
Accellera Standard OVL V1
Library Reference Manual

Version 1.6

March 17, 2006



STATEMENT OF USE OF ACCELLERA STANDARDS

Accellera Standards documents are developed within Accellera and the Technical Committees of Accellera Organization, Inc.
Accellera develops its standards through a consensus development process, approved by its members and board of directors, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily
members of Accellera and serve without compensation. While Accellera administers the process and establishes rules to promote
fairness in the consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any of the
information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or other damage, of any
nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use
of, or reliance upon this, or any other Accellera Standard document. By using an Accellera standard, you agree to defend, indemnify
and hold harmless Accellera and their directors, officers, employees and agents from and against all claims and expenses, including
attorneys’ fees, arising out of your use of an Accellera Standard.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any
express or implied warranty, including any implied warranty of merchantability or suitability for a specific purpose, or that the use of
the material contained herein is free from patent infringement. Accellera Standards documents are supplied ?AS IS.?

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or
provide other goods and services related to the scope of an Accellera Standard. Furthermore, the viewpoint expressed at the time a
standard is approved and issued is subject to change due to developments in the state of the art and comments received from users
of the standard. Every Accellera Standard is subjected to review periodically for revision and update. Users are cautioned to check to
determine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other services for, or on
behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any other person or entity to another. Any
person utilizing this, and any other Accellera Standards document, should rely upon the advice of a competent professional in
determining the exercise of reasonable care in any given circumstances.

Accellera may change the terms and conditions of this Statement of Use from time to time as we see fit and in our sole discretion.
Such changes will be effective immediately upon posting, and you agree to the posted changes by continuing your access to or use
of an Accellera Standard or any of its content in whatever form.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of Accellera, Accellera will initiate action to prepare
appropriate responses. Since Accellera Standards represent a consensus of concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, Accellera and the members of its
Technical Committees are not able to provide an instant response to interpretation requests except in those cases where the matter
has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership affiliation with
Accellera. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments. Comments on standards and requests for interpretations should be addressed to:

Accellera Organization, 1370 Trancas Street #163, Napa, CA 94558 USA
E-mail: interpret-request@lists.accellera.org

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent
rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection
therewith. Accellera shall not be responsible for identifying patents for which a license may be required by an Accellera standard or
for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks to indicate
compliance with the materials set forth herein.

Authorization to photocopy, redistribute, publish, create derivative works from, sub-license or charge others to access or use,
participate in the transfer or sale of, or directly or indirectly commercially exploit in whole or part of any Accellera standard for internal
or personal use must be granted by Accellera Organization, Inc., provided that permission is obtained from and any required fee is
paid to Accellera. To arrange for authorization please contact Lynn Horobin, Accellera, 1370 Trancas Street #163, Napa, CA 94558,
phone (707) 251-9977, e-mail lynnh@accellera.org.  Permission to photocopy portions of any individual standard for educational
classroom use can also be obtained from Accellera.



Overview of this standard

This section describes the purpose and organization of this standard, the Accellera Standard V1 Open Verification Library (Std. OVL)
libraries implemented in IEEE Std. 1364-1995 Verilog and SystemVerilog 3.1a, Accellera’s extensions to IEEE Std. 1364-2001
Verilog Hardware Description Language and Library Reference Manual (LRM)

Intent and scope of this document

The intent of this standard is to define Std. OVL accurately. Its primary audience is designers, integrators and verification engineers
to check for good/bad behavior, and provides a single and vendor-independent interface for design validation using simulation, semi-
formal and formal verification techniques. By using a single well-defined interface, the OVL bridges the gap between the different
types of verification, making more advanced verification tools and techniques available for non-expert users.

From time to time, it may become necessary to correct and/or clarify portions of this standard. Such corrections and clarifications may
be published in separate documents. Such documents modify this standard at the time of their publication and remain in effect until
superseded by subsequent documents or until the standard is officially revised.

ACKNOWLEDGEMENTS

These Accellera Standard OVL Libraries and Library Reference Manual (LRM) were specified and developed by experts from many
different fields, including design and verification engineers, Electronic Design Automation companies and members of the OVL VSVA
technical committee.

The following contributors were involved in the creation of previous versions of the OVL: Shalom Bresticker, Bryan Bullis, Ben Cohen,
Harry Foster, Himanshu Goel, Vijay Gupta, Brent Hayhoe, Richard Ho, Narayanan Krishnamurthy, David Lacey, Jim Lewis, Andrew
MacCormack, Erich Marschner, Paul Menchini, Torkil Oelgaard, Joseph Richards, Vinaya Singh, Sean Smith, Andy Tsay and others.

The OVL VSVA technical committee and chair reports to  Accellera TCC Chairman:

TCC Chairman Johny Srouji / IBM

The following individuals contributed to the creation, editing and review of the Accellera Standard OVL V1 Libraries and LRM

Eduard Cerny/Synopsys

Harry Foster/Jasper Design Automation

Dmitry Korchemny/Intel

Kenneth Elmkjær Larsen/Mentor Graphics (OVL-VSVA Chair)

David Lacey/Hewlett Packard

Uma Polisetti/Agilent

Ramesh Sathianathan/Mentor Graphics

Chris Shaw/Mentor Graphics

Sundaram Subramanian/Mentor Graphics

Manoj Kumar Thottasseri/Synopsys

Mike Turpin/ARM

Minor version 1.1 released June 2005
Minor version 1.1a released August 2005
Minor version 1.1b released August 2005
Minor version 1.1c released September 2005
Minor version 1.5 released December 2005
Minor version 1.6 released February 2006



CONTENTS
INTRODUCTION 6

About this Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Verilog Assertion Syntax Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

OVL B ASICS 9

OVL Assertion Checker Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
OVL Assertion Checker Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Checker Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Clock and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Checker Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Assertion Checks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Cover Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

OVL Use Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Setting the Implementation Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Enabling Assertion and Coverage Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Reporting Assertion Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Generating Synthesizable Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Checking of X and Z Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Backward Compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

OVL Verilog/SVA Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Library Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Library Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

OVL A SSERTION DATA SHEETS 25

assert_always  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
assert_always_on_edge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
assert_change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
assert_cycle_sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
assert_decrement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
assert_delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
assert_even_parity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
assert_fifo_index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
assert_frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
assert_handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
assert_implication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
assert_increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
assert_never  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Accellera OVL Standard V1 Library Reference Manual 4

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



assert_never_unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
assert_never_unknown_async  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
assert_next  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
assert_no_overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
assert_no_transition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
assert_no_underflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
assert_odd_parity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
assert_one_cold  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
assert_one_hot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
assert_proposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
assert_quiescent_state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
assert_range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
assert_time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
assert_transition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
assert_unchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
assert_width  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
assert_win_change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
assert_win_unchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
assert_window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
assert_zero_one_hot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

OVL D EFINES 108

Global Defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Internal Global Defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Defines Common to All Assertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Defines for Specific Assertions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Accellera OVL Standard V1 Library Reference Manual 5

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



INTRODUCTION
1
n.
ce for

p
d

ow

 to
the

.

Welcome to the Accellera standard Open Verification Library V1 (OVL). The OVL V
is composed of a set of assertion checkers that verify specific properties of a desig
These assertion checkers are instantiated in the design establishing a single interfa
design validation.

The OVL provides designers, integrators and verification engineers with a single,
vendor-independent interface for design validation using simulation, hardware
acceleration or emulation, formal verification and semi-/hybrid-/dynamic-formal
verification tools. By using a single, well defined, interface, the OVL bridges the ga
between different types of verification, making more advanced verification tools an
techniques available for non-expert users.

This document provides the reader with a set of data sheets that describe the
functionality of each assertion checker in the OVL V1, as well as examples that sh
how to embed these assertion checkers into a design.

About this Manual
It is assumed the reader is familiar with hardware description languages and
conventional simulation environments.

This document targets designers, integrators and verification engineers who intend
use the OVL in their verification flow and to tool developers interested in integrating
OVL in their products.

This document has the following chapters:

 ❏ OVL Basics

Fundamental information about the OVL library, including usage and examples

 ❏ OVL Assertion Data Sheets

Data sheet for each type of OVL assertion checker.

 ❏ OVL Defines

Information about the define values used in general and for configuring the
checkers.
Accellera OVL Standard V1 Library Reference Manual 6

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



Introduction Notational Conventions

ar

racters
Notational Conventions
The following textual conventions are used in this manual:

Syntax statements appear insans-serif typeface as shown here. In syntax statements, words in
italics are meta-variables. You must replace them with relevant literal values. Words in regul
(non-italic) sans-serif type are literals. Type them as they appear. Except for the following
meta-characters, regular characters in syntax statements are literals. The following meta-cha
have the given syntactical meanings.You do not type these characters.

Verilog Assertion Syntax Format

All Verilog assertion checkers defined by the Open Verification Library initiative observe the
following BNF format, defined in compliance with Verilog Module instantiation of the IEEE
Standard 1364-1995Verilog Hardware Description Language.

assertion_instantiation : : = assert_identifier
[ parameter_value_assignment ] module_instance ;

parameter_value_assignment : : =  # ( severity_level  [ , other parameter expressions ] ,
property_type , msg , coverage_level  )

module_instance : : = name_of_instance ( [ list_of_module_connections] )

name_of_instance : : = module_instance_identifier

list_of_module_connections : : = ordered_port_connection [ , ordered_port_connection ]
| named_port_connection [ ,  named_port_connection ]

ordered_port_connection : : =  [ expression ]

named_port_connection : : =  . port_identifier ( [  expression ] )

assert_identifier : : = assert_ type_identifier

type_identifier : : = identifier

emphasis Italics in plain text are used for two purposes: (1) titles of manual chapters and
appendixes, and (2) terminology used inside defining sentences.

variable Italics in sans-serif text indicate a meta-variable. You must replace the
meta-variable with a literal value when you use the associated statement.

literal Regular sans-serif text indicates literal words used in syntax statements or in
output.

[  ] Square brackets indicate an optional entry.
Accellera OVL Standard V1 Library Reference Manual 7

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



Introduction References

05.
References
The following is a list of resources related to design verification and assertion checkers.

Bening, L. and Foster, H.,Principles of Verifiable RTL Design, a Functional Coding Style
Supporting Verification Processes in Verilog, 2nd Ed., Kluwer Academic Publishers, 2001.

Bergeron, J.,Writing Testbenches: Functional Verification of HDL Models, Kluwer Academic
Publishers, 2000.

CheckerWareDataBook, Release 2.3, 0-In Functional Verification Group, Mentor Graphics, 20

Assertions in Simulation User Guide, Release 2.3, 0-In Functional Verification Group, Mentor
Graphics, 2005.

Formal Verification User Guide, Release 2.3, 0-In Functional Verification Group, Mentor
Graphics, 2005.
Accellera OVL Standard V1 Library Reference Manual 8

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL B ASICS
 of a
le

to
e or

rty

ock
r

jor or

.

of a
The OVL is composed of a set of assertion checkers that verify specific properties
design. These assertion checkers are instantiated in the design establishing a sing
interface for design validation.

OVL assertion checkers are instances of modules whose purpose in the design is 
guarantee that some conditions hold true. Assertion checkers are composed of on
more properties, a message, a severity and coverage.

 ❏ Properties are design attributes that are being verified by an assertion. A prope
can be classified as a combinational or temporal property.

A combinational property defines relations between signals during the same cl
cycle while a temporal property describes the relation between the signals ove
several (possibly infinitely many) cycles.

 ❏ Message is the string that is displayed in the case of an assertion failure.

 ❏ Severity represents whether the error captured by the assertion library is a ma
minor problem.

 ❏ Coverage consists of one or more flags that indicate whether or not specific
corner-case events occur.

Assertion checkers benefit users by:

 ❏ Testing internal points of the design, thus increasing observability of the design

 ❏ Simplifying the diagnosis and detection of bugs by constraining the occurrence
bug to the assertion checker being checked.

 ❏ Allowing designers to use the same assertions for both simulation and formal
verification.
Accellera OVL Standard V1 Library Reference Manual 9

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Assertion Checker Implementation

ease

rface

ptions

r may
tely
ay

ses,
rtion

ded to a
n and

mum
ting
ge. In
 small.
OVL Assertion Checker Implementation
Assertion checkers address design verification concerns and can be used as follows to incr
design confidence:

 ❏ Combine assertion checkers to increase the coverage of the design (for example, in inte
circuits and corner cases).

 ❏ Include assertion checkers when a module has an external interface. In this case, assum
on the correct input and output behavior should be guarded and verified.

 ❏ Include assertion checkers when interfacing with third party modules, since the designe
not be familiar with the module description (as in the case of IP cores), or may not comple
understand the module. In these cases, guarding the module with assertion checkers m
prevent incorrect use of the module.

Usually there is a specific assertion checker suited to cover a potential problem. In other ca
even though a specific assertion checker might not exist, a combination of two or three asse
checkers can provide the desired coverage. The number of actual assertions that must be ad
specific design may vary from a few to thousands, depending on the complexity of the desig
the complexity of the properties that must be checked.

Writing assertion checkers for a given design requires careful analysis and planning for maxi
efficiency. While writing too few assertions might not increase the coverage on a design, wri
too many assertions may increase verification time, sometimes without increasing the covera
most cases, however, the runtime penalty incurred by adding assertion checkers is relatively

OVL Assertion Checker Characteristics

Checker Class

OVL assertion checkers are partitioned into the following checker classes:

 ❏ Combinational assertions — behavior checked with combinational logic.

 ❏ Single-cycle assertions — behavior checked in the current cycle.

 ❏ 2-cycle assertions — behavior checked for transitions from the current cycle to the next.

 ❏ n-cycle assertions — behavior checked for transitions over a fixed number of cycles.

 ❏ Event-bounded assertions — behavior is checked between two events.
Accellera OVL Standard V1 Library Reference Manual 10

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Assertion Checker Characteristics

g data

me
e

es the
Clock and Reset

All edge-triggered assertion checkers have a clock port namedclk. All sampling and assertion
checking of these checkers is performed on the rising-edge ofclk. All checkers have an active-low
reset port namedreset_n. Reset on all edge-triggered assertion checkers is active-low, and is
synchronous toclk. The reset assignments of all assertion checkers can be overridden and
controlled by the following global variable:

Checker Parameters

Each OVL assertion checker has its own set of parameters as described in its correspondin
sheet. The following parameters are common to all checkers.

severity_level

The severity level determines how to handle an assertion violation. Possible values are:

If severity_level is not one of these values, the checker issues the following message:
I l l e g a l  o p t i o n  u s e d  i n  p a r a m e t e r  ’ s e v e r i t y _ l e v e l ’

property_type

The property type determines whether to use the assertion as an assert property or an assu
property (for example, a property that a formal tool uses to determine legal stimulii). Possibl
values are:

If property_type is not one of these values, an assertion violation occurs and the checker issu
following message:

I l l e g a l  o p t i o n  u s e d  i n  p a r a m e t e r  ’ p r o p e r t y _ t y p e ’

msg

The default message issued when an assertion fails is “VIOLATION”. Themsg parameter changes
the message for the checker.

‘OVL_GLOBAL_RESET=
reset_signal

Overrides the reset_n port assignments of all assertion checkers
with the specified global reset signal. Default: each checker’s reset
is specified by the reset_n port.

‘OVL_FATAL Runtime fatal error.

‘OVL_ERROR (default) Runtime error.

‘OVL_WARNING Runtime warning.

‘OVL_INFO No improper design functionality.

‘OVL_ASSERT (default) Assert property.

‘OVL_ASSUME Assume property.
Accellera OVL Standard V1 Library Reference Manual 11

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Assertion Checker Characteristics

e

s the

cified,
y of
ailure
type

res:

r (and

ows
coverage_level

The coverage level is whether or not to enable coverage monitoring for the checker. Possibl
values are:

If coverage_level is not one of these values, an assertion violation occurs and the checker issue
following message:

I l l e g a l  o p t i o n  u s e d  i n  p a r a m e t e r  ’ c o v e r a g e _ l e v e l ’

For future enhancement, the following coverage levels are reserved:

Assertion Checks

Each assertion checker verifies that its parameter values are legal. If an illegal option is spe
the assertion fails. The assertion checker also checks at least one assertion. Violation of an
these assertions is an assertion failure. The data sheet for the assertion shows the various f
types for the assertion checker (except for incorrect option values for severity_level, property_
and coverage_level).

For example, theasser t_frame checker data sheet shows the following types of assertion failu

Cover Points

Each assertion checker data sheet shows the coverage behaviors monitored by the checke
their corresponding messages) when coverage is enabled (‘OVL_COVER_ON) andcoverage_level
for the checker is ‘OVL_COVER_ALL. For example the data sheet for the assert_window sh
the following cover points:

‘OVL_COVER_NONE Disable coverage monitoring.

‘OVL_COVER_ALL (default) Enable coverage monitoring.

‘OVL_COVER_SANITY 1

‘OVL_COVER_BASIC 2

‘OVL_COVER_CORNER 4

‘OVL_COVER_STATISTIC 8

ASSERT_FRAME The value of test_expr was TRUE before min_cks cycles after start_event
was sampled TRUE or its value was not TRUE before max_cks cycles
transpired after the rising edge of start_event.

illegal start event The action_on_new_start parameter is set to
‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was monitoring test_expr.

min_cks > max_cks The min_cks parameter is greater than the max_cks parameter (and
max_cks >0). Unless the violation is fatal, either the minimum or maximum
check will fail.

cover_window_open
covered

An event window opened (start_event was TRUE).

cover_window_close
covered

An event window closed (end_event was TRUE in an open event window).
Accellera OVL Standard V1 Library Reference Manual 12

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Use Model

obal

A

ically

e the

ic.

iations
OVL Use Model
An Accellera Standard OVL library user specifies preferred control settings with standard gl
variables defined in the following:

 ❏ A Verilog file loaded in before the libraries.

 ❏ Specifies settings using the standard+define options in Verilog verification engines (via a
setup file or at the command line).

Setting the Implementation Language

The Accellera Standard OVL is implemented in the following HDL languages: Verilog 95, SV
3.1a and PSL 1.1. The following global variables select the implementation language:

In the case a user of the library does not specify a language, by default the library is automat
set to ‘OVL_VERILOG.

  Note: Only one library can be selected. If the user specifies both ‘OVL_VERILOG and
‘OVL_SVA (or ‘OVL_PSL), the ‘OVL_VERILOG is undefined in the header file. Editing
the header file to disable this behavior will result in compile errors.

Instantiation in an SVA Interface Construct

If an OVL checker is instantiated in a System Verilog interface construct, the user should defin
following global variable:

Limitations for PSL

The PSL implementation does not support modifying theseverity_levelandmsgparameters. These
parameters are ignored and the default values are used:

Enabling Assertion and Coverage Logic

The Accellera Standard OVL consists of two types of logic: assertion logic and coverage log
These capabilities are controlled via the following standard global variables:

If neither of these variables is defined, the assertion checkers are not activated. The instant
of these checkers will have no influence on the verification performed.

‘OVL_VERILOG (default) Creates  assertion checkers defined in Verilog.

‘OVL_SVA Creates  assertion checkers defined in System Verilog.

‘OVL_PSL Creates  assertion checkers defined in PSL (Verilog flavor).

‘OVL_SVA_INTERFACE Ensures OVL assertion checkers can be instantiated in a System
Verilog interface construct. Default: not defined.

severity_level ‘OVL_ERROR

msg “VIOLATION”

‘OVL_ASSERT_ON Activates assertion logic. Default: not defined.

‘OVL_COVER_ON Activates coverage logic. Default: not defined.
Accellera OVL Standard V1 Library Reference Manual 13

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Use Model

—
e

 is

owever,

ch

rage
d can

d are

 a
 error
is
Asserting, Assuming and Ignoring Properties

The OVL checkers’ assertion logic—if activated (by the ‘OVL_ASSERT_ON global variable)
identifies a design’s legal properties. Each particular checker instance can verify one or mor
assertion checks (depending on the checker type and the checker’s configuration).

Whether all of a checker’s properties are asserts (i.e., checks) or assumes (i.e., constraints)
controlled by the checker’sproperty_type parameter:

A single assertion checker cannot have some checks asserts and other checks assumes. H
you often can implement this behavior by specifying two checkers.

Monitoring Coverage

The ‘OVL_COVER_ON define activates coverage logic in the checkers. This is a global swit
that turns coverage monitoring on. In addition, each individual checker definition has a
coverage_level parameter:

Reporting Assertion Information

By default, (if the assertion logic is active) every assertion violation is reported and (if the cove
logic is active) every captured coverage point is reported. The user can limit this reporting an
also initiate special reporting at the start and end of simulation.

Limiting a Checker’s Reporting

Limits on the number of times assertion violations and captured coverage points are reporte
controlled by the following global variables:

These maximum limits are for the number of times a checker instance issues a message. If
checker issues multiple violation messages in a cycle, each message is counted as a single
report. Similarly, if a checker issues multiple coverage messages in a cycle, each message 
counted as a single cover report.

‘OVL_ASSERT (default) All the assertion checker’s checks are asserts.

‘OVL_ASSUME All the assertion checker’s checks are assumes.

‘OVL_IGNORE All the assertion checker’s checks are ignored.

‘OVL_COVER_ALL (default) Activates coverage logic for the checker if
‘OVL_COVER_ON is defined.

‘OVL_COVER_NONE De-activates coverage logic for the checker, even if
‘OVL_COVER_ON is defined.

‘OVL_MAX_REPORT_ERROR Discontinues reporting a checker’s assertion violations if the number
of  times the checker has reported one or more violations reaches
this limit. Default: unlimited reporting.

‘OVL_MAX_REPORT_COVER_
POINT

Discontinues reporting a checker’s cover points  if the number of
times the checker has reported one or more cover points reaches
this limit.Default: unlimited reporting.
Accellera OVL Standard V1 Library Reference Manual 14

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Use Model

l

als a
end of

ing

ard
Reporting Initialization Messages

The checkers’ configuration information is reported at initialization time if the following globa
variable is defined:

For each assertion checker instance, the following message is reported:
O V L _ N O T E :  V 1 . 6 : instance_name i n i t i a l i z e d  @ hierarchy S e v e r i t y : severity_level,  M e s s a g e : msg

End-of-simulation Signal to assert_quiescent_state Checkers

Theasser t_quiescent_state assertion checker checks that the value of a state expression equ
check value when a sample event occurs. These checkers also can perform this check at the
simulation by setting the following global variable:

Generating Synthesizable Logic

The following global variable ensures all generated OVL logic is synthesizable:

Checking of X and Z Values

Some assertion checkers have checks whose semantics vary when X and Z bit values are
recognized. The user can switch to 0/1 semantics for these assertions by defining the follow
global variable:

Backward Compatibility

V1.6

In V1.6, aside from bug fixes, all functionality is backward compatible.

V1.5

In V1.5, PSL versions of checkers were added. Aside from bug fixes, all functionality is backw
compatible.

‘OVL_INIT_MSG Reports configuration information for each checker when it is
instantiated at the start of simulation. Default: no initialization
messages reported.

‘OVL_END_OF_SIMULATION=
eos_signal

Performs quiescent state checking at end of simulation when the
eos_signal asserts. Default: not defined.

‘OVL_SYNTHESIS_OFF Ensures OVL logic is synthesizable. Default: not defined.

‘OVL_XCHECK_OFF Turns off checking of values with X and Z bits. Turns off all
assert_never_unknown checkers. Default: 0/1/X/Z semantics assumed
on assert_never, assert_never_unknown, assert_one_cold,
assert_one_hot and assert_zero_one_hot checkers.
Accellera OVL Standard V1 Library Reference Manual 15

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Verilog/SVA Library

ames

ut
V1.1

In V1.1, a typo was corrected in the port list of theasser t_implication checker type. The port
nameantecendent_expr was changed toantecedent_expr.

V1.0

Backward compatibility with the non-standard OVL library is important and no changes were
made for the V1.0 release in the following areas: naming of module names, naming of port n
and to the extent possible the existing Verilog use model.

The name of theoptions parameter was changed toproperty_type. The only checker type that is not
backward compatible in this respect is theasser t_fifo_index checker.

assert_fifo_index

In previous OVL versions, theasser t_fifo_index checker used the second bit of theoption
parameter to prohibit simultaneous pushes-pops in the same cycle. In V1.0, theproperty_type
parameter is compatible with the first bit of previousoptions parameter. But, the second bit (if
defined) is ignored. To enable the check for simultaneous pushes-pops, use the
simultaneous_push_pop parameter (at the end of the parameter list).

OVL Verilog/SVA Library

Library Characteristics

The OVL library has the following characteristics:

 ❏ All Verilog assertion checkers conform to Verilog IEEE Standard 1364-1995.

 ❏ All System Verilog assertion checkers conform to Accellera SVA 3.1a.

 ❏ Header files use file extension .h.

 ❏ Verilog files with assertion module/interfaces use extension .vlib and include assertion logic
files in the language specified by the user.

 ❏ Verilog files with assertion logic use file extension_logic.v.

 ❏ System Verilog files with assertion logic use file extension _logic.sv.

 ❏ The name of an OVL assertion checker isasser t_name, where thename is a descriptive
identifier.

 ❏ Parameter settings are passed via literals to make configuration of assertion checkers
consistent and simple to use by end users.

 ❏ Parameters passed to assertion checkers are checked for legal values

 ❏ Each assertion checker includesstd_ovl_defines.h defining all global variables and
std_ovl_task.h defining all OVL system tasks.

 ❏ Global variables are namedOVL_name.

 ❏ System tasks are namedovl_taskname_t.

 ❏ Assertion checkers are initialized explicitly so that they work in a deterministic way witho
reset.
Accellera OVL Standard V1 Library Reference Manual 16

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Verilog/SVA Library

ies
 ❏ Assertion checkers are backward compatible in behavior with existing OVL Verilog librar
(to the extent it is possible).

Library Layout

The Accellera OVL standard library has the following structure:

For example:
s h e l l  p r o m p t >  l s  - l  $ S T D _ O V L _ D I R

s t d _ o v l / a s s e r t _ a l w a y s . v l i b

s t d _ o v l / a s s e r t _ a l w a y s _ o n _ e d g e . v l i b

.   .   .

s t d _ o v l / s t d _ o v l _ d e f i n e s . h

s t d _ o v l / s t d _ o v l _ t a s k . h

.   .   .

s t d _ o v l / p s l 1 1 :

s t d _ o v l / p s l 1 1 / a s s e r t _ a l w a y s _ l o g i c . v l i b

s t d _ o v l / p s l 1 1 / a s s e r t _ a l w a y s _ o n _ e d g e _ l o g i c . v l i b

.   .   .

s t d _ o v l / p s l 1 1 / v u n i t s :

s t d _ o v l / p s l 1 1 / v u n i t s / a s s e r t _ a l w a y s . p s l

s t d _ o v l / p s l 1 1 / v u n i t s / a s s e r t _ a l w a y s _ o n _ e d g e . p s l

.   .   .

s t d _ o v l / s v a 3 1 a :

s t d _ o v l / s v a 3 1 a / a s s e r t _ a l w a y s _ l o g i c . v l i b

s t d _ o v l / s v a 3 1 a / a s s e r t _ a l w a y s _ o n _ e d g e _ l o g i c . v l i b

.   .   .

s t d _ o v l / v l o g 9 5 :

s t d _ o v l / v l o g 9 5 / a s s e r t _ a l w a y s _ l o g i c . v

s t d _ o v l / v l o g 9 5 / a s s e r t _ a l w a y s _ o n _ e d g e _ l o g i c . v
.   .   .

$STD_OVL_DIR Installation directory of Accellera OVL library.

$STD_OVL_DIR/vlog95 Directory with assertion logic described in Verilog 95.

$STD_OVL_DIR/sva31a Directory with assertion logic described in SVA 3.1a.

$STD_OVL_DIR/psl11 Directory with assertion logic described in PSL 1.1.

$STD_OVL_DIR/psl11/vunits/ Directory with PSL1.1 vunits for binding with the assertion
logic.
Accellera OVL Standard V1 Library Reference Manual 17

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Verilog/SVA Library
Examples

Header File

Figure 1: $STD_OVL_DIR/std_ovl_defines.h

/ /  A c c e l l e r a  S t a n d a r d  V 1 . 6  O p e n  Ve r i f i c a t i o n  L i b r a r y  ( O V L ) .
/ /  A c c e l l e r a  C o p y r i g h t  ( c )  2 0 0 5 - 2 0 0 6 .  A l l  r i g h t s  r e s e r v e d .

‘ i f d e f  O V L _ S T D _ D E F I N E S _ H
/ /  d o  n o t h i n g
‘ e l s e
‘ d e f i n e  O V L _ S T D _ D E F I N E S _ H

‘ d e f i n e  O V L _ V E R S I O N  “ V 1 . 6 ”

‘ i f d e f  O V L _ A S S E R T _ O N
‘ i f d e f  O V L _ P S L

‘ i f d e f  O V L _ V E R I L O G
‘ u n d e f  O V L _ P S L

‘ e n d i f
‘ i f d e f  O V L _ S VA

‘ i f d e f  O V L _ P S L
‘ u n d e f  O V L _ P S L

‘ e n d i f
‘ e n d i f

‘ e l s e
‘ i f d e f  O V L _ V E R I L O G
‘ e l s e

‘ d e f i n e  O V L _ V E R I L O G
‘ e n d i f
‘ i f d e f  O V L _ S VA

‘ u n d e f  O V L _ V E R I L O G
‘ e n d i f

‘ e n d i f
‘ e n d i f

‘ i f d e f  O V L _ C O V E R _ O N
‘ i f d e f  O V L _ P S L

‘ i f d e f  O V L _ V E R I L O G
‘ u n d e f  O V L _ P S L

‘ e n d i f
‘ i f d e f  O V L _ S VA

‘ i f d e f  O V L _ P S L
‘ u n d e f  O V L _ P S L

‘ e n d i f
‘ e n d i f

‘ e l s e
‘ i f d e f  O V L _ V E R I L O G
‘ e l s e

‘ d e f i n e  O V L _ V E R I L O G
‘ e n d i f
‘ i f d e f  O V L _ S VA

‘ u n d e f  O V L _ V E R I L O G
‘ e n d i f

‘ e n d i f
‘ e n d i f
Accellera OVL Standard V1 Library Reference Manual 18

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Verilog/SVA Library
‘ i f d e f  O V L _ A S S E R T _ O N
‘ i f d e f  O V L _ S H A R E D _ C O D E
‘ e l s e

‘ d e f i n e  O V L _ S H A R E D _ C O D E
‘ e n d i f

‘ e l s e
‘ i f d e f  O V L _ C O V E R _ O N

‘ i f d e f  O V L _ S H A R E D _ C O D E
‘ e l s e

‘ d e f i n e  O V L _ S H A R E D _ C O D E
‘ e n d i f

‘ e n d i f
‘ e n d i f

/ /  s p e c i f y i n g  i n t e r f a c e  f o r  S y s t e m  Ve r i l o g

‘ i f d e f  O V L _ S VA _ I N T E R FA C E
‘ d e f i n e  m o d u l e  i n t e r f a c e
‘ d e f i n e  e n d m o d u l e  e n d i n t e r f a c e

‘ e l s e
‘ d e f i n e  m o d u l e  m o d u l e
‘ d e f i n e  e n d m o d u l e  e n d m o d u l e

‘ e n d i f

/ /  S e l e c t i n g  g l o b a l  r e s e t  o r  l o c a l  r e s e t  f o r  t h e  c h e c k e r  r e s e t  s i g n a l

‘ i f d e f  O V L _ G L O B A L _ R E S E T
‘ d e f i n e  O V L _ R E S E T _ S I G N A L  ‘ O V L _ G L O B A L _ R E S E T

‘ e l s e
‘ d e f i n e  O V L _ R E S E T _ S I G N A L  r e s e t _ n

‘ e n d i f

/ /  a c t i v e  e d g e s

‘ d e f i n e  O V L _ N O E D G E  0
‘ d e f i n e  O V L _ P O S E D G E  1
‘ d e f i n e  O V L _ N E G E D G E  2
‘ d e f i n e  O V L _ A N Y E D G E  3

/ /  s e v e r i t y  l e v e l s

‘ d e f i n e  O V L _ FATA L    0
‘ d e f i n e  O V L _ E R R O R    1
‘ d e f i n e  O V L _ W A R N I N G  2
‘ d e f i n e  O V L _ I N F O     3

/ /  c o v e r a g e  l e v e l s

‘ d e f i n e  O V L _ C O V E R _ N O N E       0
‘ d e f i n e  O V L _ C O V E R _ S A N I T Y     1
‘ d e f i n e  O V L _ C O V E R _ B A S I C      2
‘ d e f i n e  O V L _ C O V E R _ C O R N E R     4
‘ d e f i n e  O V L _ C O V E R _ S TAT I S T I C  8
‘ d e f i n e  O V L _ C O V E R _ A L L        { 3 2 { 1 ’ b 1 } }

/ /  p r o p e r t y  t y p e

‘ d e f i n e  O V L _ A S S E R T  0
‘ d e f i n e  O V L _ A S S U M E  1
‘ d e f i n e  O V L _ I G N O R E  2
Accellera OVL Standard V1 Library Reference Manual 19

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Verilog/SVA Library
/ /  n e c e s s a r y  c o n d i t i o n

‘ d e f i n e  O V L _ T R I G G E R _ O N _ M O S T _ P I P E     0
‘ d e f i n e  O V L _ T R I G G E R _ O N _ F I R S T _ P I P E    1
‘ d e f i n e  O V L _ T R I G G E R _ O N _ F I R S T _ N O P I P E  2

/ /  a c t i o n  o n  n e w  s t a r t

‘ d e f i n e  O V L _ I G N O R E _ N E W _ S TA R T    0
‘ d e f i n e  O V L _ R E S E T _ O N _ N E W _ S TA R T  1
‘ d e f i n e  O V L _ E R R O R _ O N _ N E W _ S TA R T  2

/ /  i n a c t i v e  l e v e l s

‘ d e f i n e  O V L _ A L L _ Z E R O S  0
‘ d e f i n e  O V L _ A L L _ O N E S   1
‘ d e f i n e  O V L _ O N E _ C O L D   2

/ /  F u n c t i o n s  f o r  l o g a r i t h m i c  c a l c u l a t i o n

‘ d e f i n e  l o g ( n )  ( ( n )  < =  ( 1 < < 0 )  ?  1  : \
( n )  < =  ( 1 < < 1 )  ?  1  : \
( n )  < =  ( 1 < < 2 )  ?  2  : \
( n )  < =  ( 1 < < 3 )  ?  3  : \
( n )  < =  ( 1 < < 4 )  ?  4  : \
( n )  < =  ( 1 < < 5 )  ?  5  : \
( n )  < =  ( 1 < < 6 )  ?  6  : \
( n )  < =  ( 1 < < 7 )  ?  7  : \
( n )  < =  ( 1 < < 8 )  ?  8  : \
( n )  < =  ( 1 < < 9 )  ?  9  : \
( n )  < =  ( 1 < < 1 0 )  ?  1 0  : \
( n )  < =  ( 1 < < 1 1 )  ?  1 1  : \
( n )  < =  ( 1 < < 1 2 )  ?  1 2  : \
( n )  < =  ( 1 < < 1 3 )  ?  1 3  : \
( n )  < =  ( 1 < < 1 4 )  ?  1 4  : \
( n )  < =  ( 1 < < 1 5 )  ?  1 5  : \
( n )  < =  ( 1 < < 1 6 )  ?  1 6  : \
( n )  < =  ( 1 < < 1 7 )  ?  1 7  : \
( n )  < =  ( 1 < < 1 8 )  ?  1 8  : \
( n )  < =  ( 1 < < 1 9 )  ?  1 9  : \
( n )  < =  ( 1 < < 2 0 )  ?  2 0  : \
( n )  < =  ( 1 < < 2 1 )  ?  2 1  : \
( n )  < =  ( 1 < < 2 2 )  ?  2 2  : \
( n )  < =  ( 1 < < 2 3 )  ?  2 3  : \
( n )  < =  ( 1 < < 2 4 )  ?  2 4  : \
( n )  < =  ( 1 < < 2 5 )  ?  2 5  : \
( n )  < =  ( 1 < < 2 6 )  ?  2 6  : \
( n )  < =  ( 1 < < 2 7 )  ?  2 7  : \
( n )  < =  ( 1 < < 2 8 )  ?  2 8  : \
( n )  < =  ( 1 < < 2 9 )  ?  2 9  : \
( n )  < =  ( 1 < < 3 0 )  ?  3 0  : \
( n )  < =  ( 1 < < 3 1 )  ?  3 1  :  3 2 )

‘ e n d i f  / /  O V L _ S T D _ D E F I N E S _ H
Accellera OVL Standard V1 Library Reference Manual 20

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Verilog/SVA Library
Assertion Checker Interface Files

Figure 2: $STD_OVL_DIR/assert_implication.vlib

/ /  A c c e l l e r a  S t a n d a r d  V 1 . 6  O p e n  Ve r i f i c a t i o n  L i b r a r y  ( O V L ) .
/ /  A c c e l l e r a  C o p y r i g h t  ( c )  2 0 0 5 = 2 0 0 6 .  A l l  r i g h t s  r e s e r v e d .
‘ i n c l u d e  " s t d _ o v l _ d e f i n e s . h "
‘ m o d u l e  a s s e r t _ i m p l i c a t i o n  ( c l k ,  r e s e t _ n ,  a n t e c e d e n t _ e x p r ,  c o n s e q u e n t _ e x p r ) ;

i n p u t  c l k ,  r e s e t _ n ,  a n t e c e d e n t _ e x p r ,  c o n s e q u e n t _ e x p r ;
p a r a m e t e r  s e v e r i t y _ l e v e l  =  ‘ O V L _ E R R O R ;
p a r a m e t e r  p r o p e r t y _ t y p e  =  ‘ O V L _ A S S E R T ;
p a r a m e t e r  m s g = " V I O L AT I O N " ;
p a r a m e t e r  c o v e r a g e _ l e v e l  =  ‘ O V L _ C O V E R _ A L L ;

‘ i f d e f  O V L _ V E R I L O G
‘ i n c l u d e  " . / v l o g 9 5 / a s s e r t _ i m p l i c a t i o n _ l o g i c . v "

‘ e n d i f  / /  O V L _ V E R I L O G
‘ i f d e f  O V L _ S VA

‘ i n c l u d e  " . / s v a 3 1 a / a s s e r t _ i m p l i c a t i o n _ l o g i c . s v "
‘ e n d i f  / /  O V L _ S VA
‘ i f d e f  O V L _ P S L

‘ i n c l u d e  " . / p s l 1 1 / a s s e r t _ i m p l i c a t i o n _ p s l _ l o g i c . v "
‘ e l s e

‘ e n d m o d u l e
‘ e n d i f

Assertion Checker Logic Files (Verilog 95)

Figure 3: $STD_OVL_DIR/vlog95/assert_implication_logic.v

/ /  A c c e l l e r a  S t a n d a r d  V 1 . 6  O p e n  Ve r i f i c a t i o n  L i b r a r y  ( O V L ) .
/ /  A c c e l l e r a  C o p y r i g h t  ( c )  2 0 0 5 - 2 0 0 6 .  A l l  r i g h t s  r e s e r v e d .
p a r a m e t e r  a s s e r t _ n a m e  =  " A S S E R T _ I M P L I C AT I O N " ;
‘ i n c l u d e  " s t d _ o v l _ t a s k . h "

‘ i f d e f  O V L _ I N I T _ M S G
i n i t i a l

o v l _ i n i t _ m s g _ t ;  / /  C a l l  t h e  U s e r  D e f i n e d  I n i t  M e s s a g e  R o u t i n e
‘ e n d i f

‘ i f d e f  O V L _ A S S E R T _ O N
a l w a y s  @ ( p o s e d g e  c l k )  b e g i n

i f  ( ‘ O V L _ R E S E T _ S I G N A L  ! =  1 ’ b 0 )  b e g i n
i f  ( a n t e c e d e n t _ e x p r   = =  1 ’ b 1  & &  c o n s e q u e n t _ e x p r   = =  1 ’ b 0 )  b e g i n

o v l _ e r r o r _ t ( " " ) ;
e n d

e n d
e n d

‘ e n d i f  / /  O V L _ A S S E R T _ O N

‘ i f d e f  O V L _ C O V E R _ O N
a l w a y s  @ ( p o s e d g e  c l k )  b e g i n

i f  ( ‘ O V L _ R E S E T _ S I G N A L  ! =  1 ’ b 0  & &  c o v e r a g e _ l e v e l  ! =  ‘ O V L _ C O V E R _ N O N E )
b e g i n

i f  ( a n t e c e d e n t _ e x p r  = =  1 ’ b 1 )  b e g i n
o v l _ c o v e r _ t ( " c o v e r _ a n t e c e d e n t  c o v e r e d " ) ;

e n d
e n d

e n d
‘ e n d i f  / /  O V L _ C O V E R _ O N
Accellera OVL Standard V1 Library Reference Manual 21

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Verilog/SVA Library
Assertion Checker Logic Files (System Verilog 3.1a)

Figure 4: $STD_OVL_DIR/sva31a/assert_implication_logic.sv

/ /  A c c e l l e r a  S t a n d a r d  V 1 . 6  O p e n  Ve r i f i c a t i o n  L i b r a r y  ( O V L ) .
/ /  A c c e l l e r a  C o p y r i g h t  ( c )  2 0 0 5 - 2 0 0 6 .  A l l  r i g h t s  r e s e r v e d .

p a r a m e t e r  a s s e r t _ n a m e  =  “ A S S E R T _ I M P L I C AT I O N ” ;
` i n c l u d e  “ s t d _ o v l _ t a s k . h ”

` i f d e f  O V L _ I N I T _ M S G
i n i t i a l

o v l _ i n i t _ m s g _ t ;  / /  C a l l  t h e  U s e r  D e f i n e d  I n i t  M e s s a g e  R o u t i n e
` e n d i f

` i f d e f  O V L _ A S S E R T _ O N
p r o p e r t y  A S S E R T _ I M P L I C AT I O N _ P ;

@ ( p o s e d g e  c l k )
d i s a b l e  i f f  ( ` O V L _ R E S E T _ S I G N A L  ! =  1 ’ b 1 )
a n t e c e d e n t _ e x p r  | - >  c o n s e q u e n t _ e x p r ;

e n d p r o p e r t y
g e n e r a t e

c a s e  ( p r o p e r t y _ t y p e )
` O V L _ A S S E R T  :  b e g i n  :  o v l _ a s s e r t

A _ A S S E R T _ I M P L I C AT I O N _ P :
a s s e r t  p r o p e r t y  ( A S S E R T _ I M P L I C AT I O N _ P )

e l s e  o v l _ e r r o r _ t ( “ A n t e c e d e n t  d o e s  n o t  h a v e  c o n s e q u e n t ” ) ;
e n d
` O V L _ A S S U M E  :  b e g i n  :  o v l _ a s s u m e

M _ A S S E R T _ I M P L I C AT I O N _ P :
a s s u m e  p r o p e r t y  ( A S S E R T _ I M P L I C AT I O N _ P ) ;

e n d
` O V L _ I G N O R E  :  b e g i n  :  o v l _ i g n o r e

/ /  d o  n o t h i n g  ;
e n d
d e f a u l t      :  i n i t i a l  o v l _ e r r o r _ t ( “ “ ) ;

e n d c a s e
e n d g e n e r a t e

` e n d i f  / /  O V L _ A S S E R T _ O N

` i f d e f  O V L _ C O V E R _ O N
g e n e r a t e

i f  ( c o v e r a g e _ l e v e l  ! =  ` O V L _ C O V E R _ N O N E )  b e g i n
c o v e r _ a n t e c e d e n t :
c o v e r  p r o p e r t y  ( @ ( p o s e d g e  c l k )

(  ( ` O V L _ R E S E T _ S I G N A L  ! =  1 ’ b 0 )  & &  a n t e c e d e n t _ e x p r )  )
o v l _ c o v e r _ t ( “ a n t e c e d e n t  c o v e r e d ” ) ;

e n d
e n d g e n e r a t e

` e n d i f  / /  O V L _ C O V E R _ O N
Accellera OVL Standard V1 Library Reference Manual 22

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Verilog/SVA Library
Assertion Checker Logic Files (PSL 1.1)

Figure 5: $STD_OVL_DIR/psl1.1/assert_implication_logic.v

/ /  A c c e l l e r a  S t a n d a r d  V 1 . 6  O p e n  Ve r i f i c a t i o n  L i b r a r y  ( O V L ) .
/ /  A c c e l l e r a  C o p y r i g h t  ( c )  2 0 0 5 - 2 0 0 6 .  A l l  r i g h t s  r e s e r v e d .

/ / T h i s  f i l e  i s  i n c l u d e d  i n  a s s e r t _ i m p l i c a t i o n . v l i b
` i n c l u d e  “ s t d _ o v l _ t a s k . h ”
  p a r a m e t e r  a s s e r t _ n a m e  =  “ A S S E R T _ I M P L I C AT I O N ” ;
 ` i f d e f  O V L _ I N I T _ M S G
  i n i t i a l
    o v l _ i n i t _ m s g _ t ;  / /  C a l l  t h e  U s e r  D e f i n e d  I n i t  M e s s a g e  R o u t i n e
` e n d i f

` i f d e f  O V L _ A S S E R T _ O N

 g e n e r a t e
   c a s e  ( p r o p e r t y _ t y p e )
     ` O V L _ A S S E R T :  b e g i n :  a s s e r t _ c h e c k s
                   a s s e r t _ i m p l i c a t i o n _ a s s e r t
                   a s s e r t _ i m p l i c a t i o n _ a s s e r t  (
                       . c l k ( c l k ) ,
                       . r e s e t _ n ( ` O V L _ R E S E T _ S I G N A L ) ,
                       . a n t e c e d e n t _ e x p r ( a n t e c e d e n t _ e x p r ) ,
                       . c o n s e q u e n t _ e x p r ( c o n s e q u e n t _ e x p r ) ) ;
                  e n d
     ` O V L _ A S S U M E :  b e g i n :  a s s u m e _ c h e c k s
                   a s s e r t _ i m p l i c a t i o n _ a s s u m e
                   a s s e r t _ i m p l i c a t i o n _ a s s u m e  (
                       . c l k ( c l k ) ,
                       . r e s e t _ n ( ` O V L _ R E S E T _ S I G N A L ) ,
                       . a n t e c e d e n t _ e x p r ( a n t e c e d e n t _ e x p r ) ,
                       . c o n s e q u e n t _ e x p r ( c o n s e q u e n t _ e x p r ) ) ;
                  e n d
     ` O V L _ I G N O R E :  b e g i n :  o v l _ i g n o r e
                    / / d o  n o t h i n g
                  e n d
     d e f a u l t :  i n i t i a l  o v l _ e r r o r _ t ( “ “ ) ;
   e n d c a s e
 e n d g e n e r a t e

` e n d i f

` i f d e f  O V L _ C O V E R _ O N
 g e n e r a t e
  i f  ( c o v e r a g e _ l e v e l  ! =  ` O V L _ C O V E R _ N O N E )
   b e g i n :  c o v e r _ c h e c k s
          a s s e r t _ i m p l i c a t i o n _ c o v e r
          a s s e r t _ i m p l i c a t i o n _ c o v e r  (
                       . c l k ( c l k ) ,
                       . r e s e t _ n ( ` O V L _ R E S E T _ S I G N A L ) ,
                       . a n t e c e d e n t _ e x p r ( a n t e c e d e n t _ e x p r ) ) ;
   e n d
 e n d g e n e r a t e
` e n d i f

` e n d m o d u l e  / / R e q u i r e d  t o  p a i r  u p  w i t h  a l r e a d y  u s e d  “ ` m o d u l e ”  i n  f i l e  a s s e r t _ i m p l i c a t i o n . v l i b
Accellera OVL Standard V1 Library Reference Manual 23

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Basics OVL Verilog/SVA Library
/ / M o d u l e  t o  b e  r e p l i c a t e d  f o r  a s s e r t  c h e c k s
/ / T h i s  m o d u l e  i s  b o u n d  t o  a  P S L  v u n i t s  w i t h  a s s e r t  c h e c k s
m o d u l e  a s s e r t _ i m p l i c a t i o n _ a s s e r t  ( c l k ,  r e s e t _ n ,  a n t e c e d e n t _ e x p r ,  c o n s e q u e n t _ e x p r ) ;
       i n p u t  c l k ,  r e s e t _ n ,  a n t e c e d e n t _ e x p r ,  c o n s e q u e n t _ e x p r ;
e n d m o d u l e

/ / M o d u l e  t o  b e  r e p l i c a t e d  f o r  a s s u m e  c h e c k s
/ / T h i s  m o d u l e  i s  b o u n d  t o  a  P S L  v u n i t s  w i t h  a s s u m e  c h e c k s
m o d u l e  a s s e r t _ i m p l i c a t i o n _ a s s u m e  ( c l k ,  r e s e t _ n ,  a n t e c e d e n t _ e x p r ,  c o n s e q u e n t _ e x p r ) ;
       i n p u t  c l k ,  r e s e t _ n ,  a n t e c e d e n t _ e x p r ,  c o n s e q u e n t _ e x p r ;
e n d m o d u l e

/ / M o d u l e  t o  b e  r e p l i c a t e d  f o r  c o v e r  p r o p e r t i e s
/ / T h i s  m o d u l e  i s  b o u n d  t o  a  P S L  v u n i t  w i t h  c o v e r  p r o p e r t i e s
m o d u l e  a s s e r t _ i m p l i c a t i o n _ c o v e r  ( c l k ,  r e s e t _ n ,  a n t e c e d e n t _ e x p r ) ;
       i n p u t  c l k ,  r e s e t _ n ,  a n t e c e d e n t _ e x p r ;
e n d m o d u l e

Assertion Checker vunit Files (PSL 1.1)

Figure 6: $STD_OVL_DIR/psl1.1/vunits/assert_implication.psl

/ /  A c c e l l e r a  S t a n d a r d  V 1 . 6  O p e n  Ve r i f i c a t i o n  L i b r a r y  ( O V L ) .
/ /  A c c e l l e r a  C o p y r i g h t  ( c )  2 0 0 5 - 2 0 0 6 .  A l l  r i g h t s  r e s e r v e d .

v u n i t  a s s e r t _ i m p l i c a t i o n _ a s s e r t _ v u n i t  ( a s s e r t _ i m p l i c a t i o n _ a s s e r t )
{
  d e f a u l t  c l o c k  =  ( p o s e d g e  c l k ) ;
  p r o p e r t y  A S S E R T _ I M P L I C AT I O N _ P  =  a l w a y s  (
           r e s e t _ n  & &  a n t e c e d e n t _ e x p r  - >  c o n s e q u e n t _ e x p r ) ;
  A _ A S S E R T _ I M P L I C AT I O N _ P :
  a s s e r t  A S S E R T _ I M P L I C AT I O N _ P
  r e p o r t  “ V I O L AT I O N :  A S S E R T _ I M P L I C AT I O N  C h e c k e r  F i r e s  :

A n t e c e d e n t  d o e s  n o t  h a v e  c o n s e q u e n t ” ;
}

v u n i t  a s s e r t _ i m p l i c a t i o n _ a s s u m e _ v u n i t  ( a s s e r t _ i m p l i c a t i o n _ a s s u m e )
{
  d e f a u l t  c l o c k  =  ( p o s e d g e  c l k ) ;
  p r o p e r t y  A S S E R T _ I M P L I C AT I O N _ P  =  a l w a y s  (

r e s e t _ n & & a n t e c e d e n t _ e x p r - > c o n s e q u e n t _ e x p r ) ;
  M _ A S S E R T _ I M P L I C AT I O N _ P :
  a s s u m e  A S S E R T _ I M P L I C AT I O N _ P ;
}

v u n i t  a s s e r t _ i m p l i c a t i o n _ c o v e r _ v u n i t  ( a s s e r t _ i m p l i c a t i o n _ c o v e r )
{
  d e f a u l t  c l o c k  =  ( p o s e d g e  c l k ) ;
  c o v e r _ a n t e c e d e n t :
  c o v e r  { r e s e t _ n  & &  a n t e c e d e n t _ e x p r } ;
}

Accellera OVL Standard V1 Library Reference Manual 24

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL A SSERTION DATA SHEETS
for
er by

res.
Each OVL assertion checker type has a data sheet that provides the specification 
checkers of that type. This chapter lists the checker data sheets in alphabetical ord
checker type. Data sheets contain the following information:

 ❏ Syntax

Syntax statement for specifying a checker of the type, with:

  • Parameters — parameters that configure the checker.

  • Ports — checker ports.

 ❏ Description

Description of the functionality and usage of checkers of the type, with:

  • Assertion Checks — violation types (or messages) with descriptions of failu

  • Cover Points — cover messages with descriptions.

  • Errors* — possible errors that are not assertion failures.

 ❏ Notes*

Notes describing any special features or requirements.

 ❏ See also

List of other similar checker types.

 ❏ Examples

Examples of directives and checker applications.

* not applicable to all checker types.
Accellera OVL Standard V1 Library Reference Manual 25

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_always
assert_always
Ensures that the value of a specified expression is TRUE.

Syntax

a s s e r t _ a l w a y s
[ # ( severity_level, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_always assertion checker checks the single-bit expressiontest_expr at each rising edge
of clk to verify the expression evaluates to TRUE.

Assertion Check

Cover Points

none

See also
a s s e r t _ a l w a y s _ o n _ e d g e ,  a s s e r t _ i m p l i c a t i o n ,  a s s e r t _ n e v e r ,  a s s e r t _ p r o p o s i t i o n

Parameters :

severity_level

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_alwaystest_expr

severity_level Severity of the failure. Default: ‘OVL_ERROR.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr Expression that should evaluate to TRUE on the rising clock edge.

ASSERT_ALWAYS Expression did not evaluate to TRUE.
Accellera OVL Standard V1 Library Reference Manual 26

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_always
Example

Ensures that (reg_a < reg_b) is TRUE at each rising edge ofclk.

assert_always #(
‘OVL_ERROR,

‘OVL_ASSERT,

“Error: reg_a < reg_b is not TRUE”,

‘OVL_COVER_ALL)

// severity_level

// property_type

// msg

// coverage_level
reg_a_lt_reg_b (

clk,

reset_n,

reg_a < reg_b );

// clock

// reset

// test_expr

clk

reset_n

reg_a < reg_b

ASSERT_ALWAYS Error: reg_a < reg_b is not TRUE
Accellera OVL Standard V1 Library Reference Manual 27

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_always_on_edge

 a
assert_always_on_edge
Ensures that the value of a specified expression is TRUE when a sampling event undergoes
specified transition.

Syntax

a s s e r t _ a l w a y s _ o n _ e d g e
[ # ( severity_level,  edge_type, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, sampling_event, test_expr ) ;

Parameters

Ports

Description

Theasser t_always_on_edge assertion checker checks the single-bit expressionsampling_event
for a particular type of transition. If the specified transition of the sampling event occurs, the
single-bit expressiontest_expr is evaluated at the rising edge ofclk to verify the expression does not
evaluate to FALSE.

Theedge_type parameter determines which type of transition ofsampling_event initiates the check:

 ❏ ‘OVL_POSEDGE performs the check ifsampling_event transitions from FALSE to TRUE.

 ❏ ‘OVL_NEGEDGE performs the check ifsampling_event transitions from TRUE to FALSE.

 ❏ ‘OVL_ANYEDGE performs the check ifsampling_event transitions from TRUE to FALSE or
from FALSE to TRUE.

 ❏ ‘OVL_NOEDGE always initiates the check. This is the default value ofedge_type. In this case,
sampling_event is never sampled and the checker has the same functionality asasser t_always.

Parameters :

severity_level

edge_type

property_type

msg

coverage_level

Class:

2-cycle assertion

clk reset_n

assert_always_on_edge
sampling_event

test_expr

severity_level Severity of the failure. Default: ‘OVL_ERROR.

edge_type Transition type for sampling event: ‘OVL_NOEDGE, ‘OVL_POSEDGE,
‘OVL_NEGEDGE or ‘OVL_ANYEDGE. Default: ‘OVL_NOEDGE.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

sampling_event Expression that (along with edge_type) identifies when to evaluate and test
test_expr.

test_expr Expression that should evaluate to TRUE on the rising clock edge.
Accellera OVL Standard V1 Library Reference Manual 28

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_always_on_edge
The checker is a variant ofasser t_always, with the added capability of qualifying the assertion
with a sampling event transition. This checker is useful when events are identified by their
transition in addition to their logical state.

Assertion Check

Cover Points

none

See also
a s s e r t _ a l w a y s ,  a s s e r t _ i m p l i c a t i o n ,  a s s e r t _ n e v e r ,  a s s e r t _ p r o p o s i t i o n

Examples

Ensures that(state == ‘IDLE) is TRUE at each rising edge ofclk whenreq transitions from
FALSE to TRUE.

ASSERT_ALWAYS_ON_EDGE Expression evaluated to FALSE when the sampling event transitioned as
specified by edge_type.

assert_always_on_edge #(
‘OVL_ERROR,

‘OVL_POSEDGE,

‘OVL_ASSERT,

“Error: new req when FSM not ready”,

‘OVL_COVER_ALL)

// severity_level

// edge_type

// property_type

// msg

// coverage_level
request_when_FSM_idle (

clk,

reset_n,

req,

state == ‘IDLE);

// clock

// reset

// sampling_event

// test_expr

clk

reset_n

state

ASSERT_ALWAYS_ON_EDGE Error: new req when FSM not ready

req

‘IDLE ‘WR ‘IDLE ‘RD ‘WAIT
Accellera OVL Standard V1 Library Reference Manual 29

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_always_on_edge
Ensures that(state == ‘IDLE) is TRUE at each rising edge ofclk whenreq transitions from TRUE
to FALSE or from FALSE to TRUE.

Ensures that(!req || (state == ‘IDLE)) is TRUE at each rising edge ofclk.

assert_always_on_edge #(
‘OVL_ERROR,

‘OVL_ANYEDGE,

‘OVL_ASSERT,

“Error: req transition when FSM not idle”,

‘OVL_COVER_ALL)

// severity_level

// edge_type

// property_type

// msg

// coverage_level
req_transition_when_FSM_idle (

clk,

reset_n,

req,

state == ‘IDLE);

// clock

// reset

// sampling_event

// test_expr

assert_always_on_edge #(
‘OVL_ERROR,

‘OVL_NOEDGE,

‘OVL_ASSERT,

“Error: req when FSM not idle”,

‘OVL_COVER_ALL)

// severity_level

// edge_type

// property_type

// msg

// coverage_level
req_when_FSM_idle (

clk,

reset_n,

1’b0,

!req || (state == ‘IDLE) );

// clock

// reset

// sampling_event

// test_expr

clk

reset_n

state

ASSERT_ALWAYS_ON_EDGE Error: req transition when FSM not idle

req

‘IDLE ‘WR ‘IDLE ‘RD ‘WAIT

clk

reset_n

state

ASSERT_ALWAYS_ON_EDGE Error: req when FSM not idle

req

‘IDLE ‘WR ‘IDLE ‘RD ‘WAIT
Accellera OVL Standard V1 Library Reference Manual 30

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_change

after a

ast
assert_change
Ensures that the value of a specified expression changes within a specified number of cycles
start event initiates checking.

Syntax

a s s e r t _ c h a n g e
[ # ( severity_level, width, num_cks, action_on_new_start, property_type,
msg,  coverage_level ) ]
instance_name ( clk, reset_n, start_event, test_expr ) ;

Parameters

Ports

Description

Theasser t_change assertion checker checks the expressionstart_event at each rising edge ofclk to
determine if it should check for a change in the value oftest_expr. If start_event is sampled TRUE,
the checker evaluatestest_expr and re-evaluatestest_expr at each of the subsequentnum_cks rising
edges ofclk. If the value oftest_expr has not been sampled changed from its start value by the l
of thenum_cks cycles, the assertion fails.

Parameters :

severity_level

width

num_cks

action_on_new_start

property_type

msg

coverage_level

Class:

n-cycle assertion

clk reset_n

assert_change
start_event

test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

num_cks Number of cycles to check for a change in the value of test_expr. Default: 1.

action_on_new_start Method for handling a new start event that occurs before test_expr changes
value or num_cks clock cycles transpire without a change. Values are:
‘OVL_IGNORE_NEW_START, ‘OVL_RESET_ON_NEW_START and
‘OVL_ERROR_ON_NEW_START. Default: ‘OVL_IGNORE_NEW_START.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

start_event Expression that (along with action_on_new_start) identifies when to start
checking test_expr .

test_expr [ width - 1 : 0 ] Expression that should change value within num_cks cycles from the start
event unless the check is interrupted by a valid new start event.
Accellera OVL Standard V1 Library Reference Manual 31

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_change

state of

lue of

s

s
eck
t”. It
The method used to determine how to handle a new start event, when the checker is in the 
checking for a change intest_expr, is controlled by theaction_on_new_start parameter. The checker
has the following actions:

 ❏ ‘OVL_IGNORE_NEW_START

The checker does not samplestart_event for the nextnum_cks cycles after a start event.

 ❏ ‘OVL_RESET_ON_NEW_START

The checker samplesstart_event every cycle. If a check is pending and the value ofstart_event
is TRUE, the checker terminates the check and initiates a new check with the current va
test_expr (even on the last cycle of a check).

 ❏ ‘OVL_ERROR_ON_NEW_START

The checker samplesstart_event every cycle. If a check is pending and the value ofstart_event
is TRUE, the assertion fails with ani l legal star t event violation. In this case, the checker doe
not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events, such a
verifying synchronization circuits respond after initial stimuli. For example, it can be used to ch
the protocol  that an “acknowledge” occurs within a certain number of cycles after a “reques
also can be used to check that a finite-state machine changes state after an initial stimulus.

Assertion Check

Cover Points

See also
a s s e r t _ t i m e ,  a s s e r t _ u n c h a n g e ,  a s s e r t _ w i n _ c h a n g e ,  a s s e r t _ w i n _ u n c h a n g e ,
a s s e r t _ w i n d o w

ASSERT_CHANGE The test_expr expression did not change value for num_cks cycles after
start_event was sampled TRUE.

illegal start event The action_on_new_start parameter is set to
‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was in the state of checking for a change in the value
of test_expr.

cover_window_open A change check was initiated.

cover_window_close A change check lasted the full num_cks cycles. If no assertion failure
occurred, the value of test_expr changed in the last cycle.

cover_window_resets The action_on_new_start parameter is ‘OVL_RESET_ON_NEW_START,
and start_event was sampled TRUE while the checker was monitoring
test_expr, but it had not changed value.
Accellera OVL Standard V1 Library Reference Manual 32

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_change
Examples

Ensures thatout changes within 3 cycles aftersync asserts. New starts are ignored.

Ensures thatout changes within 3 cycles aftersync asserts. A new start terminates the pending
check and initiates a new check.

assert_change #(
‘OVL_ERROR,

1,

3,

‘OVL_IGNORE_NEW_START,

‘OVL_ASSERT,

“Error: invalid synchronization”,

‘OVL_COVER_ALL)

// severity_level

// width

// num_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_sync_out (

clk,

reset_n,

sync == 1,

out );

// clock

// reset

// start_event

// test_expr

assert_change #(
‘OVL_ERROR,

1,

3,

‘OVL_RESET_ON_NEW_START,

‘OVL_ASSERT,

“Error: invalid synchronization”,

‘OVL_COVER_ALL)

// severity_level

// width

// num_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_sync_out (

clk,

reset_n,

sync == 1,

out );

// clock

// reset

// start_event

// test_expr

clk

reset_n

ASSERT_CHANGE Error: invalid synchronization

out

1

sync

1 2 31

clk

reset_n

ASSERT_CHANGE Error: invalid synchronization

out

sync

2 31 1
Accellera OVL Standard V1 Library Reference Manual 33

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_change

last

Ensures thatout changes within 3 cycles aftersync asserts. A new start reports ani l legal star t
event violation (without initiating a new check) but any pending check is retained (even on the
check cycle).

assert_change #(
‘OVL_ERROR,

1,

3,

‘OVL_ERROR_ON_NEW_START,

‘OVL_ASSERT,

“Error: invalid synchronization”,

‘OVL_COVER_ALL)

// severity_level

// width

// num_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_sync_out (

clk,

reset_n,

sync == 1,

out );

// clock

// reset

// start_event

// test_expr

clk

reset_n

ASSERT_CHANGE Error: invalid synchronization

out

sync

2 31 1

illegal start event
Accellera OVL Standard V1 Library Reference Manual 34

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_cycle_sequence

e of
assert_cycle_sequence
Ensures that if a specified necessary condition occurs, it is followed by a specified sequenc
events.

Syntax

a s s e r t _ c y c l e _ s e q u e n c e
[ # ( severity_level, num_cks, necessary_condition, property_type, msg, coverage_level ) ]
instance_name ( clk, reset_n, event_sequence ) ;

Parameters

Ports

Description

Theasser t_cycle_sequence assertion checker checks the expressionevent_sequence at the rising
edges ofclk to identify whether or not the bits inevent_sequence assert sequentially on successive
rising edges ofclk. For example, the following series of 4-bit values (whereb is any bit value) is a
valid sequence:

1 bbb — > b1 bb — > bb1 b — > bbb1

This series corresponds to the following series of events on successive rising edges ofclk:

Parameters :

severity_level

num_cks

necessary_condition

property_type

msg

coverage_level

Class:

n-cycle assertion

clk reset_n

assert_cycle_sequence
event_sequence [num_cks - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

num_cks Width of the event_sequence argument. This parameter must not be less
than 2. Default: 2.

necessary_condition Method for determining the necessary condition that initiates the sequence
check and whether or not to pipeline checking. Values are:
‘OVL_TRIGGER_ON_MOST_PIPE, ‘OVL_TRIGGER_ON_FIRST_PIPE and
‘OVL_TRIGGER_ON_FIRST_NOPIPE. Default:
‘OVL_TRIGGER_ON_MOST_PIPE.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

event_sequence [ num_cks - 1: 0 ] Expression that is a concatenation where each bit represents an event.

cycle 1 event_sequence[3] == 1

cycle 2 event_sequence[2] == 1
Accellera OVL Standard V1 Library Reference Manual 35

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_cycle_sequence

an be
4-bit

 clk:

ently

igger

it of
The checker also has the ability to pipeline its analysis. Here, one or more new sequences c
initiated and recognized while a sequence is in progress. For example, the following series of
values (whereb is any bit value) constitutes two overlapping valid sequences:

1 b b b  — >  b 1 b b  — >  1 b 1 b  — >  b 1 b 1  — >  b b 1 b  — >  b b b 1

This series corresponds to the following sequences of events on successive rising edges of

When the checker determines that a specified necessary condition has occurred, it subsequ
verifies that a specified event or event sequence occurs and if not, the assertion fails.

The method used to determine what constitutes the necessary condition and the resulting tr
event or event sequence is controlled by thenecessary_condition parameter. The checker has the
following actions:

 ❏ ‘OVL_TRIGGER_ON_MOST_PIPE

The necessary condition is that the bits:
event_sequence [ num_cks - 1 ] ,  .  .  .  , event_sequence [ 1 ]

are sampled equal to 1 sequentially on successive rising edges ofclk. When this condition
occurs, the checker verifies that the value ofevent_sequence[0] is 1 at the next rising edge of
clk. If not, the assertion fails.

The checking is pipelined, which means that ifevent_sequence[num_cks -1] is sampled equal
to 1 while a sequence (includingevent_sequence[0]) is in progress and subsequently the
necessary condition is satisfied, the check ofevent_sequence[0] is performed (unless the first
sequence resulted in a fatal assertion violation).

 ❏ ‘OVL_TRIGGER_ON_FIRST_PIPE

The necessary condition is that theevent_sequence [num_cks -1] bit is sampled equal to 1 on a
rising edge ofclk. When this condition occurs, the checker verifies that the bits:

event_sequence [ num_cks - 2 ] ,  .  .  .  , event_sequence [ 0 ]

are sampled equal to 1 sequentially on successive rising edges ofclk. If not, the assertion fails.

The checking is pipelined, which means that ifevent_sequence[num_cks -1] is sampled equal
to 1 while a check is in progress, an additional check is initiated.

 ❏ ‘OVL_TRIGGER_ON_FIRST_NOPIPE

The necessary condition is that theevent_sequence [num_cks -1] bit is sampled equal to 1 on a
rising edge ofclk. When this condition occurs, the checker verifies that the bits:

event_sequence [ num_cks - 2 ] ,  .  .  .  , event_sequence [ 0 ]

are sampled equal to 1 sequentially on successive rising edges ofclk. If not, the assertion fails.

The checking is not pipelined, which means that ifevent_sequence[num_cks -1] is sampled
equal to 1 while a check is in progress, it is ignored, even if the check is verifying the last b
the sequence (event_sequence [0]).

cycle 3 event_sequence[1] == 1

cycle 4 event_sequence[0] == 1

cycle 1 event_sequence[3] == 1

cycle 2 event_sequence[2] == 1

cycle 3 event_sequence[1] == 1 event_sequence[3] == 1

cycle 4 event_sequence[0] == 1 event_sequence[2] == 1

cycle 5 event_sequence[1] == 1

cycle 6 event_sequence[0] == 1
Accellera OVL Standard V1 Library Reference Manual 36

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_cycle_sequence

The
Assertion Check

Cover Point

See also
a s s e r t _ c h a n g e ,  a s s e r t _ u n c h a n g e

Examples

Ensures that a ‘WR, ‘WAIT sequence in consecutive cycles is followed by a ‘DONE or ‘WR. 
sequence checking is pipelined.

ASSERT_CYCLE_SEQUENCE The necessary condition occurred, but it was not followed by the event or
event sequence.

illegal num_cks parameter The num_cks parameter is less than 2.

cover_sequence_trigger The trigger sequence occurred.

   assert_cycle_sequence #(
‘OVL_ERROR,

3,

‘OVL_TRIGGER_ON_MOST_PIPE,

‘OVL_ASSERT,

“Error: invalid WR sequence”,

‘OVL_COVER_ALL)

// severity_level

// num_cks

// necessary_condition

// property_type

// msg

// coverage_level
valid_write_sequence (

clk,

reset_n,

{ r_opcode == ‘WR,

r_opcode == ‘WAIT,

(r_opcode == ‘WR) ||  (r_opcode == ‘DONE)}  );

// clock

// reset

// event_sequence

   assert_cycle_sequence #(
‘OVL_ERROR,

3,

‘OVL_TRIGGER_ON_FIRST_PIPE,

‘OVL_ASSERT,

“Error: invalid WR sequence”,

‘OVL_COVER_ALL)

// severity_level

// num_cks

// necessary_condition

// property_type

// msg

// coverage_level
valid_write_sequence (

clk,

reset_n,

{ r_opcode == ‘WR,

(r_opcode == ‘WAIT) || (r_opcode == ‘WR),

(r_opcode == ‘WAIT) || (r_opcode == ‘DONE)}  );

// clock

// reset

// event_sequence

clk

reset_n

ASSERT_CYCLE_SEQUENCE Error: invalid WR sequence

r_opcode X ‘WR ‘WAIT‘DONE ‘IDLE ‘IDLE‘WR ‘WAIT ‘WR ‘WAIT
Accellera OVL Standard V1 Library Reference Manual 37

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_cycle_sequence

r

E
nce
Ensures that a ‘WR is followed by a ‘WAIT or another ‘WR, which is then followed by a ‘WAIT o
a ‘DONE (in consecutive cycles). The sequence checking is pipelined: a new ‘WR during a
sequence check initiates an additional check.

Ensures that a ‘WR is followed by a ‘WAIT or another ‘WR, which is then followed by a ‘DON
(in consecutive cycles). The sequence checking is not pipelined: a new ‘WR during a seque
check does not initiate an additional check.

   assert_cycle_sequence #(
‘OVL_ERROR,

3,

‘OVL_TRIGGER_ON_FIRST_NOPIPE,

‘OVL_ASSERT,

“Error: invalid WR sequence”,

‘OVL_COVER_ALL)

// severity_level

// num_cks

// necessary_condition

// property_type

// msg

// coverage_level
valid_write_sequence (

clk,

reset_n,

{ r_opcode == ‘WR,

(r_opcode == ‘WAIT) || (r_opcode == ‘WR),

(r_opcode == ‘DONE)}  );

// clock

// reset

// event_sequence

clk

reset_n

ASSERT_CYCLE_SEQUENCE Error: invalid WR sequence

r_opcode X ‘WAIT‘DONE ‘WR ‘DONE‘WR ‘WAIT ‘DONE ‘WR

clk

reset_n

ASSERT_CYCLE_SEQUENCE Error: invalid WR sequence

r_opcode X ‘DONE‘DONE ‘WR ‘IDLE‘WR ‘WAIT ‘WR ‘DONE

ASSERT_CYCLE_SEQUENCE Error: invalid WR sequence
Accellera OVL Standard V1 Library Reference Manual 38

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_decrement

alue.

state
nters
ad
assert_decrement
Ensures that the value of a specified expression changes only by the specified decrement v

Syntax

a s s e r t _ d e c r e m e n t
[ # ( severity_level, width, value, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_decrement assertion checker checks the expressiontest_expr at each rising edge ofclk
to determine if its value has changed from its value at the previous rising edge ofclk. If so, the
checker verifies that the new value equals the previous value decremented byvalue. The checker
allows the value oftest_expr to wrap, if the total change equals the decrementvalue. For example, if
width is 5 and value is 4, then the following change intest_expr is valid:

5 ’ b 0 0 0 1 0  — >  5 ’ b 1 1 1 1 0

The checker is useful for ensuring proper changes in structures such as counters and finite-
machines. For example, the checker is useful for circular queue structures with address cou
that can wrap. Do not use this checker for variables or expressions that can increment. Inste
consider using theasser t_delta checker.

Assertion Check

Parameters :

severity_level

width

value

property_type

msg

coverage_level

Class:

2-cycle assertion

clk reset_n

assert_decrement
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

value Decrement value for test_expr. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should decrement by value whenever its value changes from
the rising edge of clk to the next rising edge of clk.

ASSERT_DECREMENT Expression evaluated to a value that is not its previous value decremented by
value.
Accellera OVL Standard V1 Library Reference Manual 39

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_decrement
Cover Point

Notes

 1. The assertion check compares the current value oftest_expr with its previous value. Therefore,
checking does not start until the second rising clock edge ofclk afterreset_n deasserts.

See also
a s s e r t _ d e l t a ,  a s s e r t _ i n c r e m e n t ,  a s s e r t _ n o _ u n d e r f l o w

Example

Ensures that the programmable counter’scount variable only decrements by 1. Ifcount wraps, the
assertion fails, because the change is not a binary decrement.

cover_test_expr_change Expression changed value.

assert_decrement #(
‘OVL_ERROR,

4,

1,

‘OVL_ASSERT,

“Error: invalid binary decrement”,

‘OVL_COVER_ALL)

// severity_level

// width

// value

// property_type

// msg

// coverage_level
valid_count (

clk,

reset_n,

count  );

// clock

// reset

// test_expr

clk

reset_n

count 1001 1000 0111 0110 0101 0011 0001 0000 10010100 0010

ASSERT_DECREMENT Error: invalid binary decrement
Accellera OVL Standard V1 Library Reference Manual 40

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_delta

nge.

elta

unters.

vere
assert_delta
Ensures that the value of a specified expression changes only by a value in the specified ra

Syntax

a s s e r t _ d e l t a
[ # ( severity_level, width, min, max, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_delta assertion checker checks the expressiontest_expr at each rising edge ofclk to
determine if its value has changed from its value at the previous rising edge ofclk. If so, the
checker verifies that the difference between the new value and the previous value (i.e., the d
value) is in the range frommin to max, inclusive. If the delta value is less thanmin or greater than
max, the assertion fails.

The checker is useful for ensuring proper changes in control structures such as up-down co
For these structures,asser t_delta can check for underflow and overflow. In datapath and
arithmetic circuits,asser t_delta can check for “smooth” transitions of the values of various
variables (for example, for a variable that controls a physical variable that cannot detect a se
change from its previous value).

Assertion Check

Parameters :

severity_level

width

min

max

property_type

msg

coverage_level

Class:

2-cycle assertion

clk reset_n

assert_delta
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

min Minimum delta value allowed for test_expr. Default: 1.

max Maximum delta value allowed for test_expr. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should only change by a delta value in the range min to max.

ASSERT_DELTA Expression changed value by a delta value not in the range min  to max.
Accellera OVL Standard V1 Library Reference Manual 41

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_delta
Cover Point

Errors

The parametersmin andmax must be specified such thatmin is less than or equal tomax.
Otherwise, the assertion fails on each tested clock cycle.

Notes

 1. The assertion check compares the current value oftest_expr with its previous value. Therefore,
checking does not start until the second rising clock edge ofclk afterreset_n deasserts.

 2. The assertion check allows the value oftest_expr to wrap. The overflow or underflow amount is
included in the delta value calculation.

See also
a s s e r t _ d e c r e m e n t ,  a s s e r t _ i n c r e m e n t ,  a s s e r t _ n o _ o v e r f l o w ,
a s s e r t _ n o _ u n d e r f l o w ,  a s s e r t _ r a n g e

Example

Ensures that they output only changes by a maximum of 8 units each cycle (min is 0).

cover_test_expr_change Expression changed value.

assert_delta #(
‘OVL_ERROR,

16,

0,

8,

‘OVL_ASSERT,

“Error: y values not smooth”,

‘OVL_COVER_ALL)

// severity_level

// width

// min

// max

// property_type

// msg

// coverage_level
valid_smooth (

clk,

reset_n,

y  );

// clock

// reset

// test_expr

clk

reset_n

y 1240 1244 1248 1256 1260 1272 1276 1278 12961266 1274

ASSERT_DELTA Error:  y values not smooth
Accellera OVL Standard V1 Library Reference Manual 42

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_even_parity

if it is

error
assert_even_parity
Ensures that the value of a specified expression has even parity.

Syntax

a s s e r t _ e v e n _ p a r i t y
[ # ( severity_level,  width,  property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_even_parity assertion checker checks the expressiontest_expr at each rising edge of
clk to verify the expression evaluates to a value that has even parity. A value has even parity
0 or if the number of bits set to 1 is even.

The checker is useful for verifying control circuits, for example, it can be used to verify a
finite-state machine with error detection. In a datapath circuit the checker can perform parity
checking of address and data buses.

Assertion Check

Cover Point

See also
a s s e r t _ o d d _ p a r i t y

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_even_parity
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should evaluate to a value with even parity on the rising clock
edge.

ASSERT_EVEN_PARITY Expression evaluated to a value whose parity is not even.

cover_test_expr_change Expression has changed value.
Accellera OVL Standard V1 Library Reference Manual 43

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_even_parity
Examples

Ensures thatdata has even parity at each rising edge ofclk.

assert_even_parity #(
‘OVL_ERROR,

8,

‘OVL_ASSERT,

“Error: data has odd parity”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_data_even_parity (

clk,

reset_n,

data );

// clock

// reset

// test_expr

clk

reset_n

data

ASSERT_EVEN_PARITY

A

Error: data has odd parity

5 0 C 7 C 3 6 0
Accellera OVL Standard V1 Library Reference Manual 44

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_fifo_index

gured
.

ds)
ushes/
many
t

assert_fifo_index
Ensures that a FIFO-type structure never overflows or underflows. This checker can be confi
to support multiple pushes (FIFO writes) and pops (FIFO reads) during the same clock cycle

Syntax

a s s e r t _ f i f o _ i n d e x
[ # ( severity_level, depth, push_width, pop_width, property_type,
msg,  coverage_level,  simultaneous_push_pop ) ]
instance_name ( clk, reset_n, push, pop ) ;

Parameters

Ports

Description

Theasser t_fifo_index assertion checker tracks the numbers of pushes (writes) and pops (rea
that occur for a FIFO or queue memory structure. This checker does permit simultaneous p
pops on the queue within the same clock cycle. It ensures the FIFO never overflows (i.e., too
pushes occur without enough pops) and never underflows (i.e., too many pops occur withou
enough pushes). This checker is more complex than theasser t_no_overflow and

Parameters :

severity_level

depth

push_width

pop_width

property_type

msg

coverage_level

simultaneous_push_pop

Class:

n-cycle assertion

clk reset_n

assert_fifo_index
push [push_width - 1: 0]

pop [pop_width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

depth Maximum number of elements in the FIFO or queue structure. This
parameter must be > 0. Default: 1.

push_width Width of the push argument. Default: 1.

pop_width Width of the pop argument. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

simultaneous_push_pop Whether or not to allow simultaneous push/pop operations in the same clock
cycle. When set to 0, if push and pop operations occur in the same cycle, the
assertion fails. Default: 1 (simultaneous push/pop operations are allowed).

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

push [push_width - 1: 0] Expression that indicates the number of push operations that will occur
during the current cycle.

pop [pop_width - 1: 0] Expression that indicates the number of pop operations that will occur during
the current cycle.
Accellera OVL Standard V1 Library Reference Manual 45

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_fifo_index

se,
it only

nd pop
ex
asser t_no_underflow checkers, which check only the boundary conditions (overflow and
underflow respectively).

Assertion Checks

Cover Points

Errors

Notes

 1. The checker checks the values of thepush andpop expressions. By default, (i.e.,
simultaneous_push_pop is 1), “simultaneous” push/pop operations are allowed. In this ca
the checker assumes the design properly handles simultaneous push/pop operations, so
ensures that the FIFO buffer index at theend of the cycle has not overflowed or underflowed.
The assertion cannot ensure the FIFO buffer index does not overflow between a push a
performed in the same cycle.  Similarly, the assertion cannot ensure the FIFO buffer ind
does not underflow between a pop and push performed in the same cycle.

See also
a s s e r t _ n o _ o v e r f l o w ,  a s s e r t _ n o _ u n d e r f l o w

Examples

OVERLOW Push operation overflowed the FIFO.

UNDERFLOW Pop operation underflowed the FIFO.

ILLEGAL PUSH AND POP Push and pop operations performed in the same clock cycle, but the
simultaneous_push_pop parameter is set to 0.

cover_fifo_push Push operation.

cover_fifo_pop Pop operation.

cover_fifo_full FIFO full.

cover_fifo_empty FIFO empty.

cover_fifo_simultaneous_push_pop Push and pop operations in the same clock cycle.

Depth parameter value must be > 0 Depth parameter is set to 0.

assert_fifo_index #(
‘OVL_ERROR,

8,

1,

1,

‘OVL_ASSERT,

“Error”,

‘OVL_COVER_ALL,

1)

// severity_level

// depth

// push_width

// pop_width

// property_type

// msg

// coverage_level

// simultaneous_push_pop
no_over_underflow (

clk,

reset_n,

push,

pop);

// clock

// reset

// push

// pop
Accellera OVL Standard V1 Library Reference Manual 46

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_fifo_index

s can

 push
Ensures that an 8-element FIFO never overflows or underflows. Only single pushes and pop
occur in a clock cycle (push_width andpop_width values are 1). A push and pop operation in the
same clock cycle is allowed (value ofsimultaneous_push_pop is 1).

Ensures that an 8-element FIFO never overflows or underflows and that in no cycle do both
and pop operations occur.

assert_fifo_index #(
‘OVL_ERROR,

8,

1,

1,

‘OVL_ASSERT,

“violation”,

‘OVL_COVER_ALL

0)

// severity_level

// depth

// push_width

// pop_width

// property_type

// msg

// coverage_level

// simultaneous_push_pop
no_over_underflow (

clk,

reset_n,

push,

pop);

// clock

// reset

// push

// pop

clk

reset_n

push

pop

count 0 1 2 3 4 5 6 7 8 9

OVERFLOW Error

clk

reset_n

push

pop

count 0 1 2 3 3 4 6 7 6

ILLEGAL PUSH AND POP Error

54
Accellera OVL Standard V1 Library Reference Manual 47

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_frame

aluate
a

assert_frame
Ensures that when a specified start event is TRUE, then a specified expression must not ev
TRUE before a minimum number of clock cycles and must transition to TRUE no later than 
maximum number of clock cycles.

Syntax

a s s e r t _ f r a m e
[ # ( severity_level, min_cks, max_cks, action_on_new_start, property_type,
msg,  coverage_level ) ]
instance_name ( clk, reset_n, start_event, test_expr ) ;

Parameters

Ports

Parameters :

severity_level

min_cks

max_cks

action_on_new_start

property_type

msg

coverage_level

Class:

n-cycle assertion

clk reset_n

assert_frame
start_event

test_expr

severity_level Severity of the failure. Default: ‘OVL_ERROR.

min_cks Number of cycles after the start event that test_expr must not evaluate to
TRUE. The special case where min_cks is 0 turns off minimum checking (i.e.,
test_expr can be TRUE in the same clock cycle as the start event). Default: 0.

max_cks Number of cycles after the start event that during which test_expr  must
transition to TRUE. The special case where max_cks is 0 turns off maximum
checking (i.e., test_expr  does not need to transition to TRUE). Default: 0.

action_on_new_start Method for handling a new start event that occurs while a check is pending.
Values are: ‘OVL_IGNORE_NEW_START, ‘OVL_RESET_ON_NEW_START
and ‘OVL_ERROR_ON_NEW_START. Default:
‘OVL_IGNORE_NEW_START.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

start_event Expression that (along with action_on_new_start) identifies when to initiate
checking of test_expr.

test_expr Expression that should not evaluate to TRUE for min_cks -1 cycles after
start_event initiates a check (unless min_cks is 0) and that should evaluate to
TRUE before max_cks cycles transpire (unless max_cks is 0).
Accellera OVL Standard V1 Library Reference Manual 48

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_frame

. A

 to

t.

rrent
Description

Theasser t_frame assertion checker checks for a start event at each rising edge ofclk. A start event
occurs ifstart_event has transitioned to TRUE, either at the clock edge or in the previous cycle
start event also occurs ifstart_event is TRUE at the rising clock edge after a checker reset.

When a start event occurs, the checker performs the following steps:

 1. Unless it is disabled by settingmin_cks to 0, aminimum check is initiated. The check evaluates
test_expr at each subsequent rising edge ofclk for the nextmin_cks cycles. However, if a
sampled value oftest_expr is TRUE, theminimum check fails and the checker returns to the
state of waiting for a start event.

 2. Unless it is disabled by settingmax_cks to 0 (or aminimum violation has occurred), a
maximum check is initiated. The check evaluatestest_expr at each subsequent rising edge of
clk for the next(max_cks - min_cks) cycles. However, if a sampled value oftest_expr is TRUE,
the checker returns to the state of waiting for a start event. If its value does not transition
TRUE by the timemax_cks cycles transpire (from the start of checking), themaximum check
fails at cyclemax_cks.

 3. The checker returns to the state of waiting for a start event.

The method used to determine how to handlestart_event when the checker is in the state of
checkingtest_expr is controlled by theaction_on_new_start parameter. The checker has the
following actions:

 ❏ ‘OVL_IGNORE_NEW_START

The checker does not samplestart_event until it returns to the state of waiting for a start even

 ❏ ‘OVL_RESET_ON_NEW_START

Each time the checker samplestest_expr, it also samplesstart_event. If start_event is TRUE, the
checker first checks whether a pending minimum check is just failing. If so, the assertion
failed. Then—unless the assertion failed and it was fatal—the checker terminates the cu
checks and initiates a new pair of checks.

 ❏ ‘OVL_ERROR_ON_NEW_START

Each time the checker samplestest_expr, it also samplesstart_event. If start_event is TRUE, the
assertion fails with ani l legal star t event error. If the error is not fatal, the checker returns to
the state of waiting for a start event at the next rising clock edge.

Assertion Checks

Cover Point

ASSERT_FRAME The value of test_expr was TRUE before min_cks cycles after start_event
was sampled TRUE or its value was not TRUE before max_cks cycles
transpired after the rising edge of start_event.

illegal start event The action_on_new_start parameter is set to
‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was monitoring test_expr.

min_cks > max_cks The min_cks parameter is greater than the max_cks parameter (and
max_cks >0). Unless the violation is fatal, either the minimum or maximum
check will fail.

start_event The value of start_event was TRUE on a rising edge of clk.
Accellera OVL Standard V1 Library Reference Manual 49

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_frame

nts
Notes

 1. The special case wheremin_cks andmax_cks are both 0 is the default. Here,test_expr must be
TRUE every cycle there is a start event.

See also
a s s e r t _ c h a n g e ,  a s s e r t _ n e x t ,  a s s e r t _ t i m e ,  a s s e r t _ u n c h a n g e ,  a s s e r t _ w i d t h

Examples

Ensures that after a rising edge ofreq, ack goes high between 2 and 4 cycles later. New start eve
during transactions are not considered to be new transactions and are ignored.

   assert_frame #(
‘OVL_ERROR,

2,

4,

‘OVL_IGNORE_NEW_START,

‘OVL_ASSERT,

“Error: invalid transaction”,

‘OVL_COVER_ALL)

// severity_level

// min_cks

// max_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_transaction (

clk,

reset_n,

req,

ack);

// clock

// reset

// start_event

// test_expr

   assert_frame #(
‘OVL_ERROR,

2,

4,

‘OVL_RESET_ON_NEW_START,

‘OVL_ASSERT,

“Error: invalid transaction”,

‘OVL_COVER_ALL)

// severity_level

// min_cks

// max_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_transaction (

clk,

reset_n,

req,

ack);

// clock

// reset

// start_event

// test_expr

clk

reset_n

ack

ASSERT_FRAME Error: invalid transaction

req

1 2 3 4 1 2 3
Accellera OVL Standard V1 Library Reference Manual 50

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_frame

s
tart
Ensures that after a rising edge ofreq, ack goes high between 2 and 4 cycles later. A new start
event during a transaction restarts the transaction.

Ensures that after a rising edge ofreq, ack goes high between 2 and 4 cycles later. Also ensure
that a new transaction does not start before the previous transaction is acknowledged. If a s
event occurs during a transaction, the checker does does not initiate a new check.

   assert_frame #(
‘OVL_ERROR,

2,

4,

‘OVL_ERROR_ON_NEW_START,

‘OVL_ASSERT,

“Error: invalid transaction”,

‘OVL_COVER_ALL)

// severity_level

// min_cks

// max_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_transaction (

clk,

reset_n,

req,

ack);

// clock

// reset

// start_event

// test_expr

clk

reset_n

ack

ASSERT_FRAME Error: invalid transaction

req

1 2 3 4 1 2 31

clk

reset_n

ack

illegal start event

req

1 2 3 4 1 2 3
Accellera OVL Standard V1 Library Reference Manual 51

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_handshake

col.

ol
assert_handshake
Ensures that specified request and acknowledge signals follow a specified handshake proto

Syntax

a s s e r t _ h a n d s h a k e
[ # ( severity_level, min_ack_cycle, max_ack_cycle, req_drop, deassert_count,
max_ack_length, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, req, ack ) ;

Parameters

Ports

Description

Theasser t_handshake assertion checker checks the single-bit expressionsreq andack at each
rising edge ofclk to verify their values conform to the request-acknowledge handshake protoc
specified by the checker parameters. A request event (wherereq transitions to TRUE) initiates a

Parameters :

severity_level

min_ack_cycle

max_ack_cycle

req_drop

deassert_count

max_ack_length

property_type

msg

coverage_level

Class:

event-bounded assertion

clk reset_n

assert_handshake
req

ack

severity_level Severity of the failure. Default: ‘OVL_ERROR.

min_ack_cycle Minimum number of clock cycles before acknowledge. A value of 0 turns off
the ack min cycle check. Default: 0.

max_ack_cycle Maximum number of clock cycles before acknowledge. A value of 0 turns off
the ack max cycle check. Default: 0.

req_drop If greater than 0, value of req must remain TRUE until acknowledge. A value
of 0 turns off the req drop check. Default: 0.

deassert_count Maximum number of clock cycles after acknowledge that req can remain
TRUE (i.e., req must not be stuck active). A value of 0 turns off the req
deassert  check. Default: 0.

max_ack_length Maximum number of clock cycles that ack can be TRUE. A value of 0 turns off
the max ack length check. Default: 0.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

req Expression that starts a transaction.

ack Expression that indicates the transaction is complete.
Accellera OVL Standard V1 Library Reference Manual 52

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_handshake

st not
r
ctive
ngth is

e next
transaction on the rising edge of the clock and an acknowledge event (whereack transitions to
TRUE) signals the transaction is complete on the rising edge of the clock. The transaction mu
include multiple request events and every acknowledge must have a pending request. Othe
checks—to ensure the acknowledge is received in a specified window, the request is held a
until the acknowledge, the requests and acknowledges are not stuck active and the pulse le
not too long—are enabled and controlled by the checker’s parameters.

When a violation occurs, the checker discards any pending request. Checking is restarted th
cycle thatack is sampled FALSE.

Assertion Checks

Cover Points

See also
a s s e r t _ w i n d o w ,  a s s e r t _ w i n _ c h a n g e ,  a s s e r t _ w i n _ u n c h a n g e

Examples

multiple req violation The value of req transitioned to TRUE while waiting for an acknowledge or
while acknowledge was asserted. Extra requests do not initiate new
transactions.

ack without req violation The value of ack transitioned to TRUE without a pending request.

ack min cycle violation The value of ack transitioned to TRUE before min_ack_cycle clock cycles
transpired after the request.

ack max cycle violation The value of ack did not transition to TRUE before max_ack_cycle clock
cycles transpired after the request.

req drop violation The value of req transitioned from TRUE before an acknowledge.

req deassert violation The value of req did not transition from TRUE before deassert_count clock
cycles transpired after an acknowledge.

ack max length violation The value of ack did not transition from TRUE before max_ack_length clock
cycles transpired after an acknowledge.

cover_req_asserted A transaction initiated.

cover_ack_asserted A transaction  completed.

assert_handshake #(
‘OVL_ERROR,

0,

0,

0,

0,

0,

‘OVL_ASSERT,

“hold-holda handshake error”,

‘OVL_COVER_ALL)

// severity_level

// min_ack_cycle

// max_ack_cycle

// req_drop

// deassert_count

// max_ack_length

// property_type

// msg

// coverage_level
valid_hold_holda (

clk,

reset_n,

hold,

holda);

// clock

// reset

// req

// ack
Accellera OVL Standard V1 Library Reference Manual 53

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_handshake
Ensures that multiplehold requests are not made while waiting for aholda acknowledge and that
everyholda acknowledge is in response to a uniquehold request.

After a violation, checking is turned off untilholda acknowledge is sampled deasserted.

Ensures that multiplehold requests are not made while waiting for aholda acknowledge and that
everyholda acknowledge is in response to a uniquehold request. Ensuresholda acknowledge
asserts 2 to 3 cycles after each hold request.

assert_handshake #(
‘OVL_ERROR,

2,

3,

0,

0,

0,

‘OVL_ASSERT,

“hold-holda handshake error”,

‘OVL_COVER_ALL)

// severity_level

// min_ack_cycle

// max_ack_cycle

// req_drop

// deassert_count

// max_ack_length

// property_type

// msg

// coverage_level
valid_hold_holda (

clk,

reset_n,

hold,

holda);

// clock

// reset

// req

// ack

clk

reset_n

holda

ack without req violation

hold

multiple req violation

clk

reset_n

holda

ack without req violation

hold

multiple req violation ack without req violation

clk

reset_n

holda

hold

multiple req violation

clk

reset_n

holda

ack max cycle violation

hold

ack min cycle violation

1 1 2 3 4
Accellera OVL Standard V1 Library Reference Manual 54

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_handshake
Ensures that multiplehold requests are not made while waiting for aholda acknowledge and that
everyholda acknowledge is in response to a uniquehold request. Ensuresholda acknowledge
asserts for 2 cycles.

Ensures that multiplehold requests are not made while waiting for aholda acknowledge and that
everyholda acknowledge is in response to a uniquehold request. Ensureshold request remains
asserted until itsholda acknowledge and then deasserts in the next cycle.

assert_handshake #(
‘OVL_ERROR,

0,

0,

0,

0,

2,

‘OVL_ASSERT,

“hold-holda handshake error”,

‘OVL_COVER_ALL)

// severity_level

// min_ack_cycle

// max_ack_cycle

// req_drop

// deassert_count

// max_ack_length

// property_type

// msg

// coverage_level
valid_hold_holda (

clk,

reset_n,

hold,

holda);

// clock

// reset

// req

// ack

assert_handshake #(
‘OVL_ERROR,

0,

0,

1,

1,

0,

‘OVL_ASSERT,

“hold-holda handshake error”,

‘OVL_COVER_ALL)

// severity_level

// min_ack_cycle

// max_ack_cycle

// req_drop

// deassert_count

// max_ack_length

// property_type

// msg

// coverage_level
valid_hold_holda (

clk,

reset_n,

hold,

holda);

// clock

// reset

// req

// ack

clk

reset_n

holda

ack max length violation

hold

clk

reset_n

holda

req drop violation

hold

1

req deassert violation
Accellera OVL Standard V1 Library Reference Manual 55

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_implication

sion is
assert_implication
Ensures that a specified consequent expression is TRUE if the specified antecedent expres
TRUE.

Syntax

a s s e r t _ i m p l i c a t i o n
[ # ( severity_level, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, antecedent_expr, consequent_expr ) ;

Parameters

Ports

Description

Theasser t_implication assertion checker checks the single-bit expressionantecedent_expr at each
rising edge ofclk.  If antecedent_expr is TRUE, then the checker verifies that the value of
consequent_expr is also TRUE. Ifantecedent_expr is not TRUE, then the assertion is valid
regardless of the value ofconsequent_expr.

Assertion Check

Cover Point

Parameters :

severity_level

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_implication
antecedent_expr

consequent_expr

severity_level Severity of the failure. Default: ‘OVL_ERROR.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

antecedent_expr Antecedent expression that is tested at the clock event.

consequent_expr Consequent expression that should evaluate to TRUE if antecedent_expr
evaluates to TRUE when tested.

ASSERT_IMPLICATION Expression evaluated to FALSE.

cover_antecedent The antecedent_expr  evaluated to TRUE.
Accellera OVL Standard V1 Library Reference Manual 56

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_implication
Notes

 1. This assertion checker is equivalent to:
a s s e r t _ a l w a y s

[ # ( severity_level, property_type,  msg,  coverage_level ) ]

instance_name ( clk, reset_n, ( antecedent_expr  ? consequent_expr  :  1 ’ b 1  ) ) ;

See also
a s s e r t _ a l w a y s ,  a s s e r t _ a l w a y s _ o n _ e d g e ,  a s s e r t _ n e v e r ,  a s s e r t _ p r o p o s i t i o n

Example

Ensures thatq_not_full is TRUE at each rising edge ofclk for whichq_valid is TRUE.

assert_implication #(
‘OVL_ERROR,

‘OVL_ASSERT,

“Error: q valid but q full”,

‘OVL_COVER_ALL)

// severity_level

// property_type

// msg

// coverage_level
not_full (

clk,

reset_n,

q_valid,

q_not_full );

// clock

// reset

// antecedent_expr

// consequent_expr

clk

reset_n

q_valid

ASSERT_IMPLICATION Error: q valid but q full

q_not_full
Accellera OVL Standard V1 Library Reference Manual 57

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_increment

lue.

state
nters

tead
assert_increment
Ensures that the value of a specified expression changes only by the specified increment va

Syntax

a s s e r t _ i n c r e m e n t
[ # ( severity_level, width, value, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_increment assertion checker checks the expressiontest_expr at each rising edge ofclk
to determine if its value has changed from its value at the previous rising edge ofclk. If so, the
checker verifies that the new value equals the previous value incremented byvalue. The checker
allows the value oftest_expr to wrap, if the total change equals the incrementvalue. For example, if
width is 5 andvalue is 4, then the following change intest_expr is valid:

5 ’ b 1 1 1 1 0  — >  5 ’ b 0 0 0 1 0

The checker is useful for ensuring proper changes in structures such as counters and finite-
machines. For example, the checker is useful for circular queue structures with address cou
that can wrap. Do not use this checker for variables or expressions that can decrement. Ins
consider using theasser t_delta checker.

Assertion Check

Parameters :

severity_level

width

value

property_type

msg

coverage_level

Class:

2-cycle assertion

clk reset_n

assert_increment
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

value Increment value for test_expr. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should increment by value whenever its value changes from
the rising edge of clk to the next rising edge of clk.

ASSERT_INCREMENT Expression evaluated to a value that is not its previous value incremented by
value.
Accellera OVL Standard V1 Library Reference Manual 58

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_increment
Cover Point

Notes

 1. The assertion check compares the current value oftest_expr with its previous value. Therefore,
checking does not start until the second rising clock edge ofclk afterreset_n deasserts.

See also
a s s e r t _ d e c r e m e n t ,  a s s e r t _ d e l t a ,  a s s e r t _ n o _ o v e r f l o w

Example

Ensures that the programmable counter’scount variable only increments by 1. Ifcount wraps, the
assertion fails, because the change is not a binary increment.

cover_test_expr_change Expression changed value.

assert_increment #(
‘OVL_ERROR,

4,

1,

‘OVL_ASSERT,

“Error: invalid binary increment”,

‘OVL_COVER_ALL)

// severity_level

// width

// value

// property_type

// msg

// coverage_level
valid_count (

clk,

reset_n,

count  );

// clock

// reset

// test_expr

clk

reset_n

count 0000 0001 0010 0011 0100 0110 1000 1001 00000101 0111

ASSERT_INCREMENT Error: invalid binary increment
Accellera OVL Standard V1 Library Reference Manual 59

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_never

d

assert_never
Ensures that the value of a specified expression is not TRUE.

Syntax

a s s e r t _ n e v e r
[ # ( severity_level, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_never assertion checker checks the single-bit expressiontest_expr at each rising edge
of clk to verify the expression does not evaluate to TRUE.

Assertion Checks

Cover Points

none

Notes

 1. By default, theasser t_never assertion is pessimistic and the assertion fails iftest_expr is not 0
(i.e.equals 1, X, Z, etc.). However, if ‘OVL_XCHECK_OFF is set, the assertion fails if an
only if test_expr is 1.

Parameters :

severity_level

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_nevertest_expr

severity_level Severity of the failure. Default: ‘OVL_ERROR.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr Expression that should not evaluate to TRUE on the rising clock edge.

ASSERT_NEVER Expression evaluated to TRUE.

test_expr contains X/Z value Expression evaluated to X or Z, and ‘OVL_XCHECK_OFF is not set.
Accellera OVL Standard V1 Library Reference Manual 60

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_never
See also
a s s e r t _ a l w a y s ,  a s s e r t _ a l w a y s _ o n _ e d g e ,  a s s e r t _ i m p l i c a t i o n ,
a s s e r t _ p r o p o s i t i o n

Example

Ensures that (reg_a < reg_b) is FALSE at each rising edge ofclk.

assert_never #(
‘OVL_ERROR,

‘OVL_ASSERT,

“”,

‘OVL_COVER_ALL)

// severity_level

// property_type

// msg

// coverage_level
valid_count (

clk,

reset_n,

reg_a < reg_b );

// clock

// reset

// test_expr

clk

reset_n

reg_a < reg_b

ASSERT_NEVER

x

test_expr contains X/Z value
Accellera OVL Standard V1 Library Reference Manual 61

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_never_unknown

g

s

ence.
n

assert_never_unknown
Ensures that the value of a specified expression contains only 0 and 1 bits when a qualifyin
expression is TRUE.

Syntax

a s s e r t _ n e v e r _ u n k n o w n
[ # ( severity_level, width, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, qualifier, test_expr ) ;

Parameters

Ports

Description

Theasser t_never_unknown assertion checker checks the expressionqualifier at each rising edge
of clk to determine if it should checktest_expr. If qualifier is sampled TRUE, the checker evaluate
test_expr and if the value oftest_expr contains a bit that is not 0 or 1, the assertion fails.

The checker is useful for ensuring certain data have only known values following a reset sequ
It also can be used to verify tristate input ports are driven and tristate output ports drive know
values when necessary.

Assertion Checks

Cover Points

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_never_unknown
qualifier

test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

qualifier Expression that  indicates whether or not to check test_expr .

test_expr [ width - 1: 0 ] Expression that should contain only 0 or 1 bits when qualifier is TRUE.

test_expr contains X/Z value The test_expr expression contained at least one bit that was not 0 or 1;
qualifier was sampled TRUE; and ‘OVL_XCHECK_OFF is not set.

cover_qualifier A never_unknown check was initiated.

cover_test_expr_change Expression changed value.
Accellera OVL Standard V1 Library Reference Manual 62

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_never_unknown
Notes

 1. If ‘OVL_XCHECK_OFF is set, allasser t_never_unknown checkers are turned off.

See also
a s s e r t _ n e v e r , a s s e r t _ n e v e r _ u n k n o w n _ a s y n c ,  a s s e r t _ o n e _ c o l d ,
a s s e r t _ o n e _ h o t ,  a s s e r t _ z e r o _ o n e _ h o t

Example

Ensures that values ofdata are known and driven whenrd_data is TRUE.

 assert_never_unknown #(
‘OVL_ERROR,

8,

‘OVL_ASSERT,

“Error: data unknown or undriven”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_data (

clk,

reset_n,

rd_data,

data);

// clock

// reset

// qualifier

// test_expr

clk

reset_n

data

ASSERT_NEVER_UNKNOWN Error: data unknown or undriven

rd_data

XXXX 10XX 1010 XXXX 00XX 001X 0010 XXXX
Accellera OVL Standard V1 Library Reference Manual 63

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_never_unknown_async

ence.
n

assert_never_unknown_async
Ensures that the value of a specified expression combinationally contains only 0 and 1 bits.

Syntax

a s s e r t _ n e v e r _ u n k n o w n
[ # ( severity_level, width, property_type,  msg,  coverage_level ) ]
instance_name ( reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_never_unknown_async assertion checker combinationally evaluatestest_expr and if
the value oftest_expr contains a bit that is not 0 or 1, the assertion fails.

The checker is useful for ensuring certain data have only known values following a reset sequ
It also can be used to verify tristate input ports are driven and tristate output ports drive know
values when necessary.

Assertion Checks

Cover Points

none

Notes

 1. If ‘OVL_XCHECK_OFF is set, allasser t_never_unknown_async checkers are turned off.

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

combinational assertion

reset_n

assert_never_
test_expr [width - 1: 0]

unknown_async

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should contain only 0 or 1 bits when qualifier is TRUE.

test_expr contains X/Z value The test_expr expression contained at least one bit that was not 0 or 1 and
‘OVL_XCHECK_OFF is not set.
Accellera OVL Standard V1 Library Reference Manual 64

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_never_unknown_async
See also
a s s e r t _ n e v e r

Example

Ensures that values ofdata are known and driven whilebus_gnt is TRUE.

 assert_never_unknown_async #(
‘OVL_ERROR,

8,

‘OVL_ASSERT,

“Error: data unknown or undriven”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_data (

bus_gnt,

data);

// reset

// test_expr

data

ASSERT_NEVER_UNKNOWN_ASYNC Error: data unknown or undriven

bus_gnt

XXXX 1010 1010 XXXX 00XX 0011 XXXX1X10
Accellera OVL Standard V1 Library Reference Manual 65

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_next

 a start
assert_next
Ensures that the value of a specified expression is TRUE a specified number of cycles after
event.

Syntax

a s s e r t _ n e x t
[ # ( severity_level, num_cks, check_overlapping,  check_missing_start, property_type,
msg, coverage_level ) ]
instance_name ( clk, reset_n, start_event, test_expr ) ;

Parameters

Ports

Parameters :

severity_level

num_cks

check_overlapping

check_missing_start

property_type

msg

coverage_level

Class:

n-cycle assertion

clk reset_n

assert_next
start_event

test_expr

severity_level Severity of the failure. Default: ‘OVL_ERROR.

num_cks Number of cycles after start_event is TRUE to wait to check that the value of
test_expr is TRUE. Default: 1.

check_overlapping Whether or not to perform overlap checking. Default: 1 (overlap checking off).

 • If set to 0, overlap checking is performed. From the rising edge of clk after
start_event is sampled TRUE to the rising edge of clk of the cycle before
test_expr  is sampled for the current next check, the checker performs an
overlap check. During this interval, if start_event is TRUE at a rising edge
of clk, then the overlap check fails (illegal overlapping condition). The
current next check continues but a new next check is not initiated.

 • If set to 1, overlap checking is not performed. A separate next check is
initiated each time start_event is sampled TRUE (overlapping start events
are allowed).

check_missing_start Whether or not to perform missing-start checking. Default: 0 (missing-start
checking off).

 • If set to 0, missing start checks are not performed.

 • If set to 1, missing start checks are performed. The checker samples
test_expr every rising edge of clk. If the value of test_expr is TRUE, then
num_cks rising edges of clk prior to the current time, start_event must have
been TRUE (initiating a next check). If not, the missing-start check fails
(start_event without test_expr).

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.
Accellera OVL Standard V1 Library Reference Manual 66

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_next

k

e

Description

Theasser t_next assertion checker checks the expressionstart_event at each rising edge ofclk. If
start_event is TRUE, a check is initiated. The check waits fornum_cks cycles (i.e., fornum_cks
additional rising edges ofclk) and evaluatestest_expr. If test_expr is not TRUE, the assertion fails.

If overlap checking is off (check_overlapping is 1), additional checks can start while a current chec
is pending. If overlap checking is on, the assertion fails ifstart_event is sampled TRUE while a
check is pending (except on the last clock).

If missing-star t checking is off (check_missing_start is 0),test_expr can be TRUE any time. If
missing-star t checking is on, the assertion fails iftest_expr is TRUE without a corresponding start
event (num_cks cycles previously). However, iftest_expr is TRUE in the interval ofnum_cks - 1
cycles after a reset and has no corresponding start event, the result is indeterminate (i.e., th
missing-star t check might or might not fail).

Assertion Checks

Cover Points

See also
a s s e r t _ c h a n g e ,  a s s e r t _ f r a m e ,  a s s e r t _ t i m e ,  a s s e r t _ u n c h a n g e

Examples

start_event Expression that (along with num_cks) identifies when to check test_expr.

test_expr Expression that should evaluate to TRUE num_cks cycles after start_event
initiates a next check.

start_event without test_expr The value of start_event was TRUE on a rising edge of clk, but num_cks
cycles later the value of test_expr was not TRUE.

illegal overlapping condition detected The check_overlapping parameter is set to 0 and start_event was TRUE on
the rising edge of clk, but a previous check was pending.

test_expr without start_event The check_missing_start parameter is set to 1 and start_event was not TRUE
on the rising edge of clk, but num_cks cycles later test_expr was TRUE.

num_cks parameter<=0 The num_cks parameter is less than 2.

cover_start_event The value of start_event was TRUE on a rising edge of clk.

cover_overlapping_start_events The value of start_event was TRUE on a rising edge of clk while a check was
pending.

assert_next #(
‘OVL_ERROR,

4,

1,

0,

‘OVL_ASSERT,

“error:”,

‘OVL_COVER_ALL)

// severity_level

// num_cks

// check_overlapping (off)

// check_missing_start (off)

// property_type

// msg

// coverage_level
valid_next_a_b (

clk,

reset_n,

a,

b );

// clock

// reset

// start_event

// test_expr
Accellera OVL Standard V1 Library Reference Manual 67

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_next
Ensures thatb is TRUE 4 cycles aftera is TRUE.

Ensures thatb is TRUE 4 cycles aftera is TRUE. Overlaps are not allowed

Ensures thatb is TRUE 4 cycles aftera is TRUE.  Missing-start check is on.

assert_next #(
‘OVL_ERROR,

4,

0,

0,

‘OVL_ASSERT,

“error:”,

‘OVL_COVER_ALL)

// severity_level

// num_cks

// check_overlapping (on)

// check_missing_start (off)

// property_type

// msg

// coverage_level
valid_next_a_b (

clk,

reset_n,

a,

b );

// clock

// reset

// start_event

// test_expr

assert_next #(
‘OVL_ERROR,

4,

1,

1,

‘OVL_ASSERT,

“error:”,

‘OVL_COVER_ALL)

// severity_level

// num_cks

// check_overlapping (off)

// check_missing_start (on)

// property_type

// msg

// coverage_level
valid_next_a_b (

clk,

reset_n,

a,

b );

// clock

// reset

// start_event

// test_expr

clk

reset_n

b

start_event without test_expr error

a

clk

reset_n

b

illegal overlapping condition detected error

a

not an overlap
on last cycle

clk

reset_n

b

test_expr without start_event error

a

missing-start check indeterminate
for 3 cycles after reset
Accellera OVL Standard V1 Library Reference Manual 68

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_no_overflow

from
k that
assert_no_overflow
Ensures that the value of a specified expression does not overflow.

Syntax

a s s e r t _ n o _ o v e r f l o w
[ # ( severity_level, width, min, max, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_no_overflow assertion checker checks the expressiontest_expr at each rising edge of
clk to determine if its value has changed from a value (at the previous rising edge ofclk) that was
equal tomax. If so, the checker verifies that the new value has not overflowedmax. That is, it
verifies the value oftest_expr is not greater thanmax or less than or equal tomin (in which case, the
assertion fails).

The checker is useful for verifying counters, where it can ensure the counter does not wrap 
the highest value to the lowest value in a specified range. For example, it can be used to chec
memory structure pointers do not wrap around. For a more general test for overflow, use
asser t_delta or asser t_fifo_index.

Parameters :

severity_level

width

min

max

property_type

msg

coverage_level

Class:

2-cycle assertion

clk reset_n

assert_no_overflow
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Width must be less than or equal to 32.
Default: 1.

min Minimum value in the test range of test_expr. Default: 0.

max Maximum value in the test range of test_expr. Default: 2**width - 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should not change from a value of max to a value out of the
test range or to a value equal to min.
Accellera OVL Standard V1 Library Reference Manual 69

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_no_overflow
Assertion Check

Cover Points

Errors

The parametersmin andmax must be specified such thatmin is less than or equal tomax.
Otherwise, the assertion fails on each tested clock cycle for whichtest_expr changed frommax.

Notes

 1. The assertion check compares the current value oftest_expr with its previous value. Therefore,
checking does not start until the second rising clock edge ofclk afterreset_n deasserts.

See also
a s s e r t _ d e l t a ,  a s s e r t _ f i f o _ i n d e x ,  a s s e r t _ i n c r e m e n t ,  a s s e r t _ n o _ o v e r f l o w

Example

Ensures thataddr does not overflow (i.e., change from a value of 4 at the rising edge ofclk to a
value of 0 or a value greater than 4 at the next rising edge ofclk).

ASSERT_NO_OVERFLOW Expression changed value from max to a value not in the range min + 1 to
max - 1.

cover_test_expr_change Expression changed value.

cover_test_expr_at_min Expression evaluated to min.

cover_test_expr_at_max Expression evaluated to max.

   assert_no_overflow #(
‘OVL_ERROR,

3,

0,

4,

‘OVL_ASSERT,

“Error: addr overflow”,

‘OVL_COVER_ALL)

// severity_level

// width

// min

// max

// property_type

// msg

// coverage_level
addr_with_overflow (

clk,

reset_n,

addr  );

// clock

// reset

// test_expr

clk

reset_n

addr

ASSERT_NO_OVERFLOW Error: addr overflow

x 0 1 2 3 4 0 3 4 5 0 1

ASSERT_NO_OVERFLOW Error: addr overflow
Accellera OVL Standard V1 Library Reference Manual 70

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_no_transition

ecified

nt

, the
assert_no_transition
Ensures that the value of a specified expression does not transition from a start state to the sp
next state.

Syntax

a s s e r t _ n o _ t r a n s i t i o n
[ # ( severity_level, width, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr, start_state, next_state ) ;

Parameters

Ports

Description

Theasser t_no_transition assertion checker checks the expressiontest_expr andstart_state at each
rising edge ofclk to see if they are the same. If so, the checker evaluates and stores the curre
value ofnext_state. At the next rising edge ofclk, the checker re-evaluatestest_expr to see if its
value equals the stored value ofnext_state. If so, the assertion fails. The checker returns to
checkingstart_state in the current cycle (unless a fatal failure occurred)

Thestart_state andnext_state expressions are verification events that can change. In particular
same assertion checker can be coded to verify multiple types of transitions oftest_expr.

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

2-cycle assertion

clk reset_n

assert_no_transition
test_expr [width - 1: 0]

start_state [width - 1: 0]
next_state [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should not transition to next_state on the rising edge of clk if
its value at the previous rising edge of clk is the same as the current value of
start_state.

start_state [ width - 1: 0 ] Expression that indicates the start state for the assertion check. If the start
state matches the value of test_expr on the previous rising edge of clk, the
check is performed.

next_state [ width - 1: 0 ] Expression that indicates the invalid next state for the assertion check. If the
value of test_expr was start_state at the previous rising edge of clk, then the
value of test_expr should not equal next_state on the current rising edge of
clk.
Accellera OVL Standard V1 Library Reference Manual 71

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_no_transition

-state
The checker is useful for ensuring certain control structure values (such as counters and finite
machine values) do not transition to invalid values.

Assertion Check

Cover Point

Notes

 1. The assertion check compares the current value oftest_expr with its previous value. Therefore,
checking does not start until the second rising clock edge ofclk afterreset_n deasserts.

See also
a s s e r t _ t r a n s i t i o n

Example

Ensures thatcurrent_state does not transition to ‘EMPTY improperly. Ifrequests is greater than
2 and the current_state is ‘FULL,current_state should not transition to ‘EMPTY in the next
cycle. If requests is not greater than 2 andcurrent_state is ‘ONE_IN_Q,current_state should
not transition to ‘EMPTY in the next cycle.

ASSERT_no_transition Expression transitioned from start_state to a value equal to next_state.

start_state Expression assumed a start state value.

assert_no_transition #(
‘OVL_ERROR,

3,

‘OVL_ASSERT,

“Error: bad state transition”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_transition (

clk,

reset_n,

current_state,

requests > 2 ? ‘FULL : ‘ONE_IN_Q,

‘EMPTY;

// clock

// reset

// test_expr

// start_state

// next_state

clk

reset_n

requests

ASSERT_NO_TRANSITION Error: bad state transition

current_state ‘IDLE ‘ONE_IN_Q

0

‘EMPTY ‘FULL ‘EMPTY ‘ONE_IN_Q

2 1 3 1 2 1
Accellera OVL Standard V1 Library Reference Manual 72

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_no_underflow

from
k that
assert_no_underflow
Ensures that the value of a specified expression does not underflow.

Syntax

a s s e r t _ n o _ u n d e r f l o w
[ # ( severity_level, width, min, max, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_no_underflow assertion checker checks the expressiontest_expr at each rising edge of
clk to determine if its value has changed from a value (at the previous rising edge ofclk) that was
equal tomin. If so, the checker verifies that the new value has not underflowedmin. That is, it
verifies the value oftest_expr is not less thanmin or greater than or equal tomax (in which case, the
assertion fails).

The checker is useful for verifying counters, where it can ensure the counter does not wrap 
the lowest value to the highest value in a specified range. For example, it can be used to chec
memory structure pointers do not wrap around. For a more general test for underflow, use
asser t_delta or asser t_fifo_index.

Parameters :

severity_level

width

min

max

property_type

msg

coverage_level

Class:

2-cycle assertion

clk reset_n

assert_no_underflow
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Width must be less than or equal to 32.
Default: 1.

min Minimum value in the test range of test_expr. Default: 0.

max Maximum value in the test range of test_expr. Default: 2**width - 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should not change from a value of min to a value out of range
or to a value equal to max.
Accellera OVL Standard V1 Library Reference Manual 73

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_no_underflow
Assertion Check

Cover Points

Errors

The parametersmin andmax must be specified such thatmin is less than or equal tomax.
Otherwise, the assertion fails on each tested clock cycle for whichtest_expr changed frommax.

Notes

 1. The assertion check compares the current value oftest_expr with its previous value. Therefore,
checking does not start until the second rising clock edge ofclk afterreset_n deasserts.

See also
a s s e r t _ d e l t a ,  a s s e r t _ f i f o _ i n d e x ,  a s s e r t _ d e c r e m e n t ,  a s s e r t _ n o _ o v e r f l o w

Example

Ensures thataddr does not underflow (i.e., change from a value of 3 at the rising edge ofclk to a
value of 7 or a value less than 3 at the next rising edge ofclk).

ASSERT_NO_UNDERFLOW Expression changed value from min to a value not in the range min + 1  to
max - 1.

cover_test_expr_change Expression changed value.

cover_test_expr_at_min Expression evaluated to min.

cover_test_expr_at_max Expression evaluated to max.

assert_no_underflow #(
‘OVL_ERROR,

3,

3,

7,

‘OVL_ASSERT,

“Error: addr underflow”,

‘OVL_COVER_ALL)

// severity_level

// width

// min

// max

// property_type

// msg

// coverage_level
addr_with_underflow (

clk,

reset_n,

addr  );

// clock

// reset

// test_expr

clk

reset_n

addr

ASSERT_NO_UNDERFLOW Error: addr underflow

X 7 6 5 4 3 2 1 3 7 6 5

ASSERT_NO_UNDERFLOW Error: addr underflow
Accellera OVL Standard V1 Library Reference Manual 74

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_odd_parity

error
assert_odd_parity
Ensures that the value of a specified expression has odd parity.

Syntax

a s s e r t _ o d d _ p a r i t y
[ # ( severity_level,  width,  property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_odd_parity assertion checker checks the expressiontest_expr at each rising edge ofclk
to verify the expression evaluates to a value that has odd parity. A value has odd parity if the
number of bits set to 1 is odd.

The checker is useful for verifying control circuits, for example, it can be used to verify a
finite-state machine with error detection. In a datapath circuit the checker can perform parity
checking of address and data buses.

Assertion Check

Cover Point

See also
a s s e r t _ e v e n _ p a r i t y

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_odd_parity
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should evaluate to a value with odd parity on the rising clock
edge.

ASSERT_ODD_PARITY Expression evaluated to a value whose parity is not odd.

cover_test_expr_change Expression has changed value.
Accellera OVL Standard V1 Library Reference Manual 75

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_odd_parity
Example

Ensures thatdata has odd parity at each rising edge ofclk.

assert_odd_parity #(
‘OVL_ERROR,

8,

‘OVL_ASSERT,

“Error: data has even parity”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_data_odd_parity (

clk,

reset_n,

data );

// clock

// reset

// test_expr

clk

reset_n

data

ASSERT_ODD_PARITY

B

Error: data has even parity

4 7 E 9 B 2 1 D
Accellera OVL Standard V1 Library Reference Manual 76

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_one_cold

e, if

te
a
n bus
assert_one_cold
Ensures that the value of a specified expression is one-cold (or equals an inactive state valu
specified).

Syntax

a s s e r t _ o n e _ c o l d
[ # ( severity_level, width, inactive, property_type, msg, coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_one_cold assertion checker checks the expressiontest_expr at each rising edge ofclk
to verify the expression evaluates to a one-cold or inactive state value. A one-cold value has
exactly one bit set to 0. The inactive state value for the checker is set by theinactive parameter.
Choices are: ‘OVL_ALL_ZEROS (e.g., 4‘b0000), ‘OVL_ALL_ONES (e.g.,4‘b1111) or
‘OVL_ONE_COLD. The defaultinactive parameter value is ‘OVL_ONE_COLD, which indicates
test_expr has no inactive state (so only a one-cold value is valid for each check).

The checker is useful for verifying control circuits, for example, it can ensure that a finite-sta
machine with one-cold encoding operates properly and has exactly one bit asserted low. In 
datapath circuit the checker can ensure that the enabling conditions for a bus do not result i
contention.

Parameters :

severity_level

width

inactive

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_one_cold
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 32.

inactive Inactive state of test_expr: ‘OVL_ALL_ZEROS, ‘OVL_ALL_ONES or
‘OVL_ONE_COLD. Default: ‘OVL_ONE_COLD.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should evaluate to a one-cold or inactive value on the rising
clock edge.
Accellera OVL Standard V1 Library Reference Manual 77

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_one_cold

F

Assertion Checks

Cover Points

Notes

 1. By default, theasser t_one_cold assertion is pessimistic and the assertion fails iftest_expr is
active and multiple bits are not 1 (i.e.equals 0, X, Z, etc.). However, if ‘OVL_XCHECK_OF
is set, the assertion fails if and only iftest_expr is active and multiple bits are 0.

See also
a s s e r t _ o n e _ h o t ,  a s s e r t _ z e r o _ o n e _ h o t

Examples

Ensures thatsel_n is one-cold at each rising edge ofclk.

ASSERT_ONE_COLD Expression assumed an active state with multiple bits set to 0.

test_expr contains X/Z value Expression evaluated to a value with an X or Z bit, and ‘OVL_XCHECK_OFF
is not set.

cover_all_one_colds_checked Expression evaluated to all possible combinations of one-cold values.

cover_test_expr_all_zeros Expression evaluated to the inactive state and the inactive parameter was set
to ‘OVL_ALL_ZEROS.

cover_test_expr_all_ones Expression evaluated to the inactive state and the inactive parameter was set
to ‘OVL_ALL_ONES.

cover_test_expr_change Expression has changed value.

assert_one_cold #(
‘OVL_ERROR,

4,

‘OVL_ONE_COLD,

‘OVL_ASSERT,

“Error: sel_n not one-cold”,

‘OVL_COVER_ALL)

// severity_level

// width

// inactive (no inactive state)

// property_type

// msg

// coverage_level
valid_sel_n_one_cold (

clk,

reset_n,

sel_n );

// clock

// reset

// test_expr

clk

reset_n

sel_n

ASSERT_ONE_COLD Error: sel_n not one-cold

XXXX

test_expr contains X/Z value

1101 1011 1101 0111 1110 1111 0111 1011
Accellera OVL Standard V1 Library Reference Manual 78

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_one_cold
Ensures thatsel_n is one-cold or inactive (4’b1111) at each rising edge ofclk.

Ensures thatsel_n is one-cold or inactive (4’b0000) at each rising edge ofclk.

assert_one_cold #(
‘OVL_ERROR,

4,

‘OVL_ALL_ONES,

‘OVL_ASSERT,

“Error: sel_n not one-cold or inactive”,

‘OVL_COVER_ALL)

// severity_level

// width

// inactive

// property_type

// msg

// coverage_level
valid_sel_n_one_cold (

clk,

reset_n,

sel_n );

// clock

// reset

// test_expr

assert_one_cold #(
‘OVL_ERROR,

4,

‘OVL_ALL_ZEROS,

‘OVL_ASSERT,

“Error: sel_n not one-cold”,

‘OVL_COVER_ALL)

// severity_level

// width

// inactive

// property_type

// msg

// coverage_level
valid_sel_n_one_cold (

clk,

reset_n,

sel_n );

// clock

// reset

// test_expr

clk

reset_n

sel_n

ASSERT_ONE_COLD

XXXX

test_expr contains X/Z value
Error: sel_n not one-cold or inactive

1111 1011 1101 1100 1110 1111 0111 1011

clk

reset_n

sel_n

ASSERT_ONE_COLD Error: sel_n not one-cold or inactive

XXXX

test_expr contains X/Z value

0000 1011 1101 0111 1110 1111 0111 1011
Accellera OVL Standard V1 Library Reference Manual 79

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_one_hot

 1.

te
a
n bus
assert_one_hot
Ensures that the value of a specified expression is one-hot.

Syntax

a s s e r t _ o n e _ h o t
[ # ( severity_level, width, property_type, msg, coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_one_hot assertion checker checks the expressiontest_expr at each rising edge ofclk to
verify the expression evaluates to a one-hot value. A one-hot value has exactly one bit set to

The checker is useful for verifying control circuits, for example, it can ensure that a finite-sta
machine with one-hot encoding operates properly and has exactly one bit asserted high. In 
datapath circuit the checker can ensure that the enabling conditions for a bus do not result i
contention.

Assertion Checks

Cover Points

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_one_hot
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 32.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should evaluate to a one-hot value on the rising clock edge.

ASSERT_ONE_HOT Expression evaluated to zero or to a value with multiple bits set to 1.

test_expr contains X/Z value Expression evaluated to a value with an X or Z bit, and ‘OVL_XCHECK_OFF
is not set.

cover_all_one_hots_checked Expression evaluated to all possible combinations of one-hot values.

cover_test_expr_change Expression has changed value.
Accellera OVL Standard V1 Library Reference Manual 80

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_one_hot
Notes

 1. By default, theasser t_one_hot assertion is optimistic and the assertion fails iftest_expr is
zero or has multiple bits not set to 0 (i.e.equals 1, X, Z, etc.). However, if
‘OVL_XCHECK_OFF is set, the ASSERT_ONE_HOT assertion fails if and only iftest_expr
is zero or has multiple bits that are 1.

See also
a s s e r t _ o n e _ c o l d ,  a s s e r t _ z e r o _ o n e _ h o t

Example

Ensures thatsel is one-hot at each rising edge ofclk.

assert_one_hot #(
‘OVL_ERROR,

4,

‘OVL_ASSERT,

“Error: sel not one-hot”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_sel_one_hot (

clk,

reset_n,

sel );

// clock

// reset

// test_expr

clk

reset_n

sel

ASSERT_ONE_HOT

XXXX

test_expr contains X/Z value
Error: sel not one-hot

1000 0100 0010 0011 0001 0100 0000 0100
Accellera OVL Standard V1 Library Reference Manual 81

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_proposition
assert_proposition
Ensures that the value of a specified expression is always combinationally TRUE.

Syntax

a s s e r t _ p r o p o s i t i o n
[ # ( severity_level, property_type,  msg,  coverage_level ) ]
instance_name ( reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_proposition assertion checker checks the single-bit expressiontest_expr when it
changes value to verify the expression evaluates to TRUE.

Assertion Check

Cover Points

none

Notes

 1. Formal verification tools and hardware emulation/acceleration systems might ignore this
checker. To verify propositional properties with these tools, consider usingasser t_always.

See also
a s s e r t _ a l w a y s ,  a s s e r t _ a l w a y s _ o n _ e d g e ,  a s s e r t _ i m p l i c a t i o n ,  a s s e r t _ n e v e r

Parameters :

severity_level

property_type

msg

coverage_level

Class:

combinational assertion

reset_n

assert_proposition
test_expr

severity_level Severity of the failure. Default: ‘OVL_ERROR.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr Expression that should always evaluate to TRUE.

ASSERT_PROPOSITION Expression evaluated to FALSE.
Accellera OVL Standard V1 Library Reference Manual 82

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_proposition
Example

Ensures thatcurrent_addr equalsaddr while bus_gnt is TRUE.

assert_proposition #(
‘OVL_ERROR,

‘OVL_ASSERT,

“Error: current_addr changed while bus granted”,

‘OVL_COVER_ALL)

// severity_level

// property_type

// msg

// coverage_level
valid_current_addr (

bus_gnt,

current_addr == addr );

// reset

// test_expr

bus_gnt

addr

ASSERT_PROPOSITION Error: current_addr changed while bus granted

FFFF AA00

FFFF AA00current_addr AAF0
Accellera OVL Standard V1 Library Reference Manual 83

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_quiescent_state

f a

lue
 of

r,
cked in

.

assert_quiescent_state
Ensures that the value of a specified state expression equals a corresponding check value i
specified sample event has transitioned to TRUE.

Syntax

a s s e r t _ q u i e s c e n t _ s t a t e
[ # ( severity_level, width, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, state_expr, check_value, sample_event ) ;

Parameters

Ports

Description

Theasser t_quiescent_state assertion checker checks the expressionsample_event at each rising
edge ofclk to see if its value has transitioned to TRUE (i.e., its current value is TRUE and its va
on the previous rising edge ofclk is not TRUE). If so, the checker verifies that the current value
state_expr equals the current value ofcheck_value. The assertion fails ifstate_expr is not equal to
check_value.

Thestate_expr andcheck_value expressions are verification events that can change. In particula
the same assertion checker can be coded to compare different check values (if they are che
different cycles).

The checker is useful for verifying the states of state machines when transactions complete

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

2-cycle assertion

clk reset_n

assert_quiescent_state
sample_event

state_expr [width - 1: 0]
check_value [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the state_expr and check_value arguments. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

state_expr [ width - 1: 0 ] Expression that should have the same value as check_value on the rising
edge of clk if sample_event transitioned to TRUE in the previous clock cycle
(or is currently transitioning to TRUE).

check_value [ width - 1: 0 ] Expression that indicates the value state_expr should have on the rising edge
of clk if sample_event transitioned to TRUE in the previous clock cycle (or is
currently transitioning to TRUE).

sample_event Expression that initiates the quiescent state check when its value transitions
to TRUE.
Accellera OVL Standard V1 Library Reference Manual 84

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_quiescent_state

lue
Assertion Check

Cover Points

none

Notes

 1. The assertion check compares the current value ofsample_event with its previous value.
Therefore, checking does not start until the second rising clock edge ofclk afterreset_n
deasserts.

 2. The checker recognizes the Verilog macro ‘OVL_END_OF_SIMULATION=eos_signal. If set,
the quiescent state check is also performed at the end of simulation, wheneos_signal asserts
(regardless of the value ofsample_event).

 3. Formal verification tools and hardware emulation/acceleration systems might ignore this
checker.

See also
a s s e r t _ n o _ t r a n s i t i o n ,  a s s e r t _ t r a n s i t i o n

Example

Ensures that wheneverend_of_transaction asserts at the completion of each transaction, the va
of transaction_state is ‘TR_IDLE (if prev_tr is ‘TR_READ) or ‘TR_WAIT (otherwise).

ASSERT_QUIESCENT_STATE The sample_event expression transitioned to TRUE, but the values of
state_expr and check_value were not the same.

assert_quiescent_state #(
‘OVL_ERROR,

4,

‘OVL_ASSERT,

“Error: illegal end of transaction”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_end_of_transaction_state (

clk,

reset_n,

transaction_state,

prev_tr == ‘TR_READ ? ‘TR_IDLE : ‘TR_WAIT

end_of_transaction);

// clock

// reset

// state_expr

// check_value

// sample_event

clk

reset_n

transaction_state

ASSERT_QUIESCENT_STATE Error: illegal end of transaction

check_value

X ‘TR_READ ‘TR_IDLE ‘TR_IDLE

end_of_transaction

‘TR_WRITE ‘TR_READ

‘TR_IDLE ‘TR_WAIT‘TR_WAIT
Accellera OVL Standard V1 Library Reference Manual 85

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_range

-state
path
assert_range
Ensures that the value of a specified expression is in a specified range.

Syntax

a s s e r t _ r a n g e
[ # ( severity_level, width, min, max, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_range assertion checker checks the expressiontest_expr at each rising edge ofclk to
verify the expression falls in the range frommin to max, inclusive. The assertion fails iftest_expr <
min or max < test_expr.

The checker is useful for ensuring certain control structure values (such as counters and finite
machine values) are within their proper ranges. The checker is also useful for ensuring data
variables and expressions are in legal ranges.

Assertion Check

Parameters :

severity_level

width

min

max

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_range

test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

min Minimum value allowed for test_expr. Default: 0.

max Maximum value allowed for test_expr. Default: 2**width  - 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should evaluate to a value in the range from min to max
(inclusive) on the rising clock edge.

ASSERT_RANGE Expression evaluated outside the range min to max.
Accellera OVL Standard V1 Library Reference Manual 86

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_range
Cover Points

Errors

The parametersmin andmax must be specified such thatmin is less than or equal tomax.
Otherwise, the assertion fails on each tested clock cycle.

See also
a s s e r t _ a l w a y s ,  a s s e r t _ i m p l i c a t i o n ,  a s s e r t _ n e v e r ,  a s s e r t _ p r o p o s i t i o n

Example

Ensures that (sel_high - sel_low) is in the range 2 to 5 at each rising edge ofclk.

cover_cover_test_expr_change Expression changed value.

cover_test_expr_at_min Expression evaluated to min.

cover_test_expr_at_max Expression evaluated to max.

assert_range #(
‘OVL_ERROR,

3,

2,

5,

‘OVL_ASSERT,

“Error: sel_high - sel_low not within 2 to 5”,

‘OVL_COVER_ALL)

// severity_level

// width

// min

// max

// property_type

// msg

// coverage_level
valid_sel (

clk,

reset_n,

sel_high - sel_low );

// clock

// reset

// test_expr

clk

reset_n

sel_high - sel_low

ASSERT_RANGE Error: sel_high - sel_low not within 2 to 5

2 4 7 5 2X
Accellera OVL Standard V1 Library Reference Manual 87

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_time

cles
assert_time
Ensures that the value of a specified expression remains TRUE for a specified number of cy
after a start event.

Syntax

a s s e r t _ t i m e
[ # ( severity_level, num_cks, action_on_new_start, property_type, msg, coverage_level ) ]
instance_name ( clk, reset_n, start_event, test_expr ) ;

Parameters

Ports

Description

Theasser t_time assertion checker checks the expressionstart_event at each rising edge ofclk to
determine whether or not to initiate a check. Once initiated, the check evaluatestest_expr each
rising edge ofclk for num_cks cycles to verify that its value is TRUE. During that time, the
assertion fails each cycle a sampled value oftest_expr is not TRUE.

Parameters :

severity_level

num_cks

action_on_new_start

property_type

msg

coverage_level

Class:

n-cycle assertion

clk reset_n

assert_time
start_event

test_expr

severity_level Severity of the failure. Default: ‘OVL_ERROR.

num_cks Number of cycles after start_event is TRUE that test_expr  must be held
TRUE. Default: 1.

action_on_new_start Method for handling a new start event that occurs while a check is pending.
Values are: ‘OVL_IGNORE_NEW_START, ‘OVL_RESET_ON_NEW_START
and ‘OVL_ERROR_ON_NEW_START. Default:
‘OVL_IGNORE_NEW_START.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

start_event Expression that (along with num_cks) identifies when to check test_expr.

test_expr Expression that should evaluate to TRUE for num_cks cycles after
start_event initiates a check.
Accellera OVL Standard V1 Library Reference Manual 88

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_time

led by

s

The method used to determine what constitutes a start event for initiating a check is control
theaction_on_new_start parameter. If no check is in progress whenstart_event is sampled TRUE, a
new check is initiated. But, if a check is in progress whenstart_event is sampled TRUE, the checker
has the following actions:

 ❏ ‘OVL_IGNORE_NEW_START

The checker does not samplestart_event for the nextnum_cks cycles after a start event.

 ❏ ‘OVL_RESET_ON_NEW_START

The checker samplesstart_event every cycle. If a check is pending and the value ofstart_event
is TRUE, the checker terminates the check and initiates a new check without sampling
test_expr.

 ❏ ‘OVL_ERROR_ON_NEW_START

The checker samplesstart_event every cycle. If a check is pending and the value ofstart_event
is TRUE, the assertion fails with ani l legal star t event violation. In this case, the checker doe
not initiate a new check, does not terminate a pending check and reports an additional
assertion violation iftest_expr is FALSE.

Assertion Checks

Cover Points

See also
a s s e r t _ c h a n g e ,  a s s e r t _ n e x t ,  a s s e r t _ f r a m e ,  a s s e r t _ u n c h a n g e ,
a s s e r t _ w i n _ c h a n g e ,  a s s e r t _ w i n _ u n c h a n g e ,  a s s e r t _ w i n d o w

ASSERT_TIME The value of test_expr was not TRUE within num_cks cycles after start_event
was sampled TRUE.

illegal start event The action_on_new_start parameter is set to
‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was monitoring test_expr.

cover_window_open A time check was initiated.

cover_window_close A time check lasted the full num_cks cycles.

cover_window_resets The action_on_new_start parameter is ‘OVL_RESET_ON_NEW_START,
and start_event was sampled TRUE while the checker was monitoring
test_expr.
Accellera OVL Standard V1 Library Reference Manual 89

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_time
Examples

Ensures thatptr is sampled in the range 1 to 3 for three cycles afterreq is sampled equal to 1 at the
rising edge ofclk. If req is sampled equal to 1 when the checker samplesptr, a new check is not
initiated (i.e., the new start is ignored).

Ensures thatptr is sampled in the range 1 to 3 for three cycles afterreq is sampled equal to 1 at the
rising edge ofclk. If req is sampled equal to 1 when the checker samplesptr, a new check is
initiated (i.e., the new start restarts a check).

assert_time #(
‘OVL_ERROR,

3,

‘OVL_IGNORE_NEW_START,

‘OVL_ASSERT,

“Error: invalid transaction”,

‘OVL_COVER_ALL)

// severity_level

// num_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_transaction (

clk,

reset_n,

req == 1,

ptr >= 1 && ptr <= 3);

// clock

// reset

// start_event

// test_expr

assert_time #(
‘OVL_ERROR,

3,

‘OVL_RESET_ON_NEW_START,

‘OVL_ASSERT,

“Error: invalid transaction”,

‘OVL_COVER_ALL)

// severity_level

// num_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_transaction (

clk,

reset_n,

req == 1,

ptr >= 1 && ptr <= 3);

// clock

// reset

// start_event

// test_expr

clk

reset_n

ptr

ASSERT_TIME Error: invalid transaction

X 0

req == 1

3 2 1 0 2 1 0

ptr >= 1 && ptr <= 3

clk

reset_n

ptr

ASSERT_TIME Error: invalid transaction

X 0

req == 1

3 2 0 2 1 0

ptr >= 1 && ptr <= 3
Accellera OVL Standard V1 Library Reference Manual 90

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_time
Ensures thatptr is sampled in the range 1 to 3 for three cycles afterreq is sampled equal to 1 at the
rising edge ofclk. If req is sampled equal to 1 when the checker samplesptr, the checker issues an
i l legal star t event violation and does not start a new check.

assert_time #(
‘OVL_ERROR,

3,

‘OVL_ERROR_ON_NEW_START,

‘OVL_ASSERT,

“Error: invalid transaction”,

‘OVL_COVER_ALL)

// severity_level

// num_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_transaction (

clk,

reset_n,

req == 1,

ptr >= 1 && ptr <= 3);

// clock

// reset

// start_event

// test_expr

clk

reset_n

ptr

illegal start event

X 0

req == 1

3 2 2 1 0

ptr >= 1 && ptr <= 3

1 3

no violation
Accellera OVL Standard V1 Library Reference Manual 91

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_transition

nt

, the
assert_transition
Ensures that the value of a specified expression transitions properly from a start state to the
specified next state.

Syntax

a s s e r t _ t r a n s i t i o n
[ # ( severity_level, width, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr, start_state, next_state ) ;

Parameters

Ports

Description

Theasser t_transition assertion checker checks the expressiontest_expr andstart_state at each
rising edge ofclk to see if they are the same. If so, the checker evaluates and stores the curre
value ofnext_state. At the next rising edge ofclk, the checker re-evaluatestest_expr to see if its
value equals the stored value ofnext_state. If not, the assertion fails. The checker returns to
checkingstart_state in the current cycle (unless a fatal failure occurred)

Thestart_state andnext_state expressions are verification events that can change. In particular
same assertion checker can be coded to verify multiple types of transitions oftest_expr.

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

2-cycle assertion

clk reset_n

assert_transition
test_expr [width - 1: 0]

start_state [width - 1: 0]
next_state [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should transition to next_state on the rising edge of clk if its
value at the previous rising edge of clk is the same as the current value of
start_state.

start_state [ width - 1: 0 ] Expression that indicates the start state for the assertion check. If the start
state matches the value of test_expr on the previous rising edge of clk, the
check is performed.

next_state [ width - 1: 0 ] Expression that indicates the only valid next state for the assertion check. If
the value of test_expr was start_state at the previous rising edge of clk, then
the value of test_expr should equal next_state on the current rising edge of
clk.
Accellera OVL Standard V1 Library Reference Manual 92

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_transition

-state
The checker is useful for ensuring certain control structure values (such as counters and finite
machine values) transition properly.

Assertion Check

Cover Point

Notes

 1. The assertion check compares the current value oftest_expr with its previous value. Therefore,
checking does not start until the second rising clock edge ofclk afterreset_n deasserts.

See also
a s s e r t _ n o _ t r a n s i t i o n

Example

Ensures thatcount transitions from 3’d3 properly. Ifsel_8 is 0,count should have transitioned to
3’d0. Otherwise,count should have transitioned to 3’d4.

ASSERT_TRANSITION Expression transitioned from start_state to a value different from next_state.

start_state Expression assumed a start state value.

assert_transition #(
‘OVL_ERROR,

3,

‘OVL_ASSERT,

“Error: bad count transition”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_count (

clk,

reset_n,

count,

3’d3,

(sel_8 == 1’b0) ? 3’d0 : 3’d4  );

// clock

// reset

// test_expr

// start_state

// next_state

clk

reset_n

count

ASSERT_TRANSITION Error: bad count transition

X

sel_8

(sel_8 == 1’b0) ? 3’d0 : 3’d4

0 1 2 3 0 1 2 0 23 1

0 4
Accellera OVL Standard V1 Library Reference Manual 93

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_unchange

cycles
assert_unchange
Ensures that the value of a specified expression does not change for a specified number of 
after a start event initiates checking.

Syntax

a s s e r t _ u n c h a n g e
[ # ( severity_level, width, num_cks, action_on_new_start, property_type,
msg,  coverage_level ) ]
instance_name ( clk, reset_n, start_event, test_expr ) ;

Parameters

Ports

Description

Theasser t_unchange assertion checker checks the expressionstart_event at each rising edge of
clk to determine if it should check for a change in the value oftest_expr. If start_event is sampled
TRUE, the checker evaluatestest_expr and re-evaluatestest_expr at each of the subsequentnum_cks
rising edges ofclk.  Each time the checker re-evaluatestest_expr, if its value has changed from its
value in the previous cycle, the assertion fails.

Parameters :

severity_level

width

num_cks

action_on_new_start

property_type

msg

coverage_level

Class:

n-cycle assertion

clk reset_n

assert_unchange
start_event

test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

num_cks Number of cycles test_expr should remain unchanged after a start event.
Default: 1.

action_on_new_start Method for handling a new start event that occurs before num_cks clock
cycles transpire without a change in the value of test_expr. Values are:
‘OVL_IGNORE_NEW_START, ‘OVL_RESET_ON_NEW_START and
‘OVL_ERROR_ON_NEW_START. Default: ‘OVL_IGNORE_NEW_START.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

start_event Expression that (along with action_on_new_start) identifies when to start
checking test_expr .

test_expr [ width - 1: 0 ] Expression that should not change value for num_cks cycles from the start
event unless the check is interrupted by a valid new start event.
Accellera OVL Standard V1 Library Reference Manual 94

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_unchange

state of

s

ple, it
ly
data
te to
The method used to determine how to handle a new start event, when the checker is in the 
checking for a change intest_expr, is controlled by theaction_on_new_start parameter. The checker
has the following actions:

 ❏ ‘OVL_IGNORE_NEW_START

The checker does not samplestart_event for the nextnum_cks cycles after a start event.

 ❏ ‘OVL_RESET_ON_NEW_START

The checker samplesstart_event every cycle. If a check is pending and the value ofstart_event
is TRUE, the checker terminates the check and initiates a new check.

 ❏ ‘OVL_ERROR_ON_NEW_START

The checker samplesstart_event every cycle. If a check is pending and the value ofstart_event
is TRUE, the assertion fails with ani l legal star t event violation. In this case, the checker doe
not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events. For exam
can be used to check that multiple-cycle operations with enabling conditions function proper
with the same data. It can be used to check that single-cycle operations function correctly with
loaded at different cycles. It also can be used to verify synchronizing conditions that require da
be stable after an initial triggering event.

Assertion Checks

Cover Points

See also
a s s e r t _ c h a n g e ,  a s s e r t _ t i m e ,  a s s e r t _ w i n _ c h a n g e ,  a s s e r t _ w i n _ u n c h a n g e ,
a s s e r t _ w i n d o w

ASSERT_UNCHANGE The test_expr expression changed value within num_cks cycles after
start_event was sampled TRUE.

illegal start event The action_on_new_start parameter is set to
‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was in the state of checking for a change in the value
of test_expr.

cover_window_open A change check was initiated.

cover_window_close A change check lasted the full num_cks cycles.

cover_window_resets The action_on_new_start parameter is ‘OVL_RESET_ON_NEW_START,
and start_event was sampled TRUE while the checker was monitoring
test_expr without detecting a changed value.
Accellera OVL Standard V1 Library Reference Manual 95

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_unchange

ring
Examples

Ensures thata remains unchanged while a divide operation is performed (8 cycles). Restarts du
divide operations are ignored.

Ensures thata remains unchanged while a divide operation is performed (8 cycles). A restart
during a divide operation starts the check over.

 assert_unchange #(
‘OVL_ERROR,

8,

8,

‘OVL_IGNORE_NEW_START,

‘OVL_ASSERT,

“Error: a changed during divide”,

‘OVL_COVER_ALL)

// severity_level

// width

// num_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_div_unchange_a (

clk,

reset_n,

start == 1,

a);

// clock

// reset

// start_event

// test_expr

 assert_unchange #(
‘OVL_ERROR,

8,

8,

‘OVL_RESET_ON_NEW_START,

‘OVL_ASSERT,

“Error: a changed during divide”,

‘OVL_COVER_ALL)

// severity_level

// width

// num_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_div_unchange_a (

clk,

reset_n,

start == 1,

a);

// clock

// reset

// start_event

// test_expr

clk

reset_n

a

ASSERT_UNCHANGE Error: a changed during divide

31

start == 1

170

clk

reset_n

a

ASSERT_UNCHANGE Error: a changed during divide

31

start == 1

170
Accellera OVL Standard V1 Library Reference Manual 96

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_unchange
Ensures thata remains unchanged while a divide operation is performed (8 cycles). A restart
during a divide operation is a violation.

 assert_unchange #(
‘OVL_ERROR,

8,

8,

‘OVL_ERROR_ON_NEW_START,

‘OVL_ASSERT,

“Error: a changed during divide”,

‘OVL_COVER_ALL)

// severity_level

// width

// num_cks

// action_on_new_start

// property_type

// msg

// coverage_level
valid_div_unchange_a (

clk,

reset_n,

start == 1,

a);

// clock

// reset

// start_event

// test_expr

clk

reset_n

a

ASSERT_UNCHANGE Error: a changed during divide

31

start == 1

170

illegal start event
Accellera OVL Standard V1 Library Reference Manual 97

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_width

k

assert_width
Ensures that when value of a specified expression is TRUE, it remains TRUE for a minimum
number of clock cycles and transitions from TRUE no later than a maximum number of cloc
cycles.

Syntax

a s s e r t _ w i d t h
[ # ( severity_level, min_cks, max_cks, property_type, msg,  coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_width assertion checker checks the single-bit expressiontest_expr at each rising edge
of clk. If the value oftest_expr is TRUE, the checker performs the following steps:

 1. Unless it is disabled by settingmin_cks to 0, aminimum check is initiated. The check evaluates
test_expr at each subsequent rising edge ofclk. If its value is not TRUE, the minimum check
fails. Otherwise, aftermin_cks -1 cycles transpire, theminimum check terminates.

 2. Unless it is disabled by settingmax_cks to 0, amaximum check is initiated. The check
evaluatestest_expr at each subsequent rising edge ofclk. If its value does not transition from
TRUE by the timemax_cks cycles transpire (from the start of checking), themaximum check
fails.

Parameters :

severity_level

min_cks

max_cks

property_type

msg

coverage_level

Class:

n-cycle assertion

clk reset_n

assert_widthtest_expr

severity_level Severity of the failure. Default: ‘OVL_ERROR.

min_cks Minimum number of clock edges test_expr must remain TRUE once it is
sampled TRUE. The special case where min_cks is 0 turns off minimum
checking (i.e., test_expr can transition from TRUE in the next clock cycle).
Default: 1 (i.e., same as 0).

max_cks Maximum number of clock edges test_expr can remain TRUE once it is
sampled TRUE. The special case where max_cks is 0 turns off maximum
checking (i.e., test_expr can remain TRUE for any number of cycles). Default:
1 (i.e., test_expr must transition from TRUE in the next clock cycle).

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

test_expr Expression that should evaluate to TRUE for at least min_cks cycles and at
most max_cks cycles after it is sampled TRUE.
Accellera OVL Standard V1 Library Reference Manual 98

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_width
 3. The checker returns to checkingtest_expr in the next cycle. In particular iftest_expr is TRUE, a
new set of checks is initiated.

Assertion Checks

Cover Points

See also
a s s e r t _ c h a n g e ,  a s s e r t _ t i m e ,  a s s e r t _ u n c h a n g e

Example

Ensuresreq asserts for 2 or 3 cycles.

MIN_CHECK The value of test_expr was held TRUE for less than min_cks cycles.

MAX_CHECK The value of test_expr was held TRUE for more than max_cks cycles.

min_cks > max_cks The min_cks parameter is greater than the max_cks parameter (and
max_cks >0). Unless the violation is fatal, either the minimum or maximum
check will fail.

cover_test_expr_asserts A check was initiated (i.e., test_expr was sampled TRUE).

cover_test_expr_asserted_for_
min_cks

The expression test_expr was held TRUE for exactly min_cks cycles
(min_cks > 0).

cover_test_expr_asserted_for_
max_cks

The expression test_expr was held TRUE for exactly max_cks cycles
(max_cks > 0).

assert_width #(
‘OVL_ERROR,

2,

3,

‘OVL_ASSERT,

“Error: invalid request”,

‘OVL_COVER_ALL)

// severity_level

// min_cks

// max_cks

// property_type

// msg

// coverage_level
valid_request (

clk,

reset_n,

req == 1);

// clock

// reset

// test_expr

clk

reset_n

MIN_CHECK Error: invalid request

req

MAX_CHECK Error: invalid request

1 2 1 2 3 41
Accellera OVL Standard V1 Library Reference Manual 99

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_win_change

tart

t

.

assert_win_change
Ensures that the value of a specified expression changes in a specified window between a s
event and an end event.

Syntax

a s s e r t _ w i n _ c h a n g e
[ # ( severity_level, width, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, start_event, test_expr, end_event ) ;

Parameters

Ports

Description

Theasser t_win_change assertion checker checks the expressionstart_event at each rising edge of
clk to determine if it should open an event window at the start of the next cycle. Ifstart_event is
sampled TRUE, the checker evaluatestest_expr. At each subsequent rising edge ofclk, the checker
evaluatesend_event and re-evaluatestest_expr. If end_event is TRUE, the checker closes the even
window and if all sampled values oftest_expr equal its value at the start of the window, then the
assertion fails. The checker returns to the state of monitoringstart_event at the next rising edge of
clk after the event window is closed.

The checker is useful for ensuring proper changes in structures in various event windows. A
typical use is to verify that synchronization logic responds after a stimulus (for example, bus
transactions occurs without interrupts or write commands are not issued during read cycles)
Another typical use is verifying a finite-state machine responds correctly in event windows.

Assertion Check

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

event-bounded assertion

clk reset_n

assert_win_unchange
test_expr [width - 1: 0]

end_event
start_event

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

start_event Expression that opens an event window.

test_expr [ width - 1: 0 ] Expression that should change value in the event window

end_event Expression that closes an event window.

ASSERT_WIN_CHANGE The test_expr expression did not change value during an open event window.
Accellera OVL Standard V1 Library Reference Manual 100

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_win_change
Cover Points

See also
a s s e r t _ c h a n g e ,  a s s e r t _ t i m e ,  a s s e r t _ u n c h a n g e ,  a s s e r t _ w i n _ u n c h a n g e ,
a s s e r t _ w i n d o w

Example

Ensures thatdata changes value in every data read window.

cover_window_open An event window opened (start_event was TRUE).

cover_window_close An event window closed (end_event was TRUE in an open event window).

assert_win_change #(
‘OVL_ERROR,

32,

‘OVL_ASSERT,

“Error: read not synchronized”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_sync_data_bus_rd (

clk,

reset_n,

rd,

data,

rd_ack );

// clock

// reset

// start_event

// test_expr

// end_event

clk

reset_n

data

ASSERT_WIN_CHANGE Error: read not synchronized

X FF 3A C7

rd

rd_ack
Accellera OVL Standard V1 Library Reference Manual 101

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_win_unchange

ween a

event

g read
assert_win_unchange
Ensures that the value of a specified expression does not change in a specified window bet
start event and an end event.

Syntax

a s s e r t _ w i n _ u n c h a n g e
[ # ( severity_level, width, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, start_event, test_expr, end_event ) ;

Parameters

Ports

Description

Theasser t_win_unchange assertion checker checks the expressionstart_event at each rising edge
of clk to determine if it should open an event window at the start of the next cycle. Ifstart_event is
sampled TRUE, the checker evaluatestest_expr. At each subsequent rising edge ofclk, the checker
evaluatesend_event and re-evaluatestest_expr. If a sampled value oftest_expr is changed from its
value in the previous cycle, then the assertion fails. Ifend_event is TRUE, the checker closes the
event window and returns to the state of monitoringstart_event at the next rising edge ofclk.

The checker is useful for ensuring certain variables and expressions do not change in various
windows. A typical use is to verify that synchronization logic responds after a stimulus (for
example, bus transactions occurs without interrupts or write commands are not issued durin
cycles). Another typical use is to verify that non-deterministic multiple-cycle operations with
enabling conditions function properly with the same data.

Assertion Check

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

event-bounded assertion

clk reset_n

assert_win_unchange
test_expr [width - 1: 0]

end_event
start_event

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

start_event Expression that opens an event window.

test_expr [ width - 1: 0 ] Expression that should not change value in the event window

end_event Expression that closes an event window.

ASSERT_WIN_UNCHANGE The test_expr expression changed value during an open event window.
Accellera OVL Standard V1 Library Reference Manual 102

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_win_unchange

d

Cover Points

See also
a s s e r t _ c h a n g e ,  a s s e r t _ t i m e ,  a s s e r t _ u n c h a n g e ,  a s s e r t _ w i n _ c h a n g e ,
a s s e r t _ w i n d o w

Example

Ensures that thea input to the divider remains unchanged while a divide operation is performe
(i.e., in the window fromstar t to done).

cover_window_open An event window opened (start_event was TRUE).

cover_window_close An event window closed (end_event was TRUE in an open event window).

assert_win_unchange #(
‘OVL_ERROR,

8,

‘OVL_ASSERT,

“Error: a changed during divide”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_div_win_unchange_a (

clk,

reset_n,

start,

a,

done);

// clock

// reset

// start_event

// test_expr

// end_event

clk

reset_n

a

ASSERT_WIN_UNCHANGE Error: a changed during divide

87

done

310

start

17
Accellera OVL Standard V1 Library Reference Manual 103

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_window

tart

ple, it
ly
data
te to
assert_window
Ensures that the value of a specified expression is TRUE in a specified window between a s
event and an end event.

Syntax

a s s e r t _ w i n d o w
[ # ( severity_level, property_type,  msg,  coverage_level ) ]
instance_name ( clk, reset_n, start_event, test_expr, end_event ) ;

Parameters

Ports

Description

Theasser t_window assertion checker checks the expressionstart_event at each rising edge ofclk
to determine if it should open an event window at the start of the next cycle. Ifstart_event is
sampled TRUE, at each subsequent rising edge ofclk, the checker evaluatesend_event and
test_expr. If a sampled value oftest_expr is not TRUE, then the assertion fails. Ifend_event is
TRUE, the checker closes the event window and returns to the state of monitoringstart_event at the
next rising edge ofclk.

The checker is useful for ensuring proper changes in structures after various events. For exam
can be used to check that multiple-cycle operations with enabling conditions function proper
with the same data. It can be used to check that single-cycle operations function correctly with
loaded at different cycles. It also can be used to verify synchronizing conditions that require da
be stable after an initial triggering event.

Assertion Check

Parameters :

severity_level

property_type

msg

coverage_level

Class:

event-bounded assertion

clk reset_n

assert_window
test_expr

end_event
start_event

severity_level Severity of the failure. Default: ‘OVL_ERROR.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

start_event Expression that opens an event window.

test_expr Expression that should be TRUE in the event window

end_event Expression that closes an event window.

ASSERT_WINDOW The test_expr expression changed value during an open event window.
Accellera OVL Standard V1 Library Reference Manual 104

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_window
Cover Points

See also
a s s e r t _ c h a n g e ,  a s s e r t _ t i m e ,  a s s e r t _ u n c h a n g e ,  a s s e r t _ w i n _ c h a n g e ,
a s s e r t _ w i n _ u n c h a n g e

Example

Ensures that the bus grant is not deasserted during a write cycle.

cover_window_open A change check was initiated.

cover_window_close A change check lasted the full num_cks cycles.

assert_window #(
‘OVL_ERROR,

‘OVL_ASSERT,

“Error: write without grant”,

‘OVL_COVER_ALL)

// severity_level

// property_type

// msg

// coverage_level
valid_sync_data_bus_write (

clk,

reset_n,

write,

bus_gnt,

write_ack );

// clock

// reset

// start_event

// test_expr

// end_event

clk

reset_n

_window_open

write

write_ack

bus_gnt

ASSERT_WINDOW Error: write without grant
Accellera OVL Standard V1 Library Reference Manual 105

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_zero_one_hot

y one

or
perly
 ensure
assert_zero_one_hot
Ensures that the value of a specified expression is zero or one-hot.

Syntax

a s s e r t _ z e r o _ o n e _ h o t
[ # ( severity_level, width, property_type, msg, coverage_level ) ]
instance_name ( clk, reset_n, test_expr ) ;

Parameters

Ports

Description

Theasser t_zero_one_hot assertion checker checks the expressiontest_expr at each rising edge of
clk to verify the expression evaluates to a one-hot value or is zero. A one-hot value has exactl
bit set to 1.

The checker is useful for verifying control circuits, circuit enabling logic and arbitration logic. F
example, it can ensure that a finite-state machine with zero-one-cold encoding operates pro
and has exactly one bit asserted high—or else is zero. In a datapath circuit the checker can
that the enabling conditions for a bus do not result in bus contention.

Assertion Checks

Parameters :

severity_level

width

property_type

msg

coverage_level

Class:

single-cycle assertion

clk reset_n

assert_zero_one_hot
test_expr [width - 1: 0]

severity_level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 32.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION”.

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [ width - 1: 0 ] Expression that should evaluate to either 0 or a one-hot value on the rising
clock edge.

ASSERT_ZERO_ONE_HOT Expression evaluated to a value with multiple bits set to 1.

test_expr contains X/Z value Expression evaluated to a value with an X or Z bit, and ‘OVL_XCHECK_OFF
is not set.
Accellera OVL Standard V1 Library Reference Manual 106

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Assertion Data Sheets assert_zero_one_hot

s

Cover Points

Notes

 1. By default, theasser t_zero_one_hot assertion is optimistic and the assertion fails iftest_expr
has multiple bits not set to 0 (i.e.equals 1, X, Z, etc.). However, if ‘OVL_XCHECK_OFF i
set, the assertion fails if and only iftest_expr has multiple bits that are 1.

See also
a s s e r t _ o n e _ c o l d ,  a s s e r t _ o n e _ h o t

Example

Ensures thatsel is zero or one-hot at each rising edge ofclk.

cover_all_one_hots_checked Expression evaluated to all possible combinations of one-hot values.

cover_test_expr_all_zeros Expression evaluated to 0.

cover_test_expr_change Expression has changed value.

assert_zero_one_hot #(
‘OVL_ERROR,

4,

‘OVL_ASSERT,

“Error: sel not zero or one-hot”,

‘OVL_COVER_ALL)

// severity_level

// width

// property_type

// msg

// coverage_level
valid_sel_zero_one_hot (

clk,

reset_n,

sel );

// clock

// reset

// test_expr

clk

reset_n

sel

ASSERT_ZERO_ONE_HOT

XXXX

test_expr contains X/Z value
Error: sel not zero or one-hot

1000 0100 0010 0011 0001 0100 1000 0100
Accellera OVL Standard V1 Library Reference Manual 107

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL D EFINES
Global Defines

Internal Global Defines

The following global variables are for internal use and the user should not redefine
them:

Type DEFINE Description

Language ‘OVL_VERILOG (default) Creates  assertion checkers defined in Verilog.

‘OVL_SVA Creates  assertion checkers defined in System Verilog.

‘OVL_SVA_INTERFACE Ensures OVL assertion checkers can be instantiated in an SVA interface
construct. Default: not defined.

‘OVL_PSL Creates  assertion checkers defined in PSL. Default: not defined.

Synthesizable Logic ‘OVL_SYNTHESIS_OFF Ensures OVL logic is synthesizable. Default: not defined.

Function ‘OVL_ASSERT_ON Activates assertion logic. Default: not defined.

‘OVL_COVER_ON Activates coverage logic. Default: not defined.

Reset ‘OVL_GLOBAL_RESET=reset_signal Overrides the reset_n port assignments of all assertion checkers with the
specified global reset signal. Default: each checker’s reset is specified by
the reset_n port.

Reporting ‘OVL_MAX_REPORT_ERROR Discontinues reporting a checker’s assertion violations if the number of
times the checker has reported one or more violations reaches this limit.
Default: unlimited reporting.

‘OVL_MAX_REPORT_COVER_
POINT

Discontinues reporting a checker’s cover points if the number of times the
checker has reported one or more cover points reaches this limit.Default:
unlimited reporting.

‘OVL_INIT_MSG Reports configuration information for each checker when it is  instantiated
at the start of simulation. Default: no initialization messages reported.

‘OVL_END_OF_SIMULATION=
eos_signal

Performs quiescent state checking at end of simulation when the
eos_signal asserts. Default: not defined.

X/Z Values ‘OVL_XCHECK_OFF Turns off checking of values with X and Z bits. Disables all
assert_never_unknown checkers. Default: 0/1/X/Z semantics assumed on
assert_never, assert_never_unknown, assert_one_cold, assert_one_hot
and assert_zero_one_hot checkers.

‘endmodule

‘module

‘OVL_RESET_SIGNAL

‘OVL_SHARED_CODE

‘OVL_STD_DEFINES_H

‘OVL_VERSION
Accellera OVL Standard V1 Library Reference Manual 108

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Defines Defines Common to All Assertions
Defines Common to All Assertions

Defines for Specific Assertions

Parameter DEFINE Description

severity_level ‘OVL_FATAL Runtime fatal error.

‘OVL_ERROR (default) Runtime error.

‘OVL_WARNING Runtime Warning.

‘OVL_INFO Assertion failure has no specific severity.

property_type ‘OVL_ASSERT (default) All the assertion checker’s checks are asserts.

‘OVL_ASSUME All the assertion checker’s checks are assumes.

‘OVL_IGNORE All the assertion checker’s checks are ignored.

coverage_level ‘OVL_COVER_ALL (default) Activates coverage logic for the checker if ‘OVL_COVER_ON is
defined.

‘OVL_COVER_NONE De-activates coverage logic for the checker, even if ‘OVL_COVER_ON is
defined.

‘OVL_COVER_SANITY,
‘OVL_COVER_BASIC,
‘OVL_COVER_CORNER,
‘OVL_COVER_STATISTIC

Reserved for future use.

Parameter Checkers DEFINE Description

action_on_new_start assert_change
assert_frame
assert_time
assert_unchange

‘OVL_IGNORE_NEW_START (default) Ignore new start events.

‘OVL_RESET_ON_NEW_START Restart check on new start events.

‘OVL_ERROR_ON_NEW_START Assert fail on new start events.

edge_type assert_always_on_edge ‘OVL_NOEDGE (default) Always initiate check.

‘OVL_POSEDGE Initiate check on rising edge of sampling
event.

‘OVL_NEGEDGE Initiate check on falling edge of sampling
event.

‘OVL_ANYEDGE Initiate check on both edges of sampling
event.

necessary_condition assert_cycle_sequence ‘OVL_TRIGGER_ON_MOST_PIPE (default) Necessary condition is full sequence.
Pipelining enabled.

‘OVL_TRIGGER_ON_FIRST_PIPE Necessary condition is first in sequence.
Pipelining enabled.

‘OVL_TRIGGER_ON_FIRST_NOPIPE Necessary condition is first in sequence.
Pipelining disabled.

inactive assert_one_cold ‘OVL_ALL_ZEROS Inactive state is all 0’s.
Accellera OVL Standard V1 Library Reference Manual 109

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Defines Defines for Specific Assertions
‘OVL_ALL_ONES Inactive state is all 1’s.

‘OVL_ONE_COLD (default) No inactive state.

Parameter Checkers DEFINE Description
Accellera OVL Standard V1 Library Reference Manual 110

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



OVL Defines Defines for Specific Assertions
Accellera OVL Standard V1 Library Reference Manual 111

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



INDEX
A
assert_always 26
assert_always_on_edge 28
assert_change 31
assert_cycle_sequence 35
assert_decrement 39
assert_delta 41
assert_even_parity 43
assert_fifo_index 45
assert_frame 48
assert_handshake 52
assert_implication 56
assert_increment 58
assert_never 60
assert_never_unknown 62, 64
assert_next 66
assert_no_overflow 69
assert_no_transition 71
assert_no_underflow 73
assert_odd_parity 75
assert_one_cold 77
assert_one_hot 80
assert_proposition 82
assert_quiescent_state 84
assert_range 86
assert_time 88
assert_transition 92
assert_unchange 94
assert_width 98
assert_win_change 100
assert_win_unchange 102
assert_window 104
assert_zero_one_hot 106

C
checkers

assert_always 26
assert_always_on_edge 28
assert_change 31
assert_cycle_sequence 35
assert_decrement 39
assert_delta 41
assert_even_parity 43
assert_fifo_index 45
assert_frame 48
assert_handshake 52
assert_implication 56
assert_increment 58
assert_never 60
assert_never_unknown 62, 64
assert_next 66
assert_no_overflow 69
assert_no_transition 71
assert_no_underflow 73
assert_odd_parity 75
Accellera OVL Standard V1 Library Reference Manual 112

© 2005 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06



assert_one_cold 77
assert_one_hot 80
assert_proposition 82
assert_quiescent_state 84
assert_range 86
assert_time 88
assert_transition 92
assert_unchange 94
assert_width 98
assert_win_change 100
assert_win_unchange 102
assert_window 104
assert_zero_one_hot 106

D
data sheets, checkers 25
Accellera OVL Standard V1 Library Reference Manual 113

© 2005 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06


	Introduction
	About this Manual
	Notational Conventions
	Verilog Assertion Syntax Format

	References

	OVL Basics
	OVL Assertion Checker Implementation
	OVL Assertion Checker Characteristics
	Checker Class
	Clock and Reset
	Checker Parameters
	severity_level
	property_type
	msg
	coverage_level

	Assertion Checks
	Cover Points

	OVL Use Model
	Setting the Implementation Language
	Instantiation in an SVA Interface Construct
	Limitations for PSL

	Enabling Assertion and Coverage Logic
	Asserting, Assuming and Ignoring Properties
	Monitoring Coverage

	Reporting Assertion Information
	Limiting a Checker’s Reporting
	Reporting Initialization Messages
	End-of-simulation Signal to assert_quiescent_state Checkers

	Generating Synthesizable Logic
	Checking of X and Z Values
	Backward Compatibility
	V1.6
	V1.5
	V1.1
	V1.0
	assert_fifo_index



	OVL Verilog/SVA Library
	Library Characteristics
	Library Layout
	Examples
	Header File
	Assertion Checker Interface Files
	Assertion Checker Logic Files (Verilog 95)
	Assertion Checker Logic Files (System Verilog 3.1a)
	Assertion Checker Logic Files (PSL 1.1)
	Assertion Checker vunit Files (PSL 1.1)



	OVL Assertion Data�Sheets
	assert_always
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Example

	assert_always_on_edge
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Examples

	assert_change
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Examples

	assert_cycle_sequence
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	See also
	Examples

	assert_decrement
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_delta
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point
	Errors

	Notes
	See also
	Example

	assert_even_parity
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	See also
	Examples

	assert_fifo_index
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points
	Errors

	Notes
	See also
	Examples

	assert_frame
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Point

	Notes
	See also
	Examples

	assert_handshake
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	assert_implication
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_increment
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_never
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example

	assert_never_unknown
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example

	assert_never_unknown_async
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example

	assert_next
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	assert_no_overflow
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points
	Errors

	Notes
	See also
	Example

	assert_no_transition
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_no_underflow
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points
	Errors

	Notes
	See also
	Example

	assert_odd_parity
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	See also
	Example

	assert_one_cold
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Examples

	assert_one_hot
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example

	assert_proposition
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	Notes
	See also
	Example

	assert_quiescent_state
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	Notes
	See also
	Example

	assert_range
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points
	Errors

	See also
	Example

	assert_time
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	assert_transition
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_unchange
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	assert_width
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Example

	assert_win_change
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Example

	assert_win_unchange
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Example

	assert_window
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Example

	assert_zero_one_hot
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example


	OVL Defines
	Global Defines
	Internal Global Defines

	Defines Common to All Assertions
	Defines for Specific Assertions


