or helpful to give an argument to the
elimination rule.

The order you use the quantification rules is important. The ∀ introduction rule, like the % elimination
rule, introduces variables into the proof; the ∀ elimination rule and the % introduction rule make use of
those variables. So you usually use ∀ introduction, and the % elimination, as early as possible. See the
discussion of scope boxing above, if you haven’t already read it.

Forward reasoning using %-E

The %-E rule is in box form

i

j

k

l

x A x

c A c

B

B E i j k

:

:

:

assumptions

:

. () ...
...

var ,

...

...
...

, ..

∃

()

∃ −

and in tree form

[var , ()]

. ()
()

c F c

x F x A

A
c E

M M
∃

∃ −FRESH

where A is some predicate, and c is a ‘fresh individual’ – a name you haven’t made any assumptions
about outside the box or outside the tree which proves A(c). (The proviso that c should be fresh actually
appears in the box form of the rule as well, but there isn’t any space on the diagram to put it.)

The name c is arbitrary, and in general you don’t care what name you use, provided it isn’t one that pops
up in an assumption. Jape will invent such a name for you – not an unknown, but a proper variable name.
If you really want to use a name of your own choice, you can give the rule an argument and Jape will
check that it doesn’t appear free in any of the assumptions – if it does, then it won’t let you apply the rule.

Because of the scope boxing, which restricts the area of the proof in which the variable c can be used, you
normally use the %%%% introduction rule as early as possible in a proof, so that the variable can be used in
later steps. If you try to break the scope rules, Jape will certainly stop you.

Using ItL Jape (third X edition) Page 53 October 1998

For example, in

premise%x.(P(x)∧Q(x)): 1

%x.P(x)∧%x.Q(x)
. . .

: 2

select the premise

premise%x.(P(x)∧Q(x)): 1

%x.P(x)∧%x.Q(x)
. . .

: 2

and apply %-E:

premise%x.(P(x)∧Q(x)): 1

assumptions(P(c)∧Q(c)), var c: 2

%x.P(x)∧%x.Q(x)
. . .

: 3

 1,2-3%-E%x.P(x)∧%x.Q(x): 4

Jape introduces the name c, substitutes it appropriately into the new assumptions, and shows the structure
of the new proof with a box.

It isn’t usually useful to give an argument to the rule, though occasionally it can produce results (see ‘A
trick with bound variables and scope boxing’ above).

Backward reasoning with %-I

Once you have introduced all the variables you need, it is safe to use % introduction backwards (and,
likewise, use ∀ elimination forwards). You normally provide an argument to say just what instance you
want to use: otherwise Jape will introduce an unknown and show you a nasty side condition.

The rule, where A is a predicate and c is a variable, is in box form

i

j

k I i j

A c

inscope c

x A x

:

:

: ,

() ...
...

...
...

. ()∃ ∃−

and in tree form

M M
A B B

x A x
I

() inscope
. ()∃

∃ −

From a proof of A(c) for some formula c you can make a proof of ∃ x.A(x), provided that c is in scope –
that is, there is a var c in the assumption line of a box enclosing lines j to k. (In the tree version, var c
must appear in the hypotheses available to prove ∃ ()x A x. .) The inscope line (or tree) is a ‘side condition’,
which is hidden if it is proved and displayed if it is not. If you use the rule as recommended, you won’t
see the side condition.

Using ItL Jape (third X edition) Page 54 October 1998

Forward reasoning with the rule is straightforward: choose a unproved conclusion which is an existential
quantification, give an argument by text-selection, and apply the ∀-E rule. For example, in

premise%x.∀y.P(x,y): 1

assumptionvar c: 2

assumptions∀y.P(c1,y), var c1: 3

%x.P(x,c)
. . .

: 4

 1,3-4%-E%x.P(x,c): 5

 2-5∀-I∀y.%x.P(x,y): 6

text-select c1

premise%x.∀y.P(x,y): 1

assumptionvar c: 2

assumptions∀y.P(c1,y), var : 3

%x.P(x,c)
. . .

: 4

 1,3-4%-E%x.P(x,c): 5

 2-5∀-I∀y.%x.P(x,y): 6

c1

and apply %-I:

premise%x.∀y.P(x,y): 1

assumptionvar c: 2

assumptions∀y.P(c1,y), var c1: 3

%x.P(x,c)
. . .

: 4

 1,3-4%-E%x.P(x,c): 5

 2-5∀-I∀y.%x.P(x,y): 6

If you can’t see which variable to choose, just apply the rule without an argument. Jape will use an
unknown and show you the side condition:

premise%x.∀y.P(x,y): 1

assumptionvar c: 2

assumptions∀y.P(c1,y), var c1: 3

P(_c2,c)
. . .

: 4

_c2 inscope
. . .

: 5

 4,5%-I%x.P(x,c): 6

 1,3-6%-E%x.P(x,c): 7

 2-7∀-I∀y.%x.P(x,y): 8

Using ItL Jape (third X edition) Page 55 October 1998

It’s not too bad to see that side condition if you really don’t know where the proof is heading. The next
step of ∀-E will introduce another unknown and side condition, if you don’t give it an argument (you first
have to select line 4 as well as the second assumption on line 3):

premise%x.∀y.P(x,y): 1

assumptionvar c: 2

assumptions∀y.P(c1,y), var c1: 3

_c3 inscope
. . .

: 4

 3.2,4∀-EP(c1,_c3): 5

P(_c2,c)
. . .

: 6

_c2 inscope
. . .

: 7

 6,7%-I%x.P(x,c): 8

 1,3-8%-E%x.P(x,c): 9

 2-9∀-I∀y.%x.P(x,y): 10

When you unify lines 5 and 6, either with hyp or with Unify, the side conditions are satisfied and the
proof is complete.

Backward reasoning with %-E

It is possible to use the %-E rule backwards to prove an arbitrary conclusion, but it’s very tricky and I
wouldn’t bother if I were you.

Using ItL Jape (third X edition) Page 56 October 1998

Appendix I: Internal secrets of Jape

Most users of ItL Jape won’t want to read this appendix. It’s included for those who are curious about the
internal workings of Jape, and both knowledgeable and strong-minded enough to take the truth.

There’s an extensive manual of over 100 pages available from the Jape ftp site
(ftp://ftp.dcs.qmw.ac.uk/programming/jape/index.html). This appendix gives just a taste, and it only
covers those matters that may actually affect your use of Jape..

Forward reasoning and trees

In box-and-line proofs a step on line i can make use of a step on any previous line provided that it isn’t
inside a box which line i is outside. Jape actually works with a tree, and makes ingenious use of the cut
rule of the sequent calculus to imitate forward reasoning.

When a rule has two antecedents, as for example the ∧-I rule does

M M
A B

A B
I

∧
∧ −

Jape’s trickery is exposed. In the box form of the proof

i

j

k I i j

A

B

A B

:

:

: ,

...
...

...
...

∧ ∧ −

the lines which are generated as part of the proof of A – that is, the lines of the first antecedent tree – can’t
be used in the proof of B.

For example, in

premiseP∧(Q∧R): 1

 1∧-E(L)P: 2

 1∧-E(R)(Q∧R): 3

 3∧-E(L)Q: 4

 2,4∧-I(P∧Q): 5

 1∧-E(R)(Q∧R): 6

 6∧-E(R)R: 7

 5,7∧-I(P∧Q)∧R: 8

Using ItL Jape (third X edition) Page 57 October 1998

it is impossible to use line 3 to prove line 7. You can see that this is so if you select line 7 in that proof:

premiseP∧(Q∧R): 1

 1∧-E(L) P: 2

 1∧-E(R) (Q∧R): 3

 3∧-E(L) Q: 4

 2,4∧-I (P∧Q): 5

 1∧-E(R)(Q∧R): 6

 6∧-E(R)R: 7

 5,7∧-I (P∧Q)∧R: 8

This is a real defect, not just a simple bug. Accessibility of lines depends on the way that the proof was
made, the order that its lines are developed. One day I hope to make a Jape which is better at imitating
box-and-line proofs like the ones that you make, and then I can delete this apology from the manual.

Predicate notation and substitution

Internally, Jape doesn’t really understand predicate notation like P(c) or Q(x,y). It uses instead a
‘substitution notation’ which is somewhat more general and more powerful. Most of the time you won’t
see the difference, but very occasionally it may surface in surprising ways.

For example, Jape translates the ∀-I rule into something like this:

i

j

k I i j

c

A x c

x A

:

:

:

var

...

\ ...

...

.

[]

∀ → −∀ − −

– from a proof of formula A in which every free occurrence of x is replaced by c, conclude ∀ x.A (with a
proviso that c is a fresh individual). If formula A is actually something like P x Q x() → ()(), in which
everything is either a predicate or the bound variable, then the substitution A x c\[] becomes

P c Q c() → ()() and the deception is perfect. If it is something like P Q x→ ()() , in which the name P isn’t
a predicate, then the result may be P x c Q c\[] → ()() and the secret has leaked out.

Provisos

The rules that Jape uses internally are all tree rules, not box-and-line rules. It also uses provisos to stop
rules being applied incorrectly. The proviso that it makes most use of is ‘x NOTIN A’, which means
‘variable x doesn’t appear free in formula A’. That proviso is automatically generated by the FRESH

proviso which is included, for example, in the ∀-I rule. That rule really reads, once Jape has translated it
from the natural deduction form:

Γ
Γ

,var \

.
(FRESH)

c A x c

x A
c I

[]
∀

∀ −

The symbol Γ matches all the assumptions in force at the line where the rule is applied. Suppose those
assumptions are H H Hn1 2, ,..., : then the proviso FRESH c translates into the provisos c HNOTIN 1,
c HNOTIN 2, ..., c HnNOTIN , c x ANOTIN .∀ . Most of those provisos are obviously satisfied, and Jape
throws them away. Occasionally there is one which isn’t.

If a proviso is violated, Jape won’t make the proof step – that’s what provisos are for, to stop invalid
steps. If the status of a proviso is unclear, neither obviously satisified nor clearly violated, Jape writes it
into the proviso pane and keeps an eye on it in future proof steps. That most often happens when there is

Using ItL Jape (third X edition) Page 58 October 1998

a proviso which includes an unknown, and it happened in an example above when rules were applied in
the wrong order.

In that example an application of ∀-E introduced an unknown into the proof:

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

_c inscope
. . .

: 3

 1,3∀-E(P(_c)→Q(_c)): 4

∀x.Q(x)
. . .

: 5

 2-5→-I∀x.P(x)→∀x.Q(x): 6

Then an application of ∀-I went through, but it left a proviso (shown here at the bottom left of the
illustration):

premise∀x.(P(x)→Q(x)): 1

assumption∀x.P(x): 2

_c inscope
. . .

: 3

 1,3∀-E(P(_c)→Q(_c)): 4

assumptionvar c1: 5

Q(c1)
. . .

: 6

 5-6∀-I∀x.Q(x): 7

 2-7→-I∀x.P(x)→∀x.Q(x): 8

c1 NOTIN _c

That proviso arises because line 4 can be used as an assumption during a proof of line 6. It’s outside the
scope box, so it’s necessary to apply a condition that whatever variable replaces _c1, it mustn’t be c. That
stops you, later on in the proof, from unifying _c1 and c, which is exactly as it should be no matter how
frustrating it might feel at the time.

Jape uses invisible NOTIN provisos to help it when pretending to use predicate notation – but that’s its
own private business and won’t affect what you do.

