
DDPPCCUUTTIILL PPrrooggrraammmmeerr’’ss
RReeffeerreennccee MMaannuuaall

TM

www.digi lent inc.com
 Revision: August 8, 2007 215 E Main Suite D | Pullman, WA 99163

(509) 334 6306 Voice and Fax

© Digilent, Inc. Doc: 576-000

Introduction

The Digilent Port Communications Utility (DPCUTIL) Dynamic Link Library (DLL) provides an
Applications Programming Interface (API), allowing Digilent system boards to communicate with
applications software running under Microsoft Windows on a host computer.

When using DPCUTIL DLL a Digilent Communication Module is required to create a communications
channel between the host PC and a system board. Digilent currently provides communications
modules supporting Ethernet, USB 2.0, and Serial RS-232 communication protocols.

The DPCUTIL API has functions for controlling and communicating with the scan chain of JTAG
devices connected to a Digilent board. The DPCUTIL API can also send and receive data to and from
the user logic configured into the gate array on a connected Digilent board.

The JTAG scan chain manipulation functions are primarily for configuration of the programmable logic
devices in the scan chain. The JTAG scan chain manipulation functions can also be used to access
to the boundary scan registers in the device scan chain for loading of test vectors, the read back of
test results, and other manipulations of the JTAG scan chain supported by the attached devices.

The DPCUTIL data transfer functions require that the gate array configuration contain a parallel port
interface compatible with the Digilent Parallel Interface Module specification and reference design,
available on the Digilent web site, at www.digilentinc.com. This interface allows the user to define a
set of addressable registers that can be accessed by the DPCUTIL data transfer API functions. The
data transfer API functions allow for writing or reading a single register, writing or reading sets of
registers, or reading or writing a stream of data into or out of a single register.

The DPCUTIL DLL was created and compiled using the Microsoft C++ compiler in Visual Studio 6.
The API is defined as a set of C callable functions, and can be used with programs written in either C
or C++. It is also possible to write programs using Microsoft Visual BASIC to access the DPCUTIL API
functions, but Digilent does not provide technical support for this use.

Overview

The Components

In order to use any of the DPCUTIL API functions, a program source module must include the
following header files in this order:
#include <windows.h>
#include “dpcdefs.h”
#include “dpcutil.h”

These header files should be placed in a directory visible to the compiler. The files should include a
path for the development environment that causes the compiler to search the appropriate directory at
compilation time.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 2 of 2

The program must be linked with the dpcutil.lib library. This establishes the dynamic link references
between the application program and the DPCUTIL dynamic link library. This library file should be
placed in a directory visible to the linker and the linker library search path set in the development
environment to cause the linker to search the appropriate directory at program link time.

The DPCUTIL Dynamic Link Library (dpcutil.dll) must be in a directory that is searched by the
operating system at program run time. The DLL file should either be placed in the same directory as
the application program, or in a directory that is listed on the operating system PATH environment
variable. When a program is executed, the operating system will look for dynamic link libraries in the
directory where the program executable resides or in any directory listed on the system PATH
environment variable.

DPCUTIL API Functions

Most DPCUTIL API calls are formed into transactions. These transactions are put into a queue and
processed on a first-in-first-out basis (FIFO). A function can either return upon completion (blocking)
or return immediately and be processed on another thread (non-blocking). A transaction entered into
the queue is assigned a TRID (Transaction ID), a value used to distinguish between transactions.

DPCUTIL API functions that require an established connection with a communications device must be
passed a HIF (interface handle) to specify the connection to use. This handle is acquired by calling
DpcOpenJtag or DpcOpenData.

Most DPCUTIL API functions require a pointer to an error code of type ERC. This variable will hold
the error code for a completed transaction.

Most JTAG and Data Transfer functions have a pointer of type TRID as a parameter. If this
parameter is set to NULL, the function will block and not return until the transaction has completed.
Otherwise, if a non-null TRID pointer is sent, the function will return immediately and the transaction
will be processed on a different thread. Since none of the data sent to DPCUTIL is copied, all data
sent to a non-blocking API call must remain intact and unchanged until the transaction is complete.
Calling the DpcWaitForTransaction function and sending it the TRID of a particular transaction will
allow an application to wait for the completion of the transaction. Sending a TRID of NULL to
DpcWaitForTransaction will force a wait on all transactions in the queue.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 3 of 3

Initializing DPCUTIL

Before any of the DPCUTIL API functions can be used, the DpcInit function must be called. If it
returns false, an error occurred while attaching and initializing the DLL. The application must not call
any other DPCUTIL API functions if DpcInit returns false.

The Device Table

All communication modules accessed through DPCUTIL are kept in a table called the device table.
All details needed to connect to a device are stored in this table. Each device in the table is assigned
a name and DPCUTIL uses this name (and not the index) to access the device. The device table can
only be modified through a dialog box included in the DPCUTIL DLL. Calling the
DvmgStartConfigureDevices function will open this dialog box.

To get the total number of devices in the device table, call the DvmgGetDevCount function. To get
the name of a device with a given index, call the DvmgGetDevName function. A device table always
has a default device in it. The index of this device can be obtained by calling DvmgGetDefaultDev. If
there are no devices in the device table, DvmgGetDefaultDev will return –1.

Using the DPCUTIL Data Transfer Functions

The data transfer functions in DPCUTIL rely on the logic loaded into the FPGA. This logic must
reserve byte-sized registers used for reading and/or writing. Through these registers, the DPCUTIL
data transfer functions will communicate with the FPGA through a connected communications
module.

 The following is a simple list of all DPCUTIL API functions (with return types) available for public use:

BOOL DpcInit BOOL DpcPutTmsTdiBits
VOID DpcTerm BOOL DpcGetTdoBits
BOOL DpcGetDpcVersion BOOL DpcOpenData
BOOL DpcStartNotify BOOL DpcCloseData
BOOL DpcEndNotify BOOL DpcPutReg
BOOL DpcQueryConfigStatus BOOL DpcGetReg
BOOL DpcPendingTransactions BOOL DpcPutRegSet
BOOL DpcAbortConfigTransaction BOOL DpcGetRegSet
BOOL DpcClearConfigStatus BOOL DpcPutRegRepeat
BOOL DpcWaitForTransaction BOOL DpcGetRegRepeat
ERC DpcGetFirstError VOID DvmgStartConfigureDevices
BOOL DpcOpenJtag int DvmgGetDevCount
BOOL DpcCloseJtag BOOL DvmgGetDevName
BOOL DpcEnableJtag BOOL DvmgGetDevType
BOOL DpcDisableJtag int DvmgGetDefaultDev
BOOL DpcSetTmsTdiTck int DvmgGetHDVC
BOOL DpcPutTdiBits

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 4 of 4

As mentioned before, the data transfer functions allow for:

1. a register be written to or read from.
2. many registers can be written to or read from as a single transaction.
3. a stream of bytes to be sequentially written to or read from a single register.

In this way, an application can communicate with an FPGA through DPCUTIL. For a more detailed
explanation of the interface between the FPGA and communications module, see Digilent Parallel
Interface Module Reference Manual.

Before using any data transfer functions, the application must connect to a communication device
using DpcOpenData. The first parameter is a pointer to an interface handle (hif). If the function
returns successfully, this handle will be used to connect to the device in all proceeding data transfer
calls. The device is specified by its assigned name in the device table and passed as the second
parameter in the DpcOpenData function.

After this API function is called, any of the data transfer functions can be used. When finished, close
the device using DpcCloseData.

About JTAG

Most logic memory devices are programmable. Many chip manufacturers accomplish this by
conforming these devices to a standard specified in IEEE 1149.1. This is the Joint Test Action Group,
or JTAG. A device is said to be JTAG compliant if it contains a JTAG TAP controller and the following
pins: TDI, TDO, TMS, and TCK.

TDI inputs data into the JTAG TAP controller, and TDO provides outputs. TMS is used to set the
JTAG TAP controller to a specified state, and TCK is used to clock bits into and out of the JTAG TAP
controller. After being set to the proper state by TMS, bits are shifted into the TAP controller on TDI
while bits are shifted out on TDO. Any FPGA, CPLD, or PROM that is JTAG compliant can be
erased, programmed, and verified using this standard.

The TDI and TDO pins of several JTAG devices can be connected together to form a chain. This is
called a JTAG scan chain. In order to program a device in the JTAG scan chain, all other devices are
first set to BYPASS, meaning that they are ignored and not to be configured. Then a series of bits are
shifted into the scan chain through TDI to configure the device.

For more information on JTAG functionality and programming, read the IEEE 1149.1 specification and
Xilinx app notes on device programming.

Using the DPCUTIL JTAG Functions

Before using any JTAG functions, DpcOpenJtag must be called to connect to a communication
device. The first parameter is a HANDLE pointer. If the function returns successfully, this handle will
be used to connect to the device in all proceeding JTAG calls. The device is specified by name and
passed as the second parameter in the DpcOpenJtag function.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 5 of 5

DpcEnableJtag must be called directly after DpcOpenJtag. This enables the driving of JTAG signals
on the communication device.

After these two API functions are called, any of the JTAG functions can be used. When finished,
disable the JTAG interface and close the device using DpcDisableJtag and DpcCloseJtag.

Multiple Instances of DPCUTIL (for Win32 Applications)

More than one application can use the DPCUTIL.DLL at once. This presents the possibility of the
device table being changed leaving other instances with outdated information about it. To remedy
this, an application should register itself with the DpcStartNotify function. Whenever a modification is
made to the device table, a registered application will be notified of the change via a message sent to
the provided window handle. The application can then reload all needed information about the device
table. The following is a description of the message parameters to the window procedure:

To stop notification messages, an application should call the DpcEndNotify function.

Description of Data Types

TRID
16 bit data type that holds the ID of a transaction (used for non-blocking calls)

ERC
32 bit (signed) data type. Holds error code for a finished transaction

TRT
32 bit (signed) data type. Holds code for transaction type

STS
32 bit (signed) data type. Holds code for transaction status

DVCT
32 bit (signed) data type. Holds code for communications interface type.

HWND user specified window handle
MSG WM_COMMAND
WPARAM
 low order word
 high order word

user specified identifier.
0

LPARAM 0

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 6 of 6

TRS
Structure that contains the following information about a transaction:

Typedef struct tagTRS {
TRT trt; /* transaction type */
TRID trid; /* transaction ID */
STS sts; /* status of transaction */
ERC erc; /* error code for transaction */
}TRS;

Description of API Calls

API Startup/Cleanup Calls

BOOL DpcInit(ERC * perc)

Parameters
perc - pointer to store error code

Return Values
Returns true if DLL instance is properly initialized

Description
This function performs startup initialization of the DLL. It must be called before any of the
other API calls can be used.

void DpcTerm()

Parameters
none

Return Values
none

Description
This function must be called to clean up resources when the application is done using the DLL.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 7 of 7

API Transaction and Utility Calls

BOOL DpcStartNotify (HWND hwnd, WORD idNotify, ERC *perc)

Parameters
hwnd - handle of window that is to be sent notification messages
idNotify - message identifier to be sent upon device table change
perc - pointer to store error code

Return Values
Returns true if successful. Returns false otherwise.

Description
Used to register a window handle for being notified of device table changes. When a change
(deletion, addition, or modification) occurs in the device table, all registered windows are sent
their specified messages.

BOOL DpcEndNotify (HWND hwnd, ERC *perc)

Parameters
hwnd - handle of window that is to no longer be sent notification messages
perc - pointer to store error code

Return Values
Returns true if successful. Returns false otherwise.

Description
De-registers a specified window handle from being notified of device table changes

BOOL DpcPendingTransactions(HANDLE hif, int * pctran, ERC *perc)

Parameters
hif - handle to JTAG interface
pctran - pointer to store number of pending transactions
perc - pointer to store error code

Return Values
Returns true if any non-blocking transactions are pending.

Description
Used to check if non-blocking transactions are still pending. If the function returns true, the
number of non-blocking, pending transactions is returned by reference in pctran.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 8 of 8

BOOL DpcQueryConfigStatus(HANDLE hif, TRID trid, TRS * ptrs, ERC * perc)

Parameters
hif - handle to JTAG interface
trid - transaction ID to query. If 0, then the status of the oldest transaction is

queried.
ptrs - pointer to store information about transaction
perc - pointer to store error code

Return Values
Returns true if transaction ID is found. Returns false otherwise.

Description
Used to check a specified transaction’s status. If the transaction is complete, it will be
removed from the status queue and subsequent calls to DpcQueryConfigStatus with the same
trid will fail. If the transaction is not complete, its information will be returned by reference in a
TRS structure.

BOOL DpcAbortConfigTransaction(HANDLE hif, TRID trid, ERC * perc)

Parameters
hif - handle to JTAG interface
trid - transaction ID to abort. If 0, then abort ALL transactions
perc - pointer to store error code

Return Values
Returns true if successful. Returns false otherwise.

Description
Aborts a specified transaction or all transactions. After a transaction is aborted, it will remain
in the status queue until read out with DpcQueryConfigStatus or DpcClearConfigStatus. Not
all transactions will abort immediately, so DpcQuery ConfigStatus should be called afterward
to make sure that the transaction has been terminated.

BOOL DpcClearConfigStatus(HANDLE hif, TRID trid, ERC * perc)

Parameters
hif - handle to JTAG interface
trid - transaction ID to clear from status queue. If 0, then clear all completed

transactions.
perc - pointer to store error code

Return Values
Returns true if successful. Returns false otherwise.

Description
Clears completed transactions from the status queue. If the trid of a specific transaction is
sent, then that transaction will be cleared if completed. If the trid is set as 0, then all
completed transactions will be cleared.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 9 of 9

BOOL DpcWaitForTransaction(HANDLE hif, TRID trid, ERC * perc)

Parameters
hif - handle to JTAG interface
trid - transaction ID to wait on. If 0, then wait for all transactions to complete.
perc - pointer to store error code

Return Values
Returns true if successful. Returns false otherwise.

Description
Wait indefinitely on a transaction if its trid is specified. Wait for all transactions to complete if
trid is 0. This indefinite block can be broken if the transaction being waited on is aborted.

ERC DpcGetFirstError(HANDLE hif)

Parameters
hif - handle to JTAG interface

Return Values
Returns the first error code encountered in the status queue.

Description
Searches through the status queue for the first transaction with an error code set. Returns the
error code ercNoError if no error codes are found.

BOOL DpcGetDpcVersion (char * szVersion, ERC *perc)

Parameters
szVersion - string that will store the current version of dpcutil.dll
perc - pointer to store error code

Return Values
Returns true if the version string is successfully retrieved. Returns false otherwise.

Description
Stores the version string of dpcutil.dll into the given szVersion pointer.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 10 of 10

API JTAG Manipulation Calls

BOOL DpcOpenJtag(HANDLE * phif, char * szdvc, ERC * perc, TRID * ptrid)

Parameters
phif - pointer to store opened interface handle
szdvc - name of device to open
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Opens the JTAG interface for access. No other JTAG configuration transactions can be used
until a communications device has been opened and enabled (enabling a JTAG interface is
performed by calling the DpcEnableJtag API function. The communications device is specified
by the name assigned to it in the device table and this name is placed in szdvc. The handle to
the JTAG interface is returned by reference in phif.

BOOL DpcCloseJtag(HANDLE hif, ERC * perc)

Parameters
hif - handle to JTAG interface
perc - pointer to store error code

Return Values
Returns true if successful. Returns false otherwise.

Description
Releases the JTAG interface specified by hif and closes the communications module.

BOOL DpcEnableJtag(HANDLE hif, ERC * perc, TRID * ptrid)

Parameters
hif - handle to JTAG interface
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Enables the driving of JTAG signals. Must be called after FOpenJtag is called. After the
JTAG signals have been enabled on the communications module, the JTAG manipulation
functions in DPCUTIL can be used.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 11 of 11

BOOL DpcDisableJtag(HANDLE hif, ERC * perc, TRID * ptrid)

Parameters
hif - handle to JTAG interface
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Disables driving of JTAG signals. Must be called before FCloseJtag is called.

BOOL DpcSetTmsTdiTck(HANDLE hif, BOOL fTms, BOOL fTdi, BOOL fTck, ERC * perc, TRID *
ptrid)

Parameters
hif - handle to JTAG interface
fTms - value of TMS pin (true = 1, false = 0)
fTdi - value of TDI pin (true = 1, false = 0)
fTck - value of TCK pin (true = 1, false = 0)
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Sets the JTAG lines TMS, TDI, and TCK to a specified state.

BOOL DpcPutTdiBits(HANDLE hif, int cbit, BYTE * rgbSnd, BOOL bitTms, BOOL fReturnTdo,
BYTE * rgbRcv, ERC * perc, TRID * ptrid)

Parameters
hif - handle to JTAG interface
cbit - number of TDI bits to clock into the JTAG TAP controller
rgbSnd - buffer that holds TDI values. Bits are shifted in sequentially starting at

the first element in the BYTE array, from LSB to MSB.
bitTms - value the TMS pin will be held at while the rgbSnd bits are shifted in

(true = 1, false = 0)
fReturnTdo - specifies if bits from TDO should be returned
rgbRcv - (optional) holds TDO bits. Only used if fReturnTdo is true.
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 12 of 12

rgbSend[0]
TDI 8 TDI 7 TDI 6 TDI 5 TDI 4 TDI 3 TDI 2 TDI 1

rgbSend[1]
TDI 16 TDI 15 TDI 14 TDI 13 TDI 12 TDI 11 TDI 10 TDI 9

Return Values
Returns true if successful. Returns false otherwise.

Description
Shifts a specified number of bits into TDI and (optionally) returns bits shifted out TDO.
RgbSend holds TDI bits. Each bit is shifted in sequentially, starting at the first element in the
array, from least significant bit to most significant bit. Below is an example of how the TDI bits
are placed in each byte of rgbSend.

If fReturnTdo is set to true, all bits shifted out are stored in rgbRcv Tdo. Each bit is shifted out
sequentially starting at the first element in the rgbRcv, from lowest significant bit to most
significant bit. TMS is held at the value specified by bitTms while bits are being shifted into
TDI.

BOOL DpcPutTmsTdiBits(HANDLE hif, int cbit, BYTE * rgbSnd, BOOL fReturnTdo, BYTE *
rgbRcv, ERC * perc, TRID * ptrid)

Parameters
hif - handle to JTAG interface
cbit - number of TMS and TDI bit pairs sent.
rgbSnd - buffer that holds TMS and TDI bit pairs.
fReturnTdo - specifies if bits from TDO should be returned
rgbRcv - (optional) holds shifted out TDO bits. Only used if fReturnTdo is true.
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.
Description
Shifts a specified number of bits into TMS and TDI and (optionally) returns bits shifted out of
TDO. RgbSend holds TMS and TDI bit pairs. Each bit pair is shifted in sequentially; starting
at the first element in the array, from least significant bit pair to most significant bit pair. In
each pair, the TMS value is the MSB and the TDI value is the LSB. Below is an example of
how the TMS/TDI bit pairs are placed in each byte of rgbSend.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 13 of 13

rgbSend[0]
TMS 4 TDI 4 TMS 3 TDI 3 TMS 2 TDI 2 TMS 1 TDI 1

rgbSend[1]

TMS 8 TDI 8 TMS 7 TDI 7 TMS 6 TDI 6 TMS 5 TDI 5

rgbRcv [0]
TDO 8 TDO 7 TDO 6 TDO 5 TDO 4 TDO 3 TDO 2 TDO 1

rgbRcv [1]
TDO 16 TDO

15
TDO
14

TDO
13

TDO
12

TDO
11

TDO
10

TDO 9

If fReturnTdo is set to true, all bits shifted out are stored in rgbRcv Tdo. Each bit is shifted out
sequentially starting at the first element in the rgbRcv, from lowest significant bit to most
significant bit.

BOOL DpcGetTdoBits(HANDLE hif, int cbits, BOOL bitTdi, BOOL bitTms, BYTE *rgbRcv, ERC
*perc, TRID *ptrid)

Parameters
hif - handle to JTAG interface
cbit - number of TMS and TDI bits to push onto the JTAG TAP controller
bitTdi - value TDI pin will be held at (true = 1, false = 0)
bitTms - value TMS pin will be held at (true = 1, false = 0)
rgbRcv - holds shifted out TDO bits.
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Shifts out and returns a specified number of bits from TDO. Each bit is shifted out sequentially
starting at the first element in the rgbRcv, from lowest significant bit to most significant bit.
Below is an example of how the TDO bits are placed in each byte of rgbSend.

TDI and TMS are held at the values specified in bitTdi and bitTms while bits are shifted out of
TDO.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 14 of 14

API Data Transfer Calls

BOOL DpcOpenData(HANDLE * phif, char * szdvc, ERC * perc, TRID * ptrid)

Parameters
phif - pointer to store handle to Data interface
szdvc - name of device to open
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Opens the data transfer interface for access. No other data transfer functions can be used
until a communications device has been opened. The communications device is specified by
the name assigned to it in the device table and this name is placed in szdvc. The handle to
the data transfer interface is returned by reference in phif.

BOOL DpcCloseData(HANDLE hif, ERC * perc)

Parameters

hif - handle to Data interface
perc - pointer to store error code

Return Values
Returns true if successful. Returns false otherwise.

Description
Releases the data transfer interface specified by hif and closes the communications module.

BOOL DpcPutReg(HANDLE hif, BYTE bAddr, BYTE bData, ERC * perc, TRID * ptrid)

Parameters
hif - handle to Data interface
bAddr - address of register to send data byte
bData - data byte to send to address
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Sends a single data byte to a register specified by its address.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 15 of 15

BOOL DpcGetReg(HANDLE hif, BYTE bAddr, BYTE * pbData, ERC * perc, TRID * ptrid)

Parameters
hif - handle to Data interface
bAddr - address of register to read Data byte
pbData - pointer to store data byte read
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Gets a single data byte from a register specified by its address.

BOOL DpcPutRegSet(HANDLE hif, BYTE * rgbAddr, BYTE * rgbData, int cbData, ERC * perc,
TRID * ptrid)

Parameters
Hif - handle to Data interface
rgbAddr - addresses of registers to write Data bytes
rgbData - buffer with data bytes to be sent
cbData - number of bytes to be sent
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Sends many data bytes to many specified addresses. RgbAddr is a buffer containing
addresses of registers. RgbData is a buffer containing data that will be sent to the
corresponding addresses. Each element in the rgbData buffer is written to the corresponding
address in the rgbAddr buffer. For example, the data byte in rgbData[0] is written to the
register address in rgbAddr[0], the data byte in rgbData[1] is written to the register address in
rgbAddr[1], etc.

BOOL DpcGetRegSet(HANDLE hif, BYTE * rgbAddr, BYTE * rgbData, int cbData, ERC * perc,
TRID * ptrid)

Parameters
hif - handle to Data interface
rgbAddr - addresses of registers to read Data bytes
rgbData - buffer to store data bytes read
cbData - number of bytes to be sent
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 16 of 16

Return Values
Returns true if successful. Returns false otherwise.

Description
Gets many data bytes from many specified addresses. RgbAddr is a buffer containing
addresses of registers. RgbData is a buffer that will contain data recieved from the registers
specified by the addresses in rgbAddr. Each element in the rgbData buffer is read from the
corresponding address in the rgbAddr buffer. For example, the data byte in the register
specified by the address in rgbAddr[0] is written to rgbData[0], the data byte in the register
specified by the address in rgbAddr[1] is written to rgbData[1], etc.

BOOL DpcPutRegRepeat(HANDLE hif, BYTE bAddr, BYTE * rgbData, int cbData, ERC * perc,
TRID * ptrid)

Parameters
hif - handle to Data interface
bAddr - address of register to send stream of data bytes
rgbData - buffer with data bytes to be sent to address
cbData - number of bytes to be sent
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Description
Sends a stream of data bytes to a single, specified register address. BAddr is a register
address that will be sent many bytes one at a time in sequential order. RgbData is a buffer
containing the data that will be sent to bAddr. The will be sent as quickly as the Digilent
Communications Interface Module will allow. The number of bytes to be sent to bAddr is
specified in cbData.

BOOL DpcGetRegRepeat (HANDLE hif, BYTE bAddr, BYTE * rgbData, int cbData, ERC * perc,
TRID * ptrid)

Parameters
hif - handle to Data interface
bAddr - address of register to send stream of data bytes
rgbData - buffer to store data bytes from address
cbData - number of bytes to be received from address
perc - pointer to store error code
ptrid - pointer to store transaction ID. If ptrid is NULL, this function will be

blocking.

Return Values
Returns true if successful. Returns false otherwise.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 17 of 17

Description
Gets a stream of data bytes from a single, specified register address. RgbData is a buffer that
will contain data read out of the register at address bAddr. The data is read as quickly as the
Digilent Communications Interface Module will allow. The number of bytes to be read out of
bAddr is specified in cbData.

API Device Manager Calls

void DvmgStartConfigureDevices(HWND hwnd, ERC *perc)

Parameters
hwnd - handle to parent window
perc - pointer to store error code

Return Values
none
Description
Opens the Device Table dialog box. This dialog box is used to add, remove, or modify
communication modules in the device table.

int DvmgGetDevCount(ERC *perc)

Parameters
perc - pointer to store error code

Return Values
Returns number of devices in the device table

Description
Gets the total number of devices in the device table.

BOOL DvmgGetDevName(int idvc, char * szdvcTemp, ERC*perc)

Parameters
idvc - index of device to query
szdvcTemp - string to store device name
perc - pointer to store error code

Return Values
Returns true if successful. Returns false otherwise.

Description
Gets the name of a device from its index into the device table

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 18 of 18

BOOL DvmgGetDevType(int idvc, DVCT * dvtp, ERC* perc)

Parameters
idvc - index of device to query
dvtp - pointer to store device type
perc - pointer to store error code

Return Values
Returns true if successful. Returns false otherwise.

Description
Gets the type of a particular device, given its index in the device table. The device type is
returned by reference in dvtp.

int DvmgGetDefaultDev(ERC *perc)

Parameters
perc - pointer to store error code

Return Values
Returns index of default device in table

Description
Gets the index of the default device in the device table

int DvmgGetHDVC (char* szdvc, ERC *perc)

Parameters
Szdvc - name of device
perc - pointer to store error code

Return Values
Returns index of default device in table

Description
Gets the index of a device given its name. If no device is found, the returned index is –1, and
an error code is set in perc.

Digilent, IncTM DPCUTIL Programmer’s Manual www.digilentinc.com

© Digilent, Inc. Page 19 of 19

The following are error codes of type ERC and used to specify transaction errors in DPCUTIL.

Error Code Value Description
ercNoError 0 No error occurred in transaction
ercInvParam 3004 Invalid parameter sent in API call
ercInvCmd 3005 Internal error. Please report occurrence as a bug
ercUnknown 3006 Internal error. Please report occurrence as a bug
ercNoMem 3009 Not enough memory to carry out transaction
ercNotInit 3102 Communication device not initialized
ercCantConnect 3103 Can’t connect to communication module
ercAlreadyConnect 3104 Already connected to communication device
ercSendError 3105 Error occurred while sending data to communication device
ercRcvError 3106 Error occurred while receiving data from communication device
ercAbort 3107 Error occurred while trying to abort transaction(s)
ercOutOfOrder 3109 Completion out of order
ercExtraData 3110 Too much data received from communication device
ercMissingData 3111 Nothing to send or data/address mismatched pairs
ercTridNotFound 3201 Unable to find matching TRID in transaction queue
ercNotComplete 3202 Transaction being cleared is not complete
ercNotConnected 3203 Not connected to communication device
ercWrongMode 3204 Connected in wrong mode (JTAG or data transfer)
ercWrongVersion 3205 Internal error. Please report occurrence as a bug
ercDvctableDne 3301 Device table doesn’t exist (an empty one has been created)
ercDvctableCorrupt 3302 All or part of the device table is corrupted
ercDvcDne 3303 Device does not exist in device table
ercDpcutilInitFail 3304 DpcInit API call failed
ercDvcTableOpen 3306 Communications devices dialog box already open.
ercRegError 3307 Error occurred while accessing the registry

STS

The following are status codes of type STS and used to specify the status of a transaction
stsNew 1 Transaction has not been processed
stsComplete 2 Transaction is complete

DVCT

The following are ID codes of type DVCT and used to specify types of communications devices
dvctEthernet 0 Ethernet device type
dvctUSB 1 USB device type
dvctSerial 2 Serial device type

Type/Error Codes

ERC

