Accellera Standard OVL V1
Library Reference Manual

Version 1.6

March 17, 2006

STATEMENT OF USE OF ACCELLERA STANDARDS

Accellera Standards documents are developed within Accellera and the Technical Committees of Accellera Organization, Inc.
Accellera develops its standards through a consensus development process, approved by its members and board of directors, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily
members of Accellera and serve without compensation. While Accellera administers the process and establishes rules to promote
fairness in the consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any of the
information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or other damage, of any
nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use
of, or reliance upon this, or any other Accellera Standard document. By using an Accellera standard, you agree to defend, indemnify
and hold harmless Accellera and their directors, officers, employees and agents from and against all claims and expenses, including
attorneys’ fees, arising out of your use of an Accellera Standard.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any
express or implied warranty, including any implied warranty of merchantability or suitability for a specific purpose, or that the use of
the material contained herein is free from patent infringement. Accellera Standards documents are supplied ?AS 1S.?

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or
provide other goods and services related to the scope of an Accellera Standard. Furthermore, the viewpoint expressed at the time a
standard is approved and issued is subject to change due to developments in the state of the art and comments received from users
of the standard. Every Accellera Standard is subjected to review periodically for revision and update. Users are cautioned to check to
determine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other services for, or on
behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any other person or entity to another. Any
person utilizing this, and any other Accellera Standards document, should rely upon the advice of a competent professional in
determining the exercise of reasonable care in any given circumstances.

Accellera may change the terms and conditions of this Statement of Use from time to time as we see fit and in our sole discretion.
Such changes will be effective immediately upon posting, and you agree to the posted changes by continuing your access to or use
of an Accellera Standard or any of its content in whatever form.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific
applications. When the need for interpretations is brought to the attention of Accellera, Accellera will initiate action to prepare
appropriate responses. Since Accellera Standards represent a consensus of concerned interests, it is important to ensure that any
interpretation has also received the concurrence of a balance of interests. For this reason, Accellera and the members of its
Technical Committees are not able to provide an instant response to interpretation requests except in those cases where the matter
has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership affiliation with
Accellera. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate
supporting comments. Comments on standards and requests for interpretations should be addressed to:

Accellera Organization, 1370 Trancas Street #163, Napa, CA 94558 USA
E-mail: interpret-request@lists.accellera.org

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent
rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection
therewith. Accellera shall not be responsible for identifying patents for which a license may be required by an Accellera standard or
for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks to indicate
compliance with the materials set forth herein.

Authorization to photocopy, redistribute, publish, create derivative works from, sub-license or charge others to access or use,
participate in the transfer or sale of, or directly or indirectly commercially exploit in whole or part of any Accellera standard for internal
or personal use must be granted by Accellera Organization, Inc., provided that permission is obtained from and any required fee is
paid to Accellera. To arrange for authorization please contact Lynn Horobin, Accellera, 1370 Trancas Street #163, Napa, CA 94558,
phone (707) 251-9977, e-mail lynnh@accellera.org. Permission to photocopy portions of any individual standard for educational
classroom use can also be obtained from Accellera.

Overview of this standard
This section describes the purpose and organization of this standard, the Accellera Standard V1 Open Verification Library (Std. OVL)
libraries implemented in IEEE Std. 1364-1995 Verilog and SystemVerilog 3.1a, Accellera’s extensions to IEEE Std. 1364-2001
Verilog Hardware Description Language and Library Reference Manual (LRM)
Intent and scope of this document
The intent of this standard is to define Std. OVL accurately. Its primary audience is designers, integrators and verification engineers
to check for good/bad behavior, and provides a single and vendor-independent interface for design validation using simulation, semi-
formal and formal verification techniques. By using a single well-defined interface, the OVL bridges the gap between the different
types of verification, making more advanced verification tools and techniques available for non-expert users.
From time to time, it may become necessary to correct and/or clarify portions of this standard. Such corrections and clarifications may
be published in separate documents. Such documents modify this standard at the time of their publication and remain in effect until
superseded by subsequent documents or until the standard is officially revised.
ACKNOWLEDGEMENTS
These Accellera Standard OVL Libraries and Library Reference Manual (LRM) were specified and developed by experts from many
different fields, including design and verification engineers, Electronic Design Automation companies and members of the OVL VSVA
technical committee.
The following contributors were involved in the creation of previous versions of the OVL: Shalom Bresticker, Bryan Bullis, Ben Cohen,
Harry Foster, Himanshu Goel, Vijay Gupta, Brent Hayhoe, Richard Ho, Narayanan Krishnamurthy, David Lacey, Jim Lewis, Andrew
MacCormack, Erich Marschner, Paul Menchini, Torkil Oelgaard, Joseph Richards, Vinaya Singh, Sean Smith, Andy Tsay and others.
The OVL VSVA technical committee and chair reports to Accellera TCC Chairman:

TCC Chairman Johny Srouiji / IBM
The following individuals contributed to the creation, editing and review of the Accellera Standard OVL V1 Libraries and LRM

Eduard Cerny/Synopsys

Harry Foster/Jasper Design Automation

Dmitry Korchemny/Intel

Kenneth Elmkjeer Larsen/Mentor Graphics (OVL-VSVA Chair)

David Lacey/Hewlett Packard

Uma Polisetti/Agilent

Ramesh Sathianathan/Mentor Graphics

Chris Shaw/Mentor Graphics

Sundaram Subramanian/Mentor Graphics

Manoj Kumar Thottasseri/Synopsys

Mike Turpin/ARM
Minor version 1.1 released June 2005
Minor version 1.1a released August 2005
Minor version 1.1b released August 2005
Minor version 1.1c released September 2005

Minor version 1.5 released December 2005
Minor version 1.6 released February 2006

CONTENTS

INTRODUCTION 6
About this Manual 6
Notational Conventionst e 7

Verilog Assertion Syntax Format e 7
REferENCES . . . 8

OVL B AsICs 9
OVL Assertion Checker Implementation 10
OVL Assertion Checker Characteristics, 10

Checker Class i 10
Clock and RSt o 11
Checker Parameters 11
Assertion Checks e 12
CoVer POINES 12
OVL USe Model e e 13
Setting the Implementation Language, 13
Enabling Assertion and Coverage LogiCot 13
Reporting Assertion Information 14
Generating Synthesizable LOQICt 15
Checkingof Xand ZValues 15
Backward Compatibility 15
OVL Verilog/SVA Library e e e e 16
Library CharacteristiCso e 16
Library Layout 17
EXampleS . 18

OVL A SSERTION DATA SHEETS 25
ASSEI AIWAYS . . e e e 26
assert_always 0N _BAQgE e 28
assert change e e 31
assSert_CyCle_SeqUENCE 35
aSSert_deCremMENt 39
assert_delta 41
ASSEIt_BVEN_Parity 43
assert fifo index 45
asSert frame e e 48
assert_handshake 52
assert_implication 56
ASSEIt_INCIEMENT oot e 58
ASSBIT NBVT . oottt e 60

Accellera OVL Standard V1 Library Reference Manual 4
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

assert_never_Unknown 62
assert_never UNKNOWN _ASYNC v vttt e et e 64

ASSeIT NeXt .. 66
assert_ no_overflow 69
assert_NO_transition e 71
assert_no_underflow 73
assert odd Parity e 75
assert one _cold 77
assert one _hot e e 80
aSSEert_PropoSItioNo e 82
assert_quiesCent_State e 84

ASSEIT TANGE . . .ttt 86

ASSEI tiMe ... 88

AaSSert tranSitioN 92
assert_ unchange i e 94
assert_ width 98
assert win_change i 100
assert_win_unchange 102
assert WiNdoW 104
assert zero one_hot........... 106

OVL D EFINES 108
Global Defines 108
Internal Global Defines e 108

Defines Common to All ASSErtions 109
Defines for Specific Assertions e 109

Accellera OVL Standard V1 Library Reference Manual 5
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

| NTRODUCTION

Welcome to the Accellera standard Open Verification Library V1 (OVL). The OVL V1

is composed of a set of assertion checkers that verify specific properties of a design.
These assertion checkers are instantiated in the design establishing a single interface for
design validation.

The OVL provides designers, integrators and verification engineers with a single,
vendor-independent interface for design validation using simulation, hardware
acceleration or emulation, formal verification and semi-/hybrid-/dynamic-formal
verification tools. By using a single, well defined, interface, the OVL bridges the gap
between different types of verification, making more advanced verification tools and
technigues available for non-expert users.

This document provides the reader with a set of data sheets that describe the
functionality of each assertion checker in the OVL V1, as well as examples that show
how to embed these assertion checkers into a design.

About this Manual

It is assumed the reader is familiar with hardware description languages and
conventional simulation environments.

This document targets designers, integrators and verification engineers who intend to
use the OVL in their verification flow and to tool developers interested in integrating the
OVL in their products.

This document has the following chapters:
O OVL Basics
Fundamental information about the OVL library, including usage and examples.
O OVL Assertion Data Sheets
Data sheet for each type of OVL assertion checker.
0 OVL Defines

Information about the define values used in general and for configuring the
checkers.

Accellera OVL Standard V1 Library Reference Manual 6
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

Introduction Notational Conventions

Notational Conventions

The following textual conventions are used in this manual:

emphasis Italics in plain text are used for two purposes: (1) titles of manual chapters and
appendixes, and (2) terminology used inside defining sentences.

variable Italics in sans-serif text indicate a meta-variable. You must replace the
meta-variable with a literal value when you use the associated statement.

literal Regular sans-serif text indicates literal words used in syntax statements or in
output.

Syntax statements appearsins-serif typeface as shown here. In syntax statements, words in

italics are meta-variables. You must replace them with relevant literal values. Words in regular
(non-italic) sans-serif type are literals. Type them as they appear. Except for the following
meta-characters, regular characters in syntax statements are literals. The following meta-characters
have the given syntactical meaningsu do not type these characters.

[1] Square brackets indicate an optional entry.

Verilog Assertion Syntax Format

All Verilog assertion checkers defined by the Open Verification Library initiative observe the
following BNF format, defined in compliance with Verilog Module instantiation of the IEEE
Standard 1364-199&rilog Hardware Description Languge.

assertion_instantiation ::= assert_identifier
[parameter_value_assignment] module_instance ;

parameter_value_assignment ;.= # (severity_level [, other parameter expressions],
property_type , msg, coverage_level)

module_instance ::= name_of _instance ([list_of_module _connections])
name_of_instance ::= module_instance_identifier
list_of_module_connections ::= ordered_port_connection [, ordered_port _connection]

| named_port_connection [, named_port_connection]
ordered_port_connection ::= [expression]
named_port_connection ::= . port_identifier ([expression])
assert_identifier ::= assert_ type_identifier

type_identifier ::= identifier

Accellera OVL Standard V1 Library Reference Manual 7
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

Introduction References

References

The following is a list of resources related to design verification and assertion checkers.

Bening, L. and Foster, HRrinciples of ¥rifiable RTL Design, a Functional Coding Style
Supporting ¥rification Piocesses indafilog, 2nd Ed., Kluwer Academic Publishers, 2001.

Bergeron, J.Writing Testbenbes: Functional &fification of HDL ModelsKluwer Academic
Publishers, 2000.

Cheder\Ware Data Book Release 2.3, 0-In Functional Verification Group, Mentor Graphics, 2005.

Assertions in Simulation User Guideelease 2.3, 0-In Functional Verification Group, Mentor
Graphics, 2005.

Formal \érification User GuideRelease 2.3, 0-In Functional Verification Group, Mentor
Graphics, 2005.

Accellera OVL Standard V1 Library Reference Manual 8
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL B ASICS

The OVL is composed of a set of assertion checkers that verify specific properties of a
design. These assertion checkers are instantiated in the design establishing a single
interface for design validation.

OVL assertion checkers are instances of modules whose purpose in the design is to
guarantee that some conditions hold true. Assertion checkers are composed of one or
more properties, a message, a severity and coverage.

O Properties are design attributes that are being verified by an assertion. A property
can be classified as a combinational or temporal property.

A combinational property defines relations between signals during the same clock
cycle while a temporal property describes the relation between the signals over
several (possibly infinitely many) cycles.

0 Message is the string that is displayed in the case of an assertion failure.

O Severity represents whether the error captured by the assertion library is a major or
minor problem.

O Coverage consists of one or more flags that indicate whether or not specific
corner-case events occur.

Assertion checkers benefit users by:
O Testing internal points of the design, thus increasing observability of the design.

O Simplifying the diagnosis and detection of bugs by constraining the occurrence of a
bug to the assertion checker being checked.

O Allowing designers to use the same assertions for both simulation and formal
verification.

Accellera OVL Standard V1 Library Reference Manual 9
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics

OVL Assertion Checker Implementation

OVL Assertion Checker Implementation

Assertion checkers address design verification concerns and can be used as follows to increase
design confidence:

O

O

O

Combine assertion checkers to increase the coverage of the design (for example, in interface
circuits and corner cases).

Include assertion checkers when a module has an external interface. In this case, assumptions
on the correct input and output behavior should be guarded and verified.

Include assertion checkers when interfacing with third party modules, since the designer may
not be familiar with the module description (as in the case of IP cores), or may not completely
understand the module. In these cases, guarding the module with assertion checkers may
prevent incorrect use of the module.

Usually there is a specific assertion checker suited to cover a potential problem. In other cases,
even though a specific assertion checker might not exist, a combination of two or three assertion
checkers can provide the desired coverage. The number of actual assertions that must be added to a
specific design may vary from a few to thousands, depending on the complexity of the design and
the complexity of the properties that must be checked.

Writing assertion checkers for a given design requires careful analysis and planning for maximum
efficiency. While writing too few assertions might not increase the coverage on a design, writing
too many assertions may increase verification time, sometimes without increasing the coverage. In
most cases, however, the runtime penalty incurred by adding assertion checkers is relatively small.

OVL Assertion Checker Characteristics

Checker Class

OVL assertion checkers are partitioned into the following checker classes:

g

O Oood

Combinational assertions — behavior checked with combinational logic.

Single-cycle assertions — behavior checked in the current cycle.

2-cycle assertions — behavior checked for transitions from the current cycle to the next.
n-cycle assertions — behavior checked for transitions over a fixed number of cycles.
Event-bounded assertions — behavior is checked between two events.

Accellera OVL Standard V1 Library Reference Manual 10
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics

OVL Assertion Checker Characteristics

Clock and Reset

All edge-triggered assertion checkers have a clock port naimedlll sampling and assertion
checking of these checkers is performed on the rising-edgi oAll checkers have an active-low
reset port nameset_n. Reset on all edge-triggered assertion checkers is active-low, and is
synchronous tolk. The reset assignments of all assertion checkers can be overridden and
controlled by the following global variable:

‘OVL_GLOBAL_RESET= Overrides the reset_n port assignments of all assertion checkers
reset_signal with the specified global reset signal. Default: each checker’s reset
is specified by the reset_n port.

Checker Parameters

severity_level

property_type

Each OVL assertion checker has its own set of parameters as described in its corresponding data
sheet. The following parameters are common to all checkers.

The severity level determines how to handle an assertion violation. Possible values are:

‘OVL_FATAL Runtime fatal error.
‘OVL_ERROR (default) Runtime error.
‘OVL_WARNING Runtime warning.

‘OVL_INFO No improper design functionality.

If severity_level is not one of these values, the checker issues the following message:

Illegal option used in parameter 'severity_level’

The property type determines whether to use the assertion as an assert property or an assume
property (for example, a property that a formal tool uses to determine legal stimulii). Possible
values are:

‘OVL_ASSERT (default) Assert property.

‘OVL_ASSUME Assume property.

If property_type is not one of these values, an assertion violation occurs and the checker issues the
following message:

Illegal option used in parameter 'property_type’

msg
The default message issued when an assertion fails is “VIOLATION".ndggparameter changes
the message for the checker.

Accellera OVL Standard V1 Library Reference Manual 11

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Assertion Checker Characteristics

coverage_level

The coverage level is whether or not to enable coverage monitoring for the checker. Possible

values are:
‘OVL_COVER_NONE Disable coverage monitoring.
‘OVL_COVER_ALL (default) Enable coverage monitoring.

If coverage_level is not one of these values, an assertion violation occurs and the checker issues the
following message:

Illegal option used in parameter 'coverage_level’

For future enhancement, the following coverage levels are reserved:

‘OVL_COVER_SANITY 1
‘OVL_COVER_BASIC 2
‘OVL_COVER_CORNER 4
‘OVL_COVER_STATISTIC 8

Assertion Checks

Each assertion checker verifies that its parameter values are legal. If an illegal option is specified,
the assertion fails. The assertion checker also checks at least one assertion. Violation of any of
these assertions is an assertion failure. The data sheet for the assertion shows the various failure
types for the assertion checker (except for incorrect option values for severity level, property_type
and coverage_level).

For example, thessert_frame checker data sheet shows the following types of assertion failures:

ASSERT_FRAME The value of test_exprwas TRUE before min_cks cycles after start_event
was sampled TRUE or its value was not TRUE before max_cks cycles
transpired after the rising edge of start_event.

illegal start event The action_on_new_start parameter is set to
‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was monitoring test_expr.

min_cks > max_cks The min_cks parameter is greater than the max_cks parameter (and
max_cks >0). Unless the violation is fatal, either the minimum or maximum
check will fail.

Cover Points

Each assertion checker data sheet shows the coverage behaviors monitored by the checker (and
their corresponding messages) when coverage is enabled (‘'OVL_COVER_Obhvande_level

for the checker is ‘OVL_COVER_ALL. For example the data sheet for the assert_window shows
the following cover points:

cover_window_open An event window opened (start_event was TRUE).
covered
cover_window_close An event window closed (end_event was TRUE in an open event window).
covered
Accellera OVL Standard V1 Library Reference Manual 12

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Use Model

OVL Use Model

An Accellera Standard OVL library user specifies preferred control settings with standard global
variables defined in the following:

O A Verilog file loaded in before the libraries.

0 Specifies settings using the standatdfine options in Verilog verification engines (via a
setup file or at the command line).

Setting the Implementation Language

The Accellera Standard OVL is implemented in the following HDL languages: Verilog 95, SVA
3.1a and PSL 1.1. The following global variables select the implementation language:

‘OVL_VERILOG (default) Creates assertion checkers defined in Verilog.
‘OVL_SVA Creates assertion checkers defined in System Verilog.
‘OVL_PSL Creates assertion checkers defined in PSL (Verilog flavor).

In the case a user of the library does not specify a language, by default the library is automatically
set to ‘OVL_VERILOG.

Note: Only one library can be selected. If the user specifies both ‘OVL_VERILOG and
‘OVL_SVA (or ‘'OVL_PSL), the ‘OVL_VERILOG is undefined in the header file. Editing
the header file to disable this behavior will result in compile errors.

Instantiation in an SVA Interface Construct

If an OVL checker is instantiated in a System Verilog interface construct, the user should define the
following global variable:

‘OVL_SVA_INTERFACE Ensures OVL assertion checkers can be instantiated in a System
Verilog interface construct. Default: not defined.

Limitations for PSL

The PSL implementation does not support modifyingdbeerity leveaindmsgparameters. These
parameters are ignored and the default values are used:

severity level ‘OVL_ERROR
msg “VIOLATION"

Enabling Assertion and Coverage Logic
The Accellera Standard OVL consists of two types of logic: assertion logic and coverage logic.
These capabilities are controlled via the following standard global variables:

‘OVL_ASSERT_ON Activates assertion logic. Default: not defined.
‘OVL_COVER_ON Activates coverage logic. Default: not defined.

If neither of these variables is defined, the assertion checkers are not activated. The instantiations
of these checkers will have no influence on the verification performed.

Accellera OVL Standard V1 Library Reference Manual 13
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Use Model

Asserting, Assuming and Ignoring Properties

The OVL checkers’ assertion logic—if activated (by the ‘OVL_ASSERT_ON global variable)—
identifies a design’s legal properties. Each particular checker instance can verify one or more
assertion checks (depending on the checker type and the checker’s configuration).

Whether all of a checker’s properties are asserts (i.e., checks) or assumes (i.e., constraints) is
controlled by the checkerisoperty_type parameter:

‘OVL_ASSERT (default) All the assertion checker’s checks are asserts.
‘OVL_ASSUME All the assertion checker’s checks are assumes.
‘OVL_IGNORE All the assertion checker’s checks are ignored.

A single assertion checker cannot have some checks asserts and other checks assumes. However,
you often can implement this behavior by specifying two checkers.

Monitoring Coverage

The ‘OVL_COVER_ON define activates coverage logic in the checkers. This is a global switch
that turns coverage monitoring on. In addition, each individual checker definition has a
coverage_level parameter:

‘OVL_COVER_ALL (default) Activates coverage logic for the checker if
‘OVL_COVER_ON is defined.
‘OVL_COVER_NONE De-activates coverage logic for the checker, even if

‘OVL_COVER_ON is defined.

Reporting Assertion Information

By default, (if the assertion logic is active) every assertion violation is reported and (if the coverage
logic is active) every captured coverage point is reported. The user can limit this reporting and can
also initiate special reporting at the start and end of simulation.

Limiting a Checker’'s Reporting

Limits on the number of times assertion violations and captured coverage points are reported are
controlled by the following global variables:

‘OVL_MAX_REPORT_ERROR Discontinues reporting a checker’s assertion violations if the number
of times the checker has reported one or more violations reaches
this limit. Default: unlimited reporting.

‘OVL_MAX_REPORT_COVER_ Discontinues reporting a checker’s cover points if the number of
POINT times the checker has reported one or more cover points reaches
this limit.Default: unlimited reporting.

These maximum limits are for the number of times a checker instance issues a message. If a
checker issues multiple violation messages in a cycle, each message is counted as a single error
report. Similarly, if a checker issues multiple coverage messages in a cycle, each message is
counted as a single cover report.

Accellera OVL Standard V1 Library Reference Manual 14
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Use Model

Reporting Initialization Messages

The checkers’ configuration information is reported at initialization time if the following global
variable is defined:

‘OVL_INIT_MSG Reports configuration information for each checker when it is
instantiated at the start of simulation. Default: no initialization
messages reported.

For each assertion checker instance, the following message is reported:

OVL_NOTE: V1.6: instance_name initialized @ hierarchy Severity: severity level, Message: msg

End-of-simulation Signal to assert_quiescent_state Checkers

Theassert_quiescent_state assertion checker checks that the value of a state expression equals a
check value when a sample event occurs. These checkers also can perform this check at the end of
simulation by setting the following global variable:

‘OVL_END_OF_SIMULATION= Performs quiescent state checking at end of simulation when the
eos_signal eos_signal asserts. Default: not defined.

Generating Synthesizable Logic

The following global variable ensures all generated OVL logic is synthesizable:

‘OVL_SYNTHESIS_OFF Ensures OVL logic is synthesizable. Default: not defined.

Checking of X and Z Values

Some assertion checkers have checks whose semantics vary when X and Z bit values are
recognized. The user can switch to 0/1 semantics for these assertions by defining the following
global variable:
‘OVL_XCHECK_OFF Turns off checking of values with X and Z bits. Turns off all
assert_never_unknown checkers. Default: 0/1/X/Z semantics assumed

on assert_never, assert_never_unknown, assert_one_cold,
assert_one_hot and assert_zero_one_hot checkers.

Backward Compatibility

V1.6
In V1.6, aside from bug fixes, all functionality is backward compatible.

V1.5
In V1.5, PSL versions of checkers were added. Aside from bug fixes, all functionality is backward
compatible.

Accellera OVL Standard V1 Library Reference Manual 15

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Verilog/SVA Library

V1.1

In V1.1, a typo was corrected in the port list of dkeert_implication checker type. The port
nameantecendent_expr was changed tantecedent _expr.

V1.0

Backward compatibility with the non-standard OVL library is important and no changes were
made for the V1.0 release in the following areas: naming of module names, naming of port names
and to the extent possible the existing Verilog use model.

The name of theptions parameter was changedgmperty_type. The only checker type that is not
backward compatible in this respect is &lkgert_fifo_index checker.

assert_fifo_index

In previous OVL versions, thessert_fifo_index checker used the second bit of tiveon
parameter to prohibit simultaneous pushes-pops in the same cycle. In Vbiopthe type
parameter is compatible with the first bit of previopgons parameter. But, the second bit (if
defined) is ignored. To enable the check for simultaneous pushes-pops, use the
simultaneous_push_pop parameter (at the end of the parameter list).

OVL Verilog/SVA Library

Library Characteristics

The OVL library has the following characteristics:

O All Verilog assertion checkers conform to Verilog IEEE Standard 1364-1995.
0 All System Verilog assertion checkers conform to Accellera SVA 3.1a.

0 Header files use file extension .
O

Verilog files with assertion module/interfaces use extensianand include assertion logic
files in the language specified by the user.

O

Verilog files with assertion logic use file extensidogic.v.
System Verilog files with assertion logic use file extension _kogic.

O The name of an OVL assertion checkedssert_name, where theiame is a descriptive
identifier.

O

[0 Parameter settings are passed via literals to make configuration of assertion checkers
consistent and simple to use by end users.

O Parameters passed to assertion checkers are checked for legal values

O Each assertion checker includes_ovl_defines.h defining all global variables and
std_ovl_task.h defining all OVL system tasks.

O Global variables are namedy/L_name.
System tasks are named_ taskname_t.

O Assertion checkers are initialized explicitly so that they work in a deterministic way without
reset.

O

Accellera OVL Standard V1 Library Reference Manual 16
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Verilog/SVA Library

O Assertion checkers are backward compatible in behavior with existing OVL Verilog libraries
(to the extent it is possible).

Library Layout

The Accellera OVL standard library has the following structure:

$STD_OVL_DIR Installation directory of Accellera OVL library.
$STD_OVL_DIR/log95 Directory with assertion logic described in Verilog 95.
$STD_OVL_DIR/sva3la Directory with assertion logic described in SVA 3.1a.
$STD_OVL_DIR/psi11 Directory with assertion logic described in PSL 1.1.
$STD_OVL_DIR/psl11/vunits/ Directory with PSL1.1 vunits for binding with the assertion
logic.
For example:

shell prompt> Is -1 $STD_OVL_DIR
std_ovl/assert_always.vlib
std_ovl/assert_always_on_edge.vlib

std_ovl/std_ovl_defines.h
std_ovl/std_ovl_task.h

std_ovl/psl1l1:
std_ovl/pslll/assert_always_logic.vlib
std_ovl/pslll/assert_always_on_edge_logic.vlib

std_ovl/pslll/vunits:
std_ovl/pslll/vunits/assert_always.psl
std_ovl/pslll/vunits/assert_always_on_edge.psl

std_ovl/sva3la:
std_ovl/sva3la/assert_always_logic.vlib
std_ovl/sva3la/assert_always_on_edge_logic.vlib

std_ovl/vlog95:
std_ovl/vlog95/assert_always_logic.v
std_ovl/vlog95/assert_always_on_edge_logic.v

Accellera OVL Standard V1 Library Reference Manual 17
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Verilog/SVA Library

Examples
Header File
Figure 1: $STD_OVL_DIR/std_ovl_defines.h
/1 Accellera Standard V1.6 Open Verification Library (OVL).
/I Accellera Copyright (c) 2005-2006. All rights reserved.
‘ifdef OVL_STD_DEFINES_H
/l do nothing
‘else
‘define OVL_STD_DEFINES_H
‘define OVL_VERSION “V1.6"
‘ifdef OVL_ASSERT_ON
‘ifdef OVL_PSL
‘ifdef OVL_VERILOG
‘undef OVL_PSL
‘endif
‘ifdef OVL_SVA
‘ifdef OVL_PSL
‘undef OVL_PSL
‘endif
‘endif
‘else
‘ifdef OVL_VERILOG
‘else
‘define OVL_VERILOG
‘endif
‘ifdef OVL_SVA
‘undef OVL_VERILOG
‘endif
‘endif
‘endif
‘ifdef OVL_COVER_ON
‘ifdef OVL_PSL
‘ifdef OVL_VERILOG
‘undef OVL_PSL
‘endif
‘ifdef OVL_SVA
‘ifdef OVL_PSL
‘undef OVL_PSL
‘endif
‘endif
‘else
‘ifdef OVL_VERILOG
‘else
‘define OVL_VERILOG
‘endif
‘ifdef OVL_SVA
‘undef OVL_VERILOG
‘endif
‘endif
‘endif
Accellera OVL Standard V1 Library Reference Manual 18

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Verilog/SVA Library

‘ifdef OVL_ASSERT_ON
‘ifdef OVL_SHARED_CODE
‘else
‘define OVL_SHARED_CODE
‘endif
‘else
‘ifdef OVL_COVER_ON
‘ifdef OVL_SHARED_CODE
‘else
‘define OVL_SHARED_CODE
‘endif
‘endif
‘endif

/1 specifying interface for System Verilog

‘ifdef OVL_SVA_INTERFACE
‘define module interface
‘define endmodule endinterface

‘else
‘define module module
‘define endmodule endmodule

‘endif

/I Selecting global reset or local reset for the checker reset signal

‘ifdef OVL_GLOBAL_RESET

‘define OVL_RESET_SIGNAL ‘OVL_GLOBAL_RESET
‘else

‘define OVL_RESET_SIGNAL reset_n
‘endif

/] active edges

‘define OVL_NOEDGE 0
‘define OVL_POSEDGE 1
‘define OVL_NEGEDGE 2
‘define OVL_ANYEDGE 3

/Il severity levels

‘define OVL_FATAL O
‘define OVL_ERROR 1
‘define OVL_WARNING 2
‘define OVL_INFO 3

/I coverage levels

‘define OVL_COVER_NONE 0
‘define OVL_COVER_SANITY 1
‘define OVL_COVER_BASIC 2

‘define OVL_COVER_CORNER 4
‘define OVL_COVER_STATISTIC 8
‘define OVL_COVER_ALL {32{1'b1}}

/] property type
‘define OVL_ASSERT 0

‘define OVL_ASSUME 1
‘define OVL_IGNORE 2

Accellera OVL Standard V1 Library Reference Manual 19
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics

/I necessary condition

‘define OVL_TRIGGER_ON_MOST_PIPE
‘define OVL_TRIGGER_ON_FIRST_PIPE
‘define OVL_TRIGGER_ON_FIRST_NOPIPE 2

/l action on new start

‘define OVL_IGNORE_NEW_START
‘define OVL_RESET_ON_NEW_START 1
‘define OVL_ERROR_ON_NEW_START 2

/I inactive levels

‘define OVL_ALL_ZEROS 0
‘define OVL_ALL_ONES 1
‘define OVL_ONE_COLD 2

/I Functions for logarithmic calculation

‘define log(n) ((n) <= (1<<0) ? 1 :

(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)

<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=

<=

(1<<1)

(1<<2)

(1<<3)

(1<<4)

(1<<5)

(1<<8)

(1<<7)

(1<<8)

(1<<9)

(1<<10)
(1<<11)
(1<<12)
(1<<13)
(1<<14)
(1<<15)
(1<<16)
(1<<17)
(1<<18)
(1<<19)
(1<<20)
(1<<21)
(1<<22)
(1<<23)
(1<<24)
(1<<25)
(1<<26)
(1<<27)
(1<<28)
(1<<29)
(1<<30)
(1<<31)

R I I N BN RN RIS]
© 0N U~ WN

1

S I N N I N R RN RS IS I IS IS BN B R e VS RN |

‘endif // OVL_STD_DEFIN

A\

s

A\

10 :
11 :
12 :
13 :
14 :
15 :
16 :
17 :
18 :
19 :
20 :
21 :
22
23 :
24
25
26 :
27
28 :
29 :
30 :
1 32)
ES_

31

i)

0
1

OVL Verilog/SVA Library

Accellera OVL Standard V1 Library Reference Manual

© 2006 Accellera Organization, Inc. All Rights Reserved

20
V1.6 — 3/17/06

OVL Basics OVL Verilog/SVA Library

Assertion Checker Interface Files
Figure 2: $STD_OVL_DIR/assert_implication.vlib

/I Accellera Standard V1.6 Open Verification Library (OVL).
/I Accellera Copyright (c) 2005=2006. All rights reserved.
‘include "std_ovl_defines.h"

‘module assert_implication (clk, reset_n, antecedent_expr, consequent_expr);
input clk, reset_n, antecedent_expr, consequent_expr;
parameter severity_level = ‘OVL_ERROR;
parameter property_type = ‘OVL_ASSERT;
parameter msg="VIOLATION";
parameter coverage_level = ‘OVL_COVER_ALL;

‘ifdef OVL_VERILOG
‘include "./vlog95/assert_implication_logic.v"

‘endif // OVL_VERILOG

‘ifdef OVL_SVA
‘include "./sva3lal/assert_implication_logic.sv"

‘endif // OVL_SVA

‘ifdef OVL_PSL
‘include "./pslll/assert_implication_psl_logic.v"

‘else

‘endmodule
‘endif

Assertion Checker Logic Files (Verilog 95)
Figure 3: $STD_OVL_DIR/vlog95/assert_implication_logic.v

/1 Accellera Standard V1.6 Open Verification Library (OVL).
Il Accellera Copyright (c) 2005-2006. All rights reserved.
parameter assert_name = "ASSERT_IMPLICATION";
‘include "std_ovl_task.h"

‘ifdef OVL_INIT_MSG
initial
ovl_init_msg_t; // Call the User Defined Init Message Routine
‘endif

‘ifdef OVL_ASSERT_ON
always @(posedge clk) begin
if (OVL_RESET_SIGNAL != 1'b0) begin
if (antecedent_expr == 1'bl && consequent_expr == 1'b0) begin
ovl_error_t("");
end
end
end
‘endif // OVL_ASSERT_ON

‘ifdef OVL_COVER_ON
always @ (posedge clk) begin

if "OVL_RESET_SIGNAL != 1'b0 && coverage_level != ‘OVL_COVER_NONE)
begin
if (antecedent_expr == 1'b1) begin
ovl_cover_t("cover_antecedent covered");
end
end

end
‘endif // OVL_COVER_ON

Accellera OVL Standard V1 Library Reference Manual 21
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Verilog/SVA Library

Assertion Checker Logic Files (System Verilog 3.1a)
Figure 4: $STD_OVL_DIR/sva3lal/assert_implication_logic.sv

/I Accellera Standard V1.6 Open Verification Library (OVL).
Il Accellera Copyright (c) 2005-2006. All rights reserved.

parameter assert_name = “ASSERT_IMPLICATION”;
“include “std_ovl_task.h”

“ifdef OVL_INIT_MSG
initial
ovl_init_msg_t; // Call the User Defined Init Message Routine
“endif

‘ifdef OVL_ASSERT_ON
property ASSERT_IMPLICATION_P;
@ (posedge clk)
disable iff COVL_RESET_SIGNAL != 1'b1)
antecedent_expr |-> consequent_expr;
endproperty
generate
case (property_type)
"OVL_ASSERT : begin : ovl_assert
A_ASSERT_IMPLICATION_P:
assert property (ASSERT_IMPLICATION_P)
else ovl_error_t(“Antecedent does not have consequent”);
end
"OVL_ASSUME : begin : ovl_assume
M_ASSERT_IMPLICATION_P:
assume property (ASSERT_IMPLICATION_P);

end
"OVL_IGNORE : begin : ovl_ignore
// do nothing ;
end
default cinitial ovl_error_t(“");
endcase
endgenerate
“endif // OVL_ASSERT_ON
“ifdef OVL_COVER_ON
generate
if (coverage_level = "OVL_COVER_NONE) begin

cover_antecedent:

cover property (@(posedge clk)
(COVL_RESET_SIGNAL !'= 1'b0) && antecedent_expr))

ovl_cover_t(“antecedent covered”);
end
endgenerate
‘endif // OVL_COVER_ON

Accellera OVL Standard V1 Library Reference Manual 22
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Verilog/SVA Library

Assertion Checker Logic Files (PSL 1.1)

Figure 5: $STD_OVL_DIR/psll.1/assert_implication_logic.v

/I Accellera Standard V1.6 Open Verification Library (OVL).
Il Accellera Copyright (c) 2005-2006. All rights reserved.

//This file is included in assert_implication.vlib
“include “std_ovl_task.h”
parameter assert_name = “ASSERT_IMPLICATION";
‘ifdef OVL_INIT_MSG
initial
ovl_init_msg_t; // Call the User Defined Init Message Routine
‘endif

‘ifdef OVL_ASSERT_ON

generate
case (property_type)

"OVL_ASSERT: begin: assert_checks
assert_implication_assert
assert_implication_assert (

.clk(clk),

.reset_n("OVL_RESET_SIGNAL),

.antecedent_expr(antecedent_expr),

.consequent_expr(consequent_expr));
end

"OVL_ASSUME: begin: assume_checks
assert_implication_assume
assert_implication_assume (

.clk(clk),

.reset_n("OVL_RESET_SIGNAL),

.antecedent_expr(antecedent_expr),

.consequent_expr(consequent_expr));
end

"OVL_IGNORE: begin: ovl_ignore
//do nothing

end

default: initial ovl_error_t(“");

endcase
endgenerate

“endif

“ifdef OVL_COVER_ON
generate
if (coverage_level != "OVL_COVER_NONE)
begin: cover_checks
assert_implication_cover
assert_implication_cover (
.clk(clk),
.reset_n("OVL_RESET_SIGNAL),
.antecedent_expr(antecedent_expr));
end

endgenerate
‘endif

“endmodule //Required to pair up with already used “"module” in file assert_implication.vlib

Accellera OVL Standard V1 Library Reference Manual 23
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Basics OVL Verilog/SVA Library

/IModule to be replicated for assert checks

/IThis module is bound to a PSL vunits with assert checks

module assert_implication_assert (clk, reset_n, antecedent_expr, consequent_expr);
input clk, reset_n, antecedent_expr, consequent_expr;

endmodule

/IModule to be replicated for assume checks

/IThis module is bound to a PSL vunits with assume checks

module assert_implication_assume (clk, reset_n, antecedent_expr, consequent_expr);
input clk, reset_n, antecedent_expr, consequent_expr;

endmodule

/IModule to be replicated for cover properties

/I/This module is bound to a PSL vunit with cover properties

module assert_implication_cover (clk, reset_n, antecedent_expr);
input clk, reset_n, antecedent_expr;

endmodule

| Assertion Checker vunit Files (PSL 1.1)
Figure 6: $STD_OVL_DIR/psll.1/vunits/assert_implication.psl

/1 Accellera Standard V1.6 Open Verification Library (OVL).
Il Accellera Copyright (c) 2005-2006. All rights reserved.

vunit assert_implication_assert_vunit (assert_implication_assert)
{
default clock = (posedge clk);
property ASSERT_IMPLICATION_P = always (
reset_n && antecedent_expr -> consequent_expr);
A_ASSERT_IMPLICATION_P:
assert ASSERT_IMPLICATION_P

report “VIOLATION: ASSERT_IMPLICATION Checker Fires :
Antecedent does not have consequent”;

vunit assert_implication_assume_vunit (assert_implication_assume)
{

default clock = (posedge clk);

property ASSERT_IMPLICATION_P = always (

reset_n && antecedent_expr->consequent_expr);

M_ASSERT_IMPLICATION_P:

assume ASSERT_IMPLICATION_P;
}

vunit assert_implication_cover_vunit (assert_implication_cover)
{

default clock = (posedge clk);

cover_antecedent:

cover {reset_n && antecedent_expr};

}

Accellera OVL Standard V1 Library Reference Manual 24
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL A SSERTION DATA SHEETS

Each OVL assertion checker type has a data sheet that provides the specification for
checkers of that type. This chapter lists the checker data sheets in alphabetical order by
checker type. Data sheets contain the following information:

O Syntax
Syntax statement for specifying a checker of the type, with:
» Parameters — parameters that configure the checker.
» Ports — checker ports.
O Description
Description of the functionality and usage of checkers of the type, with:
» Assertion Checks — violation types (or messages) with descriptions of failures.
» Cover Points — cover messages with descriptions.
» Errors* — possible errors that are not assertion failures.
J Notes*
Notes describing any special features or requirements.
O Seealso
List of other similar checker types.
O Examples
Examples of directives and checker applications.
* not applicable to all checker types.

Accellera OVL Standard V1 Library Reference Manual 25
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_always

assert_always
Ensures that the value of a specified expression is TRUE.

Parameters : Class:
severity level single-cycle assertion
property_type
—»{test_expr aSSert_always msg
coverage_level
clk reset_n
T T
Syntax
assert_always
[# (severity_level, property _type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr);
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
test_expr Expression that should evaluate to TRUE on the rising clock edge.
Description

Theassert_always assertion checker checks the single-bit expressirexpr at each rising edge
of clk to verify the expression evaluates to TRUE.

Assertion Check
ASSERT_ALWAYS Expression did not evaluate to TRUE.

Cover Points
none

See also

assert_always_on_edge, assert_implication, assert_never, assert_proposition

Accellera OVL Standard V1 Library Reference Manual 26
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_always

Example
assert_always #(
‘OVL_ERROR, Il severity_level
‘OVL_ASSERT, /I property_type
“Error: reg_a < reg_b is not TRUE”, /l msg
‘OVL_COVER_ALL) /I coverage_level
reg_a_lt reg_b (
clk, /I clock
reset_n, Il reset
reg_a<reg_b); Il test_expr
Ensures thatég_a < reg_b) is TRUE at each rising edge ok.
ok T L[LTI
reset.n _ | \ \ \ \ \ \ \
reg_a<reg_b \ , , ' , , ,
ASSERT_ALWAYS Error: reg_a < reg_b is not TRUE
Accellera OVL Standard V1 Library Reference Manual 27

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_always_on_edge

assert_always _on_edge

Ensures that the value of a specified expression is TRUE when a sampling event undergoes a
specified transition.

Parameters : Class:

severity level 2-cycle assertion
—»{ sampling_event edge_type

assert_always_on_edge property_type
—| test_expr msg
coverage_level

clk reset_n

T T

Syntax

assert_always_on_edge
[# (severity_level, edge_type, property type, msg, coverage_level)]
instance_name (clk, reset_n, sampling_event, test_expr) ;

Parameters

severity _level Severity of the failure. Default: ‘OVL_ERROR.

edge_type Transition type for sampling event: ‘OVL_NOEDGE, ‘OVL_POSEDGE,
‘OVL_NEGEDGE or ‘OVL_ANYEDGE. Default: ‘OVL_NOEDGE.

property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

Ports

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

sampling_event Expression that (along with edge_type) identifies when to evaluate and test
test_expr.

test_expr Expression that should evaluate to TRUE on the rising clock edge.

Description

Theassert_always_on_edge assertion checker checks the single-bit expressiopling_event

for a particular type of transition. If the specified transition of the sampling event occurs, the
single-bit expressiorest_expris evaluated at the rising edge @ to verify the expression does not
evaluate to FALSE.

Theedge_type parameter determines which type of transitiosanfpling_event initiates the check:
O ‘OVL_POSEDGE performs the checksidmpling event transitions from FALSE to TRUE.
0 ‘OVL_NEGEDGE performs the checkstmpling_event transitions from TRUE to FALSE.

O ‘OVL_ANYEDGE performs the check gampling_event transitions from TRUE to FALSE or
from FALSE to TRUE.

O ‘OVL_NOEDGE always initiates the check. This is the default valuedge_type. In this case,
sampling_event is never sampled and the checker has the same functionalityeas always.

Accellera OVL Standard V1 Library Reference Manual 28
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_always_on_edge

The checker is a variant a§sert_always, with the added capability of qualifying the assertion
with a sampling event transition. This checker is useful when events are identified by their
transition in addition to their logical state.

Assertion Check

ASSERT_ALWAYS_ON_EDGE Expression evaluated to FALSE when the sampling event transitioned as
specified by edge_type.

Cover Points
none

See also
assert_always, assert_implication, assert_never, assert_proposition
Examples
assert_always_on_edge #(
‘OVL_ERROR, /I severity_level
‘OVL_POSEDGE, /I edge_type
‘OVL_ASSERT, /I property_type
“Error: new req when FSM not ready”, /l msg
‘OVL_COVER_ALL) /I coverage_level
request_when_FSM_idle (
clk, /I clock
reset_n, Il reset
req, /I sampling_event
state == ‘IDLE); Il test_expr
Ensures thaistate == ‘IDLE) is TRUE at each rising edge ©k whenreq transitions from
FALSE to TRUE.
clk
reset_n _ . . ' ' . . .
req [I N poy N e I
state) E WR JLE "RD Wﬁ*
ASSERT_ALWAYS_ON_EDGE Error: new req when FSM not ready
Accellera OVL Standard V1 Library Reference Manual 29

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_always_on_edge

assert_always_on_edge #(

‘OVL_ERROR, Il severity_level
‘OVL_ANYEDGE, /I edge_type
‘OVL_ASSERT, /I property_type
“Error: req transition when FSM not idle”, /l msg
‘OVL_COVER_ALL) /I coverage_level
reg_transition_when_FSM_idle (

clk, /I clock

reset_n, Il reset

req, /I sampling_event

state == ‘IDLE); Il test_expr

Ensures thatstate == ‘IDLE) is TRUE at each rising edge ofk whenreq transitions from TRUE
to FALSE or from FALSE to TRUE.

ck TL Lo rrr

reset n _| \ \ \ \ \ \ \

req __ [, [N B \ [
state [IDLE [WR] TDLE [TRD "WAIT

ASSERT_ALWAYS_ON_EDGE Error: req transition when FSM not idle

assert_always_on_edge #(

‘OVL_ERROR, /I severity_level
‘OVL_NOEDGE, /I edge_type
‘OVL_ASSERT, /I property_type
“Error: req when FSM not idle”, /I msg
‘OVL_COVER_ALL) /I coverage_level
req_when_FSM_idle (

clk, /I clock

reset_n, Il reset

1'b0, /I sampling_event

Ireq || (state == ‘IDLE)); /I test_expr

Ensures thatreq || (state == ‘IDLE)) is TRUE at each rising edge ok.
TS A A e e e A A o A

reset n _| ! ! ! ! ! ! !

req ! ! !

state _[MDLE [WR [TOLE [RD ["WAIT _

ASSERT_ALWAYS_ON_EDGE Error: req when FSM not idle

Accellera OVL Standard V1 Library Reference Manual 30
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_change

assert_change

Ensures that the value of a specified expression changes within a specified number of cycles after a
start event initiates checking.

Parameters : Class:
severity level n-cycle assertion
—»| start_event width
assert_change num_cks
—»|test_expr [width - 1: 0] action_on_new_start
clk reset_n property_type
T T msg

coverage_level

Syntax
assert_change
[# (severity_level, width, num_cks, action_on_new_start, property_type,
msg, coverage_level)]
instance_name (clk, reset_n, start_event, test_expr) ;
Parameters
severity level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the test_expr argument. Default: 1.
num_cks Number of cycles to check for a change in the value of test_expr. Default: 1.
action_on_new_start Method for handling a new start event that occurs before test_expr changes
value or num_cks clock cycles transpire without a change. Values are:
‘OVL_IGNORE_NEW_START, ‘OVL_RESET_ON_NEW_START and
‘OVL_ERROR_ON_NEW_START. Default: ‘OVL_IGNORE_NEW_START.
property_type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
start_event Expression that (along with action_on_new_start) identifies when to start
checking test_expr .
test_expr [width-1:0] Expression that should change value within num_cks cycles from the start
event unless the check is interrupted by a valid new start event.
Description
Theassert_change assertion checker checks the expressian_event at each rising edge afk to
determine if it should check for a change in the valuesofexpr. If start_event is sampled TRUE,
the checker evaluatesst expr and re-evaluatesst_expr at each of the subsequentn_cks rising
edges otlk. If the value oftest_expr has not been sampled changed from its start value by the last
of thenum_cks cycles, the assertion fails.
Accellera OVL Standard V1 Library Reference Manual 31

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_change

The method used to determine how to handle a new start event, when the checker is in the state of
checking for a change ist_expr, is controlled by theaction_on_new_start parameter. The checker
has the following actions:

O ‘OVL_IGNORE_NEW_START
The checker does not samptert_event for the nexthum_cks cycles after a start event.
0 ‘OVL_RESET_ON_NEW_START

The checker samplesart_event every cycle. If a check is pending and the valugtast event
is TRUE, the checker terminates the check and initiates a new check with the current value of
test_expr (even on the last cycle of a check).

0 ‘OVL_ERROR_ON_NEW_START

The checker samplesart_event every cycle. If a check is pending and the valustaf event
is TRUE, the assertion fails with adimegal start event violation. In this case, the checker does
not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events, such as
verifying synchronization circuits respond after initial stimuli. For example, it can be used to check
the protocol that an “acknowledge” occurs within a certain number of cycles after a “request”. It
also can be used to check that a finite-state machine changes state after an initial stimulus.

Assertion Check

ASSERT_CHANGE The test_expr expression did not change value for num_cks cycles after
start_event was sampled TRUE.

illegal start event The action_on_new_start parameter is set to
‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was in the state of checking for a change in the value
of test_expr.

Cover Points

cover_window_open A change check was initiated.

cover_window_close A change check lasted the full num_cks cycles. If no assertion failure
occurred, the value of test_expr changed in the last cycle.

cover_window_resets The action_on_new_start parameter is ‘OVL_RESET_ON_NEW_START,

and start_event was sampled TRUE while the checker was monitoring
test_expr, but it had not changed value.

See also
assert_time, assert_unchange, assert_win_change, assert_win_unchange,
assert_window

Accellera OVL Standard V1 Library Reference Manual 32

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_change

Examples
assert_change #(
‘OVL_ERROR, /I severity_level
1, /1 width
3, /I num_cks
‘OVL_IGNORE_NEW_START, /[action_on_new_start
‘OVL_ASSERT, /I property_type
“Error: invalid synchronization”, /l msg
‘OVL_COVER_ALL) Il coverage_level
valid_sync_out (
clk, /I clock
reset_n, Il reset
sync ==1, /I start_event
out); /I test_expr
Ensures thaiut changes within 3 cycles afteync asserts. New starts are ignored.
clk 1 1 1 2 3
resetn _] : : : : : : : : : :
e L TN LT KT N~ L —
out ' ' ' " '
ASSERT_CHANGE Error: invalid synchronizationAJ
assert_change #(
‘OVL_ERROR, /I severity_level
1, /1 width
3, /I num_cks
‘OVL_RESET_ON_NEW_START, /I action_on_new_start
‘OVL_ASSERT, /I property_type
“Error: invalid synchronization”, /l msg
‘OVL_COVER_ALL) Il coverage_level
valid_sync_out (
clk, /I clock
reset_n, Il reset
sync ==1, /I start_event
out); Il test_expr
Ensures thatut changes within 3 cycles afteync asserts. A new start terminates the pending
check and initiates a new check.
ok 1 1 2 3
reset_n ' : : : : : : : : : :
sync ' : ' : : Ny ' ' '
out ' ' ' T '
ASSERT_CHANGE Error: invalid synchronization‘J
Accellera OVL Standard V1 Library Reference Manual 33

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_change #(
‘OVL_ERROR,

1,
3,

‘OVL_ERROR_ON_NEW_START,

‘OVL_ASSERT,

“Error: invalid synchronization”,

‘OVL_COVER_ALL)
valid_sync_out (

clk,
reset_n,
sync ==1,
out);

/I severity_level

/1 width

/I num_cks

/[action_on_new_start
/I property_type

/l msg

Il coverage_level

/I clock

Il reset

/I start_event
Il test_expr

assert_change

Ensures thaiut changes within 3 cycles afteync asserts. A new start reportsiaegal start

event violation (without initiating a new check) but any pending check is retained (even on the last

check cycle).

clk

1 2, 3

reset_n))

sync

out

N

ASSERT_CHANGE Error: invalid synchronization

illegal start event

Accellera OVL Standard V1 Library Reference Manual

© 2006 Accellera Organization, Inc. All Rights Reserved

34
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_cycle_sequence

asse rt_cycle_seq uence
Ensures that if a specified necessary condition occurs, it is followed by a specified sequence of

events.
Parameters : Class:
severity level n-cycle assertion
—»{event_sequence [num_cks - 1: 0] num cks
assert_cycle_sequence necessary_condition
property_type
clk reset_n msg
)) coverage_level

Syntax
assert_cycle_sequence
[# (severity_level, num_cks, necessary _condition, property _type, msg, coverage_level)]
instance_name (clk, reset_n, event_sequence) ;
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
num_cks Width of the event_sequence argument. This parameter must not be less
than 2. Default: 2.
necessary_condition Method for determining the necessary condition that initiates the sequence
check and whether or not to pipeline checking. Values are:
‘OVL_TRIGGER_ON_MOST_PIPE, ‘OVL_TRIGGER_ON_FIRST_PIPE and
‘OVL_TRIGGER_ON_FIRST_NOPIPE. Default:
‘OVL_TRIGGER_ON_MOST_PIPE.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
event_sequence [num_cks - 1: 0] Expression that is a concatenation where each bit represents an event.
Description
Theassert_cycle_sequence assertion checker checks the expressi@nt_sequence at the rising
edges otk to identify whether or not the bits évent_sequence assert sequentially on successive
rising edges oflk. For example, the following series of 4-bit values (wheigeany bit value) is a
valid sequence:
1bbb —> blbb —> bblb —> bbbl
This series corresponds to the following series of events on successive rising edges of
cycle 1 event_sequence[3] ==
cycle 2 event_sequence[2] == 1
Accellera OVL Standard V1 Library Reference Manual 35

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_cycle_sequence

cycle 3 event_sequence[l] == 1
cycle 4 event_sequence[0] == 1
The checker also has the ability to pipeline its analysis. Here, one or more new sequences can be

initiated and recognized while a sequence is in progress. For example, the following series of 4-bit
values (where is any bit value) constitutes two overlapping valid sequences:

1bbb —> blbb —> 1blb —> blbl —> bblb —> bbb1l
This series corresponds to the following sequences of events on successive rising edges of clk:

cycle 1 event_sequence[3] == 1

cycle 2 event_sequence[2] == 1

cycle 3 event_sequence[l] == 1 event_sequence[3] == 1
cycle 4 event_sequence[0] == event_sequence[2] ==
cycle 5 event_sequence[l] == 1
cycle 6 event_sequence[0] == 1

When the checker determines that a specified necessary condition has occurred, it subsequently
verifies that a specified event or event sequence occurs and if not, the assertion fails.

The method used to determine what constitutes the necessary condition and the resulting trigger
event or event sequence is controlled byndwessary _condition parameter. The checker has the
following actions:

0 ‘OVL_TRIGGER_ON_MOST_PIPE
The necessary condition is that the bits:

event_sequence [num_cks -1], . . . , event_sequence[1]

are sampled equal to 1 sequentially on successive rising edges/hen this condition
occurs, the checker verifies that the valueweht_sequence[0] is 1 at the next rising edge of
clk. If not, the assertion fails.

The checking is pipelined, which means thatént_sequence[num_cks -1] is sampled equal
to 1 while a sequence (includirgent_sequence[0]) is in progress and subsequently the
necessary condition is satisfied, the checkveft sequence[0] is performed (unless the first
sequence resulted in a fatal assertion violation).

0 'OVL_TRIGGER_ON_FIRST_PIPE
The necessary condition is that thent_sequence [num_cks -1] bit is sampled equal to 1 on a
rising edge ot/k. When this condition occurs, the checker verifies that the bits:
event_sequence [num_cks -2], . . . , event_sequence [0]
are sampled equal to 1 sequentially on successive rising edgledfafiot, the assertion fails.

The checking is pipelined, which means thatént_sequence[num_cks -1] is sampled equal
to 1 while a check is in progress, an additional check is initiated.

0 ‘OVL_TRIGGER_ON_FIRST_NOPIPE

The necessary condition is that thent_sequence [num_cks -1] bit is sampled equal to 1 on a

rising edge otik. When this condition occurs, the checker verifies that the bits:
event_sequence [num_cks -2], . . . , event_sequence [0]

are sampled equal to 1 sequentially on successive rising edgledfafiot, the assertion fails.

The checking is not pipelined, which means thatéht sequence[num_cks -1] is sampled

equal to 1 while a check is in progress, it is ignored, even if the check is verifying the last bit of
the sequencestent_sequence [0]).

Accellera OVL Standard V1 Library Reference Manual 36
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_cycle_sequence

Assertion Check

ASSERT_CYCLE_SEQUENCE The necessary condition occurred, but it was not followed by the event or
event sequence.
illegal num_cks parameter The num_cks parameter is less than 2.
Cover Point
cover_sequence_trigger The trigger sequence occurred.
See also
assert_change, assert_unchange
Examples
assert_cycle_sequence #(
‘OVL_ERROR, /I severity_level
3, /I num_cks
‘OVL_TRIGGER_ON_MOST_PIPE, /I necessary_condition
‘OVL_ASSERT, /I property_type
“Error: invalid WR sequence”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_write_sequence (
clk, /I clock
reset_n, Il reset
{r_opcode == ‘WR, I/l event_sequence
r_opcode == ‘WAIT,
(r_opcode == ‘WR) || (r_opcode == ‘DONE)});
Ensures that a ‘WR, ‘WAIT sequence in consecutive cycles is followed by a ‘DONE or ‘WR. The
sequence checking is pipelined.
k /L L orrrrerrerrrere’re e rered
reset_n ' . . .
r_opcode
ASSERT_CYCLE_SEQUENCE Error: invalid WR sequence)
assert_cycle_sequence #(
‘OVL_ERROR, /I severity_level
3, /I num_cks
‘OVL_TRIGGER_ON_FIRST_PIPE, /I necessary_condition
‘OVL_ASSERT, /I property_type
“Error: invalid WR sequence”, /I msg
‘OVL_COVER_ALL) Il coverage_level
valid_write_sequence (
clk, /1 clock
reset_n, Il reset
{r_opcode == ‘WR, /l event_sequence
(r_opcode == ‘WAIT) || (r_opcode == ‘WR),
(r_opcode == ‘WAIT) || (r_opcode == ‘DONE)});
Accellera OVL Standard V1 Library Reference Manual 37

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_cycle_sequence

Ensures that a ‘WR is followed by a ‘WAIT or another ‘WR, which is then followed by a ‘WAIT or
a ‘DONE (in consecutive cycles). The sequence checking is pipelined: a new ‘WR during a
sequence check initiates an additional check.

clk
reset_n ' ; : \ ; St %. ; \ \ FE % ™\
r_opcode "

ASSERT_CYCLE_SEQUENCE Error: invalid WR sequenceAJ

assert_cycle_sequence #(

‘OVL_ERROR, /I severity_level
3, /I num_cks
‘OVL_TRIGGER_ON_FIRST_NOPIPE, /I necessary_condition
‘OVL_ASSERT, /I property_type
“Error: invalid WR sequence”, /I msg
‘OVL_COVER_ALL) Il coverage_level
valid_write_sequence (

clk, /I clock

reset_n, I reset

{r_opcode == ‘'WR, /l event_sequence

(r_opcode == ‘WAIT) || (r_opcode == ‘WR),
(r_opcode == ‘DONE)});
Ensures that a ‘WR is followed by a ‘WAIT or another ‘WR, which is then followed by a ‘DONE
(in consecutive cycles). The sequence checking is not pipelined: a new ‘WR during a sequence
check does not initiate an additional check.
clk
reset_n !

r_opcode X

NE ‘WR ‘DONE| 'WR ['DONE
ASSERT_CYCLE_SEQUENCE Error: invalid WR sequenceAJ ‘J

ASSERT_CYCLE_SEQUENCE Error: invalid WR sequence

Accellera OVL Standard V1 Library Reference Manual 38
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_decrement

assert_decrement

Syntax

Parameters

Ports

Description

Assertion Check

Ensures that the value of a specified expression changes only by the specified decrement value.

Parameters : Class:

severity level 2-cycle assertion
—»{test_expr [width - 1: 0] width

assert_decrement value

property_type

clk reset_n msg
)) coverage_level

assert_decrement
[# (severity_level, width, value, property _type, msg, coverage level)]
instance_name (clk, reset_n, test_expr);

severity _level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

value Decrement value for test_expr. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [width-1:0] Expression that should decrement by value whenever its value changes from

the rising edge of clk to the next rising edge of clk.

Theassert_decrement assertion checker checks the expressenexpr at each rising edge afk
to determine if its value has changed from its value at the previous rising etgigdfao, the
checker verifies that the new value equals the previous value decremenie@.byhe checker
allows the value ofest_exprto wrap, if the total change equals the decremeit. For example, if
width is 5 and value is 4, then the following changesn expr is valid:

5'b00010 —> 5'b11110
The checker is useful for ensuring proper changes in structures such as counters and finite-state
machines. For example, the checker is useful for circular queue structures with address counters
that can wrap. Do not use this checker for variables or expressions that can increment. Instead
consider using thessert_delta checker.

ASSERT_DECREMENT Expression evaluated to a value that is not its previous value decremented by
value.

Accellera OVL Standard V1 Library Reference Manual 39

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_decrement

Cover Point
cover_test_expr_change Expression changed value.
Notes
1. The assertion check compares the current valussokxpr with its previous value. Therefore,
checking does not start until the second rising clock edge afterreset n deasserts.
See also
assert_delta, assert_increment, assert_no_underflow
Example
assert_decrement #(
‘OVL_ERROR, /I severity_level
4, /I width
1, /l value
‘OVL_ASSERT, /I property_type
“Error: invalid binary decrement”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_count (
clk, /I clock
reset_n, Il reset
count); Il test_expr
Ensures that the programmable countes'snt variable only decrements by 1.déunt wraps, the
assertion fails, because the change is not a binary decrement.
/S I N e Y A
reset_n . : . :) \)) ' :)
count —— 100 1 1000 { OI1T 1 0170 | 0I01 { 0T00 | 00IT | 00I0 { 0O0L 10000 | 100T
ASSERT_DECREMENT Etrror: invalid binary decrement®—_
Accellera OVL Standard V1 Library Reference Manual 40

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_delta

assert_delta

Syntax

Parameters

Ports

Description

Assertion Check

Ensures that the value of a specified expression changes only by a value in the specified range.

Parameters : Class:
severity level 2-cycle assertion
—»test_expr [width - 1: 0] width
assert_delta min
max
clk reset_n property_type
}) - msg

coverage_level

assert_delta
[# (severity_level, width, min, max, property_type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr);

severity _level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

min Minimum delta value allowed for test_expr. Default: 1.

max Maximum delta value allowed for test_expr. Default: 1.

property _type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [width-1:0] Expression that should only change by a delta value in the range min to max.

Theassert_delta assertion checker checks the expresgigmnexpr at each rising edge ok to
determine if its value has changed from its value at the previous rising edgdfafo, the

checker verifies that the difference between the new value and the previous value (i.e., the delta
value) is in the range fromin to max, inclusive. If the delta value is less tham or greater than

max, the assertion fails.

The checker is useful for ensuring proper changes in control structures such as up-down counters.
For these structuresssert_delta can check for underflow and overflow. In datapath and

arithmetic circuitsassert_delta can check for “smooth” transitions of the values of various

variables (for example, for a variable that controls a physical variable that cannot detect a severe
change from its previous value).

ASSERT_DELTA Expression changed value by a delta value not in the range min to max.

Accellera OVL Standard V1 Library Reference Manual 41

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_delta

Cover Point

cover_test_expr_change Expression changed value.

Errors

The parametersin andmax must be specified such that is less than or equal taax.
Otherwise, the assertion fails on each tested clock cycle.

Notes

1. The assertion check compares the current valessotxpr with its previous value. Therefore,
checking does not start until the second rising clock edge afterreset n deasserts.

2. The assertion check allows the valuessf exprto wrap. The overflow or underflow amount is
included in the delta value calculation.

See also

assert_decrement, assert_increment, assert_no_overflow,
assert_no_underflow, assert_range

Example

assert_delta #(

‘OVL_ERROR, /I severity_level
16, /1 width
0, I/ min
8, /I max
‘OVL_ASSERT, /I property_type
“Error: y values not smooth”, /I msg
‘OVL_COVER_ALL) /I coverage_level
valid_smooth (

clk, /I clock

reset_n, Il reset
y) /I test_expr

Ensures that the output only changes by a maximum of 8 units each cyaleig 0).

ASSERT_DELTA Error: y values not smooth -—

Accellera OVL Standard V1 Library Reference Manual 42
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_even_parity

asse rt_eve n_parity
Ensures that the value of a specified expression has even parity.

Parameters : Class:
severity level single-cycle assertion
— = |test_expr [width - 1: 0] width

assert_even_parity property. type

msg
clk reset_n coverage_level
) T
Syntax
assert_even_parity
[# (severity_level, width, property type, msg, coverage level)]
instance_name (clk, reset_n, test_expr);
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the test_expr argument. Default: 1.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
test_expr [width-1:0] Expression that should evaluate to a value with even parity on the rising clock
edge.
Description

Theassert_even_parity assertion checker checks the expresgismexpr at each rising edge of
clk to verify the expression evaluates to a value that has even parity. A value has even parity if it is
0 or if the number of bits set to 1 is even.

The checker is useful for verifying control circuits, for example, it can be used to verify a
finite-state machine with error detection. In a datapath circuit the checker can perform parity error
checking of address and data buses.

Assertion Check

ASSERT_EVEN_PARITY Expression evaluated to a value whose parity is not even.
Cover Point
cover_test_expr_change Expression has changed value.
See also
assert_odd_parity
Accellera OVL Standard V1 Library Reference Manual 43

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_even_parity

Examples
assert_even_parity #(
‘OVL_ERROR, Il severity_level
8, /I width
‘OVL_ASSERT, /I property_type
“Error: data has odd parity”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_data_even_parity (
clk, /I clock
reset_n, Il reset
data); Il test_expr
Ensures thadata has even parity at each rising edgelof
ok Lo reJrererererererer—
resetn __ [| | | | | | | | | | |
data A [5 1 0 [C T 7 T C 1 3 [6 [0
l—» ASSERT_EVEN_PARITY
Error: data has odd parity
Accellera OVL Standard V1 Library Reference Manual 44

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_fifo_index

assert_fifo_index

Ensures that a FIFO-type structure never overflows or underflows. This checker can be configured
to support multiple pushes (FIFO writes) and pops (FIFO reads) during the same clock cycle.

Parameters : Class:
) severity level n-cycle assertion
—»{ push [push_width - 1: 0]
. depth
assert_fifo_index push_width
—{ pop [pop_width - 1: 0] pop_width
clk reset_n property_type
) A msg

Syntax

assert_fifo_index
[# (severity_level, depth, push_width, pop_width, property type,
msg, coverage_level, simultaneous _push pop)]
instance_name (clk, reset_n, push, pop);

Parameters

severity level
depth

push_width
pop_width
property_type
msg
coverage_level

simultaneous_push_pop

Ports
clk

reset_n

push

pop [pop_width -

Description

[push_width - 1: 0]

1: 0]

coverage_level
simultaneous_push_pop

Severity of the failure. Default: ‘OVL_ERROR.

Maximum number of elements in the FIFO or queue structure. This
parameter must be > 0. Default: 1.

Width of the push argument. Default: 1.

Width of the pop argument. Default: 1.

Property type. Default: ‘OVL_ASSERT.

Error message printed when assertion fails. Default: “VIOLATION".
Coverage level. Default: ‘OVL_COVER_ALL.

Whether or not to allow simultaneous push/pop operations in the same clock
cycle. When set to 0, if push and pop operations occur in the same cycle, the
assertion fails. Default: 1 (simultaneous push/pop operations are allowed).

Clock event for the assertion. The checker samples on the rising edge of the
clock.

Active low synchronous reset signal indicating completed initialization.

Expression that indicates the number of push operations that will occur
during the current cycle.

Expression that indicates the number of pop operations that will occur during
the current cycle.

Theassert_fifo_index assertion checker tracks the numbers of pushes (writes) and pops (reads)
that occur for a FIFO or queue memory structure. This checker does permit simultaneous pushes/
pops on the queue within the same clock cycle. It ensures the FIFO never overflows (i.e., too many
pushes occur without enough pops) and never underflows (i.e., too many pops occur without
enough pushes). This checker is more complex thassteet_no_overflow and

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

45
V1.6 — 3/17/06

OVL Assertion Data Sheets

Assertion Checks

Cover Points

Errors

Notes

See also

Examples

assert_fifo_index

assert_no_underflow checkers, which check only the boundary conditions (overflow and

underflow respectively).

OVERLOW
UNDERFLOW
ILLEGAL PUSH AND POP

cover_fifo_push
cover_fifo_pop
cover_fifo_full
cover_fifo_empty

cover_fifo_simultaneous_push_pop

Depth parameter value must be >0

Push operation overflowed the FIFO.
Pop operation underflowed the FIFO.

Push and pop operations performed in the same clock cycle, but the
simultaneous_push_pop parameter is set to 0.

Push operation.
Pop operation.
FIFO full.

FIFO empty.

Push and pop operations in the same clock cycle.

Depth parameter is set to 0.

1. The checker checks the values ofdlxh andpop expressions. By default, (i.e.,

simultaneous_push_pop is 1), “simultaneous” push/pop operations are allowed. In this case,
the checker assumes the design properly handles simultaneous push/pop operations, so it only

ensures that the FIFO buffer index at éimel of the cycléas not overflowed or underflowed.

The assertion cannot ensure the FIFO buffer index does not overflow between a push and pop
performed in the same cycle. Similarly, the assertion cannot ensure the FIFO buffer index

does not underflow between a pop and push performed in the same cycle.

assert_no_overflow, assert_no_underflow

assert_fifo_index #(
‘OVL_ERROR,
8,
1,
1,
‘OVL_ASSERT,
“Error”,
‘OVL_COVER_ALL,
1)
no_over_underflow (
clk,
reset_n,
push,

pop);

/I severity_level

/I depth

/I push_width

/I pop_width

/I property_type

/l msg

/I coverage_level

/I simultaneous_push_pop

/I clock
Il reset
/I push
/I pop

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

46
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_fifo_index

Ensures that an 8-element FIFO never overflows or underflows. Only single pushes and pops can
occur in a clock cycleoish_width andpop_width values are 1). A push and pop operation in the
same clock cycle is allowed (valuesdhuitaneous_push_pop is 1).

ok LI Ll ol e

resetn __ [\ \ \ \ \ \ | | |

psh __ L Lo
pop)))) 1))))

count 0 | T [2 1 3] Z [5 1 & [7 [8 9]

OVERFLOW Error <

assert_fifo_index #(

‘OVL_ERROR, /I severity_level
8, /I depth
1, /I push_width
1, /l pop_width
‘OVL_ASSERT, /I property_type
“violation”, /l msg
‘OVL_COVER_ALL /I coverage_level
0) /l simultaneous_push_pop
no_over_underflow (

clk, /I clock

reset_n, Il reset

push, /I push

pop); Il pop

Ensures that an 8-element FIFO never overflows or underflows and that in no cycle do both push
and pop operations occur.

ck 7L L oL I LI rrrrrrrrrrr

resetn __ [, \ \ , , , , , , , , ,
push : : : :
pop . . 7 ,
count 0 I 1 1 2 1 3 1 4 1 3 1 & 1 5 6 1 7 16 1
ILLEGAL PUSH AND POP Error<—
Accellera OVL Standard V1 Library Reference Manual 47

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_frame

assert_frame

Ensures that when a specified start event is TRUE, then a specified expression must not evaluate
TRUE before a minimum number of clock cycles and must transition to TRUE no later than a
maximum number of clock cycles.

Parameters : Class:
severity _level n-cycle assertion
min_cks
assert_frame max_cks
—»ttest_expr action_on_new_start
clk reset_n property_type
¥ T msg
coverage_level

— start_event

Syntax
assert_frame
[# (severity_level, min_cks, max_cks, action_on_new_start, property_type,
msg, coverage_level)]
instance_name (clk, reset_n, start_event, test_expr) ;
Parameters
severity level Severity of the failure. Default: ‘OVL_ERROR.
min_cks Number of cycles after the start event that test_expr must not evaluate to
TRUE. The special case where min_cks is 0 turns off minimum checking (i.e.,
test_expr can be TRUE in the same clock cycle as the start event). Default: 0.
max_cks Number of cycles after the start event that during which test_expr must
transition to TRUE. The special case where max_cks is 0 turns off maximum
checking (i.e., test_expr does not need to transition to TRUE). Default: 0.
action_on_new_start Method for handling a new start event that occurs while a check is pending.
Values are: ‘OVL_IGNORE_NEW_START, ‘OVL_RESET_ON_NEW_START
and ‘OVL_ERROR_ON_NEW_START. Default:
‘OVL_IGNORE_NEW_START.
property_type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
start_event Expression that (along with action_on_new_start) identifies when to initiate
checking of test_expr.
test_expr Expression that should not evaluate to TRUE for min_cks -1 cycles after
start_eventinitiates a check (unless min_cks is 0) and that should evaluate to
TRUE before max_cks cycles transpire (unless max_cks is 0).
Accellera OVL Standard V1 Library Reference Manual 48

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_frame

Description

Assertion Checks

Theassert_frame assertion checker checks for a start event at each rising edge/ttart event
occurs ifstart_event has transitioned to TRUE, either at the clock edge or in the previous cycle. A
start event also occurssfart_event is TRUE at the rising clock edge after a checker reset.

When a start event occurs, the checker performs the following steps:
1. Unless itis disabled by settimgn_cksto O, aminimum check is initiated. The check evaluates

test_expr at each subsequent rising edgelbfor the nextmin_cks cycles. However, if a
sampled value aest_expris TRUE, theninimum check fails and the checker returns to the
state of waiting for a start event.

Unless it is disabled by settingux_cks to 0 (or aninimum violation has occurred), a

maximum check is initiated. The check evaluates expr at each subsequent rising edge of

clk for the nex{max_cks - min_cks) cycles. However, if a sampled valuetedt expris TRUE,

the checker returns to the state of waiting for a start event. If its value does not transition to
TRUE by the timenax_cks cycles transpire (from the start of checking),ttimum check

fails at cyclemax_cks.

3. The checker returns to the state of waiting for a start event.

The method used to determine how to hardie event when the checker is in the state of
checkingtest_expr is controlled by thection_on_new_start parameter. The checker has the
following actions:

0 ‘OVL_IGNORE_NEW_START

The checker does not samptert_event until it returns to the state of waiting for a start event.
‘OVL_RESET_ON_NEW_START

Each time the checker samplest_expr, it also samplestart_event. If start_eventis TRUE, the
checker first checks whether a pending minimum check is just failing. If so, the assertion
failed. Then—unless the assertion failed and it was fatal—the checker terminates the current
checks and initiates a new pair of checks.

‘OVL_ERROR_ON_NEW_START

Each time the checker samplest_expr, it also samplestart_event. If start_eventis TRUE, the
assertion fails with anlegal start event error. If the error is not fatal, the checker returns to
the state of waiting for a start event at the next rising clock edge.

ASSERT_FRAME The value of test_expr was TRUE before min_cks cycles after start_event

was sampled TRUE or its value was not TRUE before max_cks cycles
transpired after the rising edge of start_event.

illegal start event The action_on_new_start parameter is set to

‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was monitoring test_expr.

min_cks > max_cks The min_cks parameter is greater than the max_cks parameter (and
max_cks >0). Unless the violation is fatal, either the minimum or maximum
check will fail.
Cover Point
start_event The value of start_eventwas TRUE on a rising edge of clk.
Accellera OVL Standard V1 Library Reference Manual 49

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_frame

Notes
1. The special case whefin_cks andmax_cks are both 0 is the default. Herest_expr must be
TRUE every cycle there is a start event.
See also
assert_change, assert_next, assert_time, assert_unchange, assert_width
Examples

assert_frame #(

‘OVL_ERROR, /I severity_level
2, /I min_cks
4, /I max_cks

‘OVL_IGNORE_NEW_START,
‘OVL_ASSERT,

“Error: invalid transaction”,
‘OVL_COVER_ALL)
valid_transaction (

/I action_on_new_start
/I property_type

/l msg

Il coverage_level

clk, /I clock
reset_n, Il reset

req, /I start_event
ack); /I test_expr

1 2 3 4 1 2 3

clk
resetn [,
req . [, . . . P I . . .
ok e . . .

ASSERT_FRAME Error: invalid transaction

assert_frame #(

‘OVL_ERROR, /I severity_level
2, /I min_cks
4, /I max_cks

‘OVL_RESET_ON_NEW_START,
‘OVL_ASSERT,

“Error: invalid transaction”,
‘OVL_COVER_ALL)
valid_transaction (

/I action_on_new_start
I property_type

/l msg

/I coverage_level

clk, /I clock
reset_n, Il reset

req, /I start_event
ack); Il test_expr

Ensures that after a rising edgeref], ack goes high between 2 and 4 cycles later. New start events
during transactions are not considered to be new transactions and are ignored.

Accellera OVL Standard V1 Library Reference Manual

© 2006 Accellera Organization, Inc. All Rights Reserved

50
V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_frame

Ensures that after a rising edge&f, ack goes high between 2 and 4 cycles later. A new start
event during a transaction restarts the transaction.

ASSERT_FRAME Error: invalid transaction

assert_frame #(

‘OVL_ERROR,
2,
4,
‘OVL_ERROR_ON_NEW_START,
‘OVL_ASSERT,
“Error: invalid transaction”,
‘OVL_COVER_ALL)
valid_transaction (

clk,

reset_n,

req,

ack);

/I severity_level

/I min_cks

/I max_cks

/I action_on_new_start
/I property_type

/l msg

Il coverage_level

/I clock

Il reset

/I start_event
/I test_expr

Ensures that after a rising edge @&, ack goes high between 2 and 4 cycles later. Also ensures
that a new transaction does not start before the previous transaction is acknowledged. If a start
event occurs during a transaction, the checker does does not initiate a new check.

illegal start event 4=

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

51
V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_handshake

assert_handshake

Ensures that specified request and acknowledge signals follow a specified handshake protocol.

Class:
event-bounded assertion

Parameters :
severity level
min_ack_cycle
max_ack_cycle
req_drop
deassert_count

—req
assert_handshake
—»ack
clk reset_n
))

Syntax

assert_handshake

max_ack_length
property_type
msg
coverage_level

[# (severity_level, min_ack _cycle, max_ack_cycle, req_drop, deassert_count,
max_ack_length, property_type, msg, coverage_level)]
instance_name (clk, reset_n, req, ack) ;

Parameters
severity level

min_ack_cycle
max_ack_cycle
req_drop

deassert_count

max_ack_length

property_type
msg

coverage_level

Ports
clk

reset_n
req
ack

Description

Severity of the failure. Default: ‘OVL_ERROR.

Minimum number of clock cycles before acknowledge. A value of 0 turns off

the ack min cycle check. Default: 0.

Maximum number of clock cycles before acknowledge. A value of O turns off

the ack max cycle check. Default: 0.

If greater than 0, value of req must remain TRUE until acknowledge. A value
of 0 turns off the req drop check. Default: 0.

Maximum number of clock cycles after acknowledge that req can remain

TRUE (i.e., req must not be stuck active). A value of O turns off the req

deassert check. Default: 0.

Maximum number of clock cycles that ack can be TRUE. A value of 0 turns off

the max ack length check. Default: 0.

Property type. Default: ‘OVL_ASSERT.
Error message printed when assertion fails. Default: “VIOLATION".
Coverage level. Default: ‘OVL_COVER_ALL.

Clock event for the assertion. The checker samples on the rising edge of the
clock.

Active low synchronous reset signal indicating completed initialization.

Expression that starts a transaction.

Expression that indicates the transaction is complete.

Theassert_handshake assertion checker checks the single-bit exprességramdack at each

rising edge otk to verify their values conform to the request-acknowledge handshake protocol

specified by the checker parameters. A request event (vdgeransitions to TRUE) initiates a

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

52
V1.6 — 3/17/06

OVL Assertion Data Sheets

Assertion Checks

Cover Points

See also

Examples

assert_handshake

transaction on the rising edge of the clock and an acknowledge event gatieemsitions to

TRUE) signals the transaction is complete on the rising edge of the clock. The transaction must not
include multiple request events and every acknowledge must have a pending request. Other
checks—to ensure the acknowledge is received in a specified window, the request is held active
until the acknowledge, the requests and acknowledges are not stuck active and the pulse length is
not too long—are enabled and controlled by the checker's parameters.

When a violation occurs, the checker discards any pending request. Checking is restarted the next
cycle thatack is sampled FALSE.

multiple req violation

ack without req violation

ack min cycle violation

ack max cycle violation

req drop violation

req deassert violation

ack max length violation

cover_req_asserted

cover_ack_asserted

The value of req transitioned to TRUE while waiting for an acknowledge or
while acknowledge was asserted. Extra requests do not initiate new
transactions.

The value of ack transitioned to TRUE without a pending request.

The value of ack transitioned to TRUE before min_ack_cycle clock cycles
transpired after the request.

The value of ack did not transition to TRUE before max_ack_cycle clock
cycles transpired after the request.

The value of req transitioned from TRUE before an acknowledge.

The value of req did not transition from TRUE before deassert_count clock
cycles transpired after an acknowledge.

The value of ack did not transition from TRUE before max_ack_length clock
cycles transpired after an acknowledge.

A transaction initiated.

A transaction completed.

assert_window, assert_win_change, assert_win_unchange

assert_handshake #(
‘OVL_ERROR,
0,
0,
0,
0,
0,
‘OVL_ASSERT,

“hold-holda handshake error”,

‘OVL_COVER_ALL)
valid_hold_holda (
clk,
reset_n,
hold,
holda);

/I severity_level

/I min_ack_cycle
/I max_ack_cycle
/l req_drop

/l deassert_count
/I max_ack_length
/I property_type

/l msg

/I coverage_level

/I clock
Il reset
Il req
/I ack

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

53
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_handshake

Ensures that multipleold requests are not made while waiting foroéda acknowledge and that
everyholda acknowledge is in response to a uniguel request.

clk
|
resetn | . } ' } } } } } . ,
hold A s v B L. ' L I P I N
holda) ' ; 1. T I\L A e B ' .
multiple req violation/ ack without req violation
clk
|
resetn | . } ' } } } } } . ,
! | ' ' ' | | |
hold 1 I] h
holda . I : X 1.] I\A \ X \
ack without req violation multiple req violation ack without req violation

After a violation, checking is turned off untibida acknowledge is sampled deasserted.
clk
reset_n —:J ' ' ' ' ' ' ' ' ' '

hold . . I . L. ., L. <1

holda [. . . ' .

A multiple req violation

assert_handshake #(

‘OVL_ERROR, /I severity_level
2, /I min_ack_cycle
3, /I max_ack_cycle
0, Il req_drop
0 /l deassert_count
0, /I max_ack_length

‘OVL_ASSERT, Il property_type
“hold-holda handshake error”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_hold_holda (

clk, /I clock

reset_n, Il reset

hold, Il req

holda); I ack

Ensures that multipleold requests are not made while waiting foro&da acknowledge and that
everyholda acknowledge is in response to a unigquel request. Ensureésida acknowledge
asserts 2 to 3 cycles after each hold request.

ok L L i T L

resetn ([,
! \ ! ! ! ! \ ,
hold

holda ' ' ' ' ' '_._._ll .

ack min cycle violation

Accellera OVL Standard V1 Library Reference Manual 54
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_handshake #(
‘OVL_ERROR,
0,

N O O O

‘OVL_ASSERT,
“hold-holda handshake error”,
‘OVL_COVER_ALL)
valid_hold_holda (

clk,

reset_n,

hold,

holda);

assert_handshake

/I severity_level

/I min_ack_cycle
/l max_ack_cycle
/l req_drop

/l deassert_count
/I max_ack_length
/I property_type

/l msg

/I coverage_level

/I clock
Il reset
Il req
I ack

Ensures that multipleold requests are not made while waiting foro&da acknowledge and that
everyholda acknowledge is in response to a unigukl request. Ensuresida acknowledge

asserts for 2 cycles.

clk

reset_n : . ' ' ' '
hold ' ' ! '

holda K K K

assert_handshake #(
‘OVL_ERROR,

0
0
1,
1
0

‘OVL_ASSERT,
“hold-holda handshake error”,
‘OVL_COVER_ALL)
valid_hold_holda (

clk,

reset_n,

hold,

holda);

» I AJ
ack max length violation

/I severity_level

/I min_ack_cycle
/I max_ack_cycle
Il req_drop

/l deassert_count
/I max_ack_length
/I property_type

/l msg

Il coverage_level

/I clock
Il reset
Il req
I ack

Ensures that multipleold requests are not made while waiting foroéda acknowledge and that
everyholda acknowledge is in response to a uniguel request. Ensuresld request remains
asserted until iteolda acknowledge and then deasserts in the next cycle.

clk _I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_ll_l_l_l_l

reset_n . \ \ \ \ \ . . \ \ !
hold A e I ; B . N -
holda X L - . X N .

req drop violation

req deassert violation

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

55
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_implication

assert_implication
Ensures that a specified consequent expression is TRUE if the specified antecedent expression is

TRUE.
Parameters : Class:
severity _level single-cycle assertion
—»t antecedent_expr ' . ' property_type
assert_implication msg
—»1 COnsequent_expr coverage_level
clk reset_n
) T

Syntax

assert_implication

[# (severity_level, property type, msg, coverage level)]
instance_name (clk, reset_n, antecedent_expr, consequent_expr) ;

Parameters

severity _level Severity of the failure. Default: ‘OVL_ERROR.

property _type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports

clk Clock event for the assertion. The checker samples on the rising edge of the

clock.

reset_n Active low synchronous reset signal indicating completed initialization.

antecedent_expr Antecedent expression that is tested at the clock event.

consequent_expr Consequent expression that should evaluate to TRUE if antecedent_expr

evaluates to TRUE when tested.

Description

Theassert_implication assertion checker checks the single-bit expressiatedent_expr at each
rising edge otik. If antecedent expris TRUE, then the checker verifies that the value of
consequent_expr is also TRUE. lfantecedent expr is not TRUE, then the assertion is valid
regardless of the value efnsequent_expr.

Assertion Check

ASSERT_IMPLICATION Expression evaluated to FALSE.
Cover Point
cover_antecedent The antecedent_expr evaluated to TRUE.
Accellera OVL Standard V1 Library Reference Manual 56

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_implication

Notes
1. This assertion checker is equivalent to:
assert_always
[# (severity_level, property type, msg, coverage_level)]
instance_name (clk, reset_n, (antecedent_expr ? consequent expr : 1'b1));
See also
assert_always, assert_always_on_edge, assert_never, assert_proposition
Example
assert_implication #(
‘OVL_ERROR, /I severity_level
‘OVL_ASSERT, /I property_type
“Error: q valid but g full”, /l msg
‘OVL_COVER_ALL) Il coverage_level
not_full (
clk, /I clock
reset_n, Il reset
g_valid, /I antecedent_expr
g_not_full); /I consequent_expr
Ensures thaj_not_full is TRUE at each rising edge @k for whichq_valid is TRUE.
ok — LI LI LI LI LI I LI
reset n _ | \ \ \ \ \ \ \
quaid ___ . . [L. . L
q_not_full i : : . '
ASSERT_IMPLICATION Error: q valid but q full
Accellera OVL Standard V1 Library Reference Manual 57

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_increment

assert_increment

Syntax

Parameters

Ports

Description

Assertion Check

Ensures that the value of a specified expression changes only by the specified increment value.

Parameters : Class:

severity level 2-cycle assertion
—»{test_expr [width - 1: 0] width

assert_increment value

property_type

clk reset_n msg
)) coverage_level

assert_increment
[# (severity_level, width, value, property _type, msg, coverage level)]
instance_name (clk, reset_n, test_expr);

severity _level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

value Increment value for test_expr. Default: 1.

property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [width-1:0] Expression that should increment by value whenever its value changes from

the rising edge of clk to the next rising edge of clk.

Theassert_increment assertion checker checks the expresgismexpr at each rising edge ofk
to determine if its value has changed from its value at the previous rising etgigdfao, the
checker verifies that the new value equals the previous value incrementgebbyhe checker
allows the value ofest_exprto wrap, if the total change equals the incremeinte. For example, if
width is 5 andvalue is 4, then the following change st _expr is valid:

5'b11110 —> 5°b00010
The checker is useful for ensuring proper changes in structures such as counters and finite-state
machines. For example, the checker is useful for circular queue structures with address counters
that can wrap. Do not use this checker for variables or expressions that can decrement. Instead
consider using thessert_delta checker.

ASSERT_INCREMENT Expression evaluated to a value that is not its previous value incremented by
value.

Accellera OVL Standard V1 Library Reference Manual 58

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_increment

Cover Point
cover_test_expr_change Expression changed value.
Notes
1. The assertion check compares the current valussokxpr with its previous value. Therefore,
checking does not start until the second rising clock edge afterreset n deasserts.
See also
assert_decrement, assert_delta, assert_no_overflow
Example
assert_increment #(
‘OVL_ERROR, /I severity_level
4, /I width
1, /l value
‘OVL_ASSERT, /I property_type
“Error: invalid binary increment”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_count (
clk, /I clock
reset_n, Il reset
count); Il test_expr
Ensures that the programmable countes'snt variable only increments by 1. tbunt wraps, the
assertion fails, because the change is not a binary increment.
ok /L Lo rry
seln ___ T
count ——"0000 1 0001 { 00I0 | OOTT | 0I00 { 0T0T | OI10 | OTTT | 1000 | T00L | 0000
ASSERT_INCREMENT Error: invalid binary increment“J
Accellera OVL Standard V1 Library Reference Manual 59

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_never

asse rt_n ever
Ensures that the value of a specified expression is not TRUE.

Parameters : Class:
severity level single-cycle assertion
property_type
—{test_expr ASSert_never msg
coverage_level
clk reset_n
) T
Syntax
assert_never
[# (severity_level, property type, msg, coverage level)]
instance_name (clk, reset_n, test_expr);
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
test_expr Expression that should not evaluate to TRUE on the rising clock edge.
Description

Theassert_never assertion checker checks the single-bit expresssorexpr at each rising edge
of clk to verify the expression does not evaluate to TRUE.

Assertion Checks

ASSERT_NEVER Expression evaluated to TRUE.
test_expr contains X/Z value Expression evaluated to X or Z, and ‘OVL_XCHECK_OFF is not set.
Cover Points
none
Notes
1. By default, thexssert_never assertion is pessimistic and the assertion failssif expris not 0
(i.e.equals 1, X, Z, etc.). However, if ‘OVL_XCHECK_OFF is set, the assertion fails if and
only if test_expris 1.
Accellera OVL Standard V1 Library Reference Manual 60

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_never

See also
assert_always, assert_always_on_edge, assert_implication,
assert_proposition
Example
assert_never #(
‘OVL_ERROR, /I severity_level
‘OVL_ASSERT, /I property_type
/l msg
‘OVL_COVER_ALL) Il coverage_level
valid_count (
clk, /I clock
reset_n, Il reset
reg_a<reg_b); Il test_expr
Ensures thatég_a < reg_b) is FALSE at each rising edge ok.
clk
resetn _ [, . . . I . . I . I I .
reg_a <reg_b —XL . . Z _li : . : : .
test_expr contains X/Z value ASSERT_NEVER
Accellera OVL Standard V1 Library Reference Manual 61

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_never_unknown

assert_never_unknown

Ensures that the value of a specified expression contains only 0 and 1 bits when a qualifying

expression is TRUE.

Parameters : Class:
severity _level single-cycle assertion
—»{ qualifier width
assert_never_unknown property_type
—»test_expr [width - 1: 0] msg
clk reset_n coverage_level
T T
Syntax
assert_never_unknown
[# (severity_level, width, property type, msg, coverage_level)]
instance_name (clk, reset_n, qualifier, test_expr) ;
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the test_expr argument. Default: 1.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
qualifier Expression that indicates whether or not to check test_expr .
test_expr [width-1:0] Expression that should contain only 0 or 1 bits when qualifier is TRUE.
Description

Theassert_never_unknown assertion checker checks the expressiatrifier at each rising edge
of clk to determine if it should cheabst_expr. If qualifier is sampled TRUE, the checker evaluates
test_expr and if the value ofest_expr contains a bit that is not 0 or 1, the assertion fails.

The checker is useful for ensuring certain data have only known values following a reset sequence.
It also can be used to verify tristate input ports are driven and tristate output ports drive known

values when necessary.

Assertion Checks

test_expr contains X/Z value

Cover Points

cover_qualifier

cover_test_expr_change

The test_expr expression contained at least one bit that was not O or 1;
qualifier was sampled TRUE; and ‘OVL_XCHECK_OFF is not set.

A never_unknown check was initiated.

Expression changed value.

Accellera OVL Standard V1 Library Reference Manual

© 2006 Accellera Organization, Inc. All Rights Reserved

62
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_never_unknown

Notes
1. If ‘OVL_XCHECK_OFF is set, alhssert_never_unknown checkers are turned off.
See also
assert_never, assert_never_unknown_async, assert_one_cold,
assert_one_hot, assert_zero_one_hot
Example

assert_never_unknown #(

‘OVL_ERROR, /I severity_level
8, /I width
‘OVL_ASSERT, /I property_type
“Error: data unknown or undriven”, /l msg
‘OVL_COVER_ALL) Il coverage_level
valid_data (

clk, /I clock

reset_n, Il reset

rd_data, /I qualifier

data); Il test_expr

Ensures that values déta are known and driven whea_data is TRUE.
ST I s s N) s I s Y e T e N s Y s Y oy Y o

resetn | \ \ \ \ \ \ \ | | |
\)))))
rd_data I \ \ |
data XXXX | 10XX | 1010 XXXX[0OXX T 00IX'T 0010 [XXXX

ASSERT_NEVER_UNKNOWN Error: data unknown or undriven

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

63
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_never_unknown_async

asse rt_n eve r_unkn own_async
Ensures that the value of a specified expression combinationally contains only 0 and 1 bits.

Parameters : Class:
severity _level combinational assertion
—»|{test_expr [width - 1: 0] width
assert_never_
unknown_async property_type
msg
reset n coverage_level
[y
Syntax
assert_never_unknown
[# (severity_level, width, property type, msg, coverage_level)]
instance_name (reset_n, test_expr) ;
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the test_expr argument. Default: 1.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
reset_n Active low synchronous reset signal indicating completed initialization.
test_expr [width-1:0] Expression that should contain only 0 or 1 bits when qualifier is TRUE.
Description

Theassert_never_unknown_async assertion checker combinationally evaluaées expr and if
the value ofest_expr contains a bit that is not 0 or 1, the assertion fails.

The checker is useful for ensuring certain data have only known values following a reset sequence.
It also can be used to verify tristate input ports are driven and tristate output ports drive known
values when necessary.

Assertion Checks

test_expr contains X/Z value The test_expr expression contained at least one bit that was not 0 or 1 and
‘OVL_XCHECK_OFF is not set.

Cover Points
none

Notes
1. If 'OVL_XCHECK_OFF is set, alhssert_never_unknown_async checkers are turned off.

Accellera OVL Standard V1 Library Reference Manual 64
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_never_unknown_async

See also
assert_never
Example
assert_never_unknown_async #(
‘OVL_ERROR, /I severity_level
8, /1 width
‘OVL_ASSERT, /I property_type
“Error: data unknown or undriven”, /l msg
‘OVL_COVER_ALL) Il coverage_level
valid_data (
bus_gnt, Il reset
data); Il test_expr
Ensures that values déta are known and driven whilaus_gnt is TRUE.
bus_gnt
data XXXX 1010 | IXI0] 1010 [XXXX[00XX | 0011 [XXXX
ASSERT_NEVER_UNKNOWN_ASYNC Error: data unknown or undriven
Accellera OVL Standard V1 Library Reference Manual 65

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_next

assert_next

Ensures that the value of a specified expression is TRUE a specified number of cycles after a start
event.

Parameters : Class:
severity _level n-cycle assertion
num_cks
assert_next check_overlapping
—»|test_expr check_missing_start
clk reset_n property_type
¥ T msg
coverage_level

—| start_event

Syntax

assert_next
[# (severity_level, num_cks, check_overlapping, check missing_start, property_type,
msg, coverage_level)]
instance_name (clk, reset_n, start_event, test_expr) ;

Parameters

severity level Severity of the failure. Default: ‘OVL_ERROR.

num_cks Number of cycles after start_event is TRUE to wait to check that the value of
test_expris TRUE. Default: 1.

check_overlapping Whether or not to perform overlap checking. Default: 1 (overlap checking off).

® |f set to O, overlap checking is performed. From the rising edge of clk after
start_eventis sampled TRUE to the rising edge of clk of the cycle before
test_expr is sampled for the current next check, the checker performs an
overlap check. During this interval, if start_eventis TRUE at a rising edge
of clk, then the overlap check fails (illegal overlapping condition). The
current next check continues but a new next check is not initiated.

® If set to 1, overlap checking is not performed. A separate next check is

initiated each time start_event is sampled TRUE (overlapping start events
are allowed).

check_missing_start Whether or not to perform missing-start checking. Default: 0 (missing-start
checking off).

® |f set to 0, missing start checks are not performed.

® |f set to 1, missing start checks are performed. The checker samples
test_expr every rising edge of clk. If the value of test_expris TRUE, then
num_cks rising edges of clk prior to the current time, start_event must have
been TRUE (initiating a next check). If not, the missing-start check fails
(start_event without test_expr).

property_type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

Ports

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

Accellera OVL Standard V1 Library Reference Manual 66
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_next

start_event Expression that (along with num_cks) identifies when to check test_expr.

test_expr Expression that should evaluate to TRUE num_cks cycles after start _event
initiates a next check.

Description

Theassert_next assertion checker checks the expressiam event at each rising edge of. If
start_eventis TRUE, a check is initiated. The check waitsian_cks cycles (i.e., fornum_cks
additional rising edges @fk) and evaluatesst_expr. If test_expris not TRUE, the assertion fails.

If overlap checking is off ¢heck_overlapping is 1), additional checks can start while a current check
is pending. If overlap checking is on, the assertion faidsif event is sampled TRUE while a
check is pending (except on the last clock).

If missing-start checking is off ¢heck_missing_start is 0),test_expr can be TRUE any time. If
missing-start checking is on, the assertion failsést_expris TRUE without a corresponding start
event gum_cks cycles previously). However, iést_expr is TRUE in the interval ofum_cks - 1
cycles after a reset and has no corresponding start event, the result is indeterminate (i.e., the
missing-start check might or might not fail).

Assertion Checks

start_event without test_expr The value of start_event was TRUE on a rising edge of clk, but num_cks

cycles later the value of test_exprwas not TRUE.

illegal overlapping condition detected The check _overlapping parameter is set to 0 and start_event was TRUE on
the rising edge of clk, but a previous check was pending.

test_expr without start_event The check_missing_start parameter is set to 1 and start_eventwas not TRUE

on the rising edge of clk, but num_cks cycles later test_expr was TRUE.

num_cks parameter<=0 The num_cks parameter is less than 2.

Cover Points

cover_start_event The value of start_event was TRUE on a rising edge of clk.

cover_overlapping_start_events The value of start_event was TRUE on a rising edge of clk while a check was

pending.

See also

assert_change, assert_frame, assert_time, assert_unchange

Examples

assert_next #(

‘OVL_ERROR, /I severity_level

4, /l num_cks

1, /I check_overlapping (off)
0, /I check_missing_start (off)
‘OVL_ASSERT, /I property_type

“error:”,
‘OVL_COVER_ALL)
valid_next_a_b (

/I msg
/I coverage_level

clk, /I clock
reset_n, I reset

a, /I start_event
b); /I test_expr

Accellera OVL Standard V1 Library Reference Manual

© 2006 Accellera Organization, Inc. All Rights Reserved

67
V1.6 — 3/17/06

OVL Assertion Data Sheets

Ensures that is TRUE 4 cycles after is TRUE.
ce /L 77 rrJrrrrereJrryrrr

reset_n . ' . ' ' ' ' ' ' '
a NI I) M E— ,

start_event without test_expr error -

assert_next #(

‘OVL_ERROR, /I severity_level
4, /I num_cks
0, /I check_overlapping (on)
0, /I check_missing_start (off)
‘OVL_ASSERT, /Il property_type
“error.”, /I msg
‘OVL_COVER_ALL) /I coverage_level
valid_next_a_b (

clk, /I clock

reset_n, Il reset

a, /I start_event

b); /I test_expr

Ensures that is TRUE 4 cycles aftet is TRUE. Overlaps are not allowed
ck —L L[LIl rerer e r e e

reset_n ' X : "ot an pveriap : : : X :
a \ I_:_| , on Igst cycleI , , — ,
b , N I L N I I I
illegal overlapping condition detected error
assert_next #(
‘OVL_ERROR, /I severity_level
4, /I num_cks
1, I check_overlapping (off)
1, /I check_missing_start (on)
‘OVL_ASSERT, /I property_type
“error:”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_next_a_b (
clk, /I clock
reset_n, Il reset
a, /I start_event
b); /I test_expr

Ensures that is TRUE 4 cycles after is TRUE. Missing-start check is on.

reset_n i , ! . . . : ' '
: ' ' ' . ' ' '
a X -—
: ' . : : : o
b I l . .
-]
missing-start check indeterminate test_expr without start_event error

for 3 cycles after reset

assert_next

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

68
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_no_overflow

assert_no_overflow
Ensures that the value of a specified expression does not overflow.

Parameters : Class:
severity level 2-cycle assertion
—»{test_expr [width - 1: 0] width
assert_no_overflow min
max
clk reset_n property_type
[} [} msg

coverage_level

Syntax

assert_no_overflow
[# (severity_level, width, min, max, property_type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr);

Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Width must be less than or equal to 32.
Default: 1.

min Minimum value in the test range of test_expr. Default: 0.

max Maximum value in the test range of test_expr. Default: 2**width - 1.
property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

Ports

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [width-1:0] Expression that should not change from a value of max to a value out of the
test range or to a value equal to min.

Description

Theassert_no_overflow assertion checker checks the expresgismexpr at each rising edge of
clk to determine if its value has changed from a value (at the previous rising edgeait was
equal tomax. If so, the checker verifies that the new value has not overflomed hat is, it
verifies the value ofest_expris not greater thamax or less than or equal tain (in which case, the
assertion fails).

The checker is useful for verifying counters, where it can ensure the counter does not wrap from
the highest value to the lowest value in a specified range. For example, it can be used to check that
memory structure pointers do not wrap around. For a more general test for overflow, use
assert_delta Orassert_fifo_index.

Accellera OVL Standard V1 Library Reference Manual 69
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_no_overflow

Assertion Check

Cover Points

ASSERT_NO_OVERFLOW Expression changed value from max to a value not in the range min + 1 to
max - 1.

cover_test_expr_change Expression changed value.

cover_test_expr_at_min Expression evaluated to min.

cover_test_expr_at_max Expression evaluated to max.

Errors
The parametersin andmax must be specified such that is less than or equal toax.
Otherwise, the assertion fails on each tested clock cycle for wdiichxpr changed fronmax.
Notes
1. The assertion check compares the current valussokxpr with its previous value. Therefore,
checking does not start until the second rising clock edge afterreset n deasserts.
See also
assert_delta, assert_fifo_index, assert_increment, assert_no_overflow
Example
assert_no_overflow #(
‘OVL_ERROR, /I severity_level
3, I/ width
0, /I min
4, /I max
‘OVL_ASSERT, /I property_type
“Error: addr overflow”, /I msg
‘OVL_COVER_ALL) /I coverage_level
addr_with_overflow (
clk, /I clock
reset_n, Il reset
addr); Il test_expr
Ensures thaiddr does not overflow (i.e., change from a value of 4 at the rising edgetofa
value of O or a value greater than 4 at the next rising edge)of
clk
resetn __[X X X : L : L | X
addr _ x T O T 1 T 2 T 3 T 4 T 0 T 3 T 4 T 5 T 0 T 1
ASSERT_NO_OVERFLOW Error: addr overflow<—J I
ASSERT_NO_OVERFLOW Error: addr overflow
Accellera OVL Standard V1 Library Reference Manual 70

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_no_transition

assert_no_transition
Ensures that the value of a specified expression does not transition from a start state to the specified

next state.
Parameters : Class:
severity level 2-cycle assertion
—»|{test_expr [width - 1: 0] width
assert_no_transition property_type
—»| start_state [width - 1: 0] ms
—»| next_state [width - 1: 0] g
clk reset_n coverage_level
) T
Syntax
assert_no_transition
[# (severity_level, width, property type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr, start_state, next_state) ;
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the test_expr argument. Default: 1.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
test_expr [width-1:0] Expression that should not transition to next_state on the rising edge of clk if
its value at the previous rising edge of clk is the same as the current value of
start_state.
start_state [width-1:0] Expression that indicates the start state for the assertion check. If the start
state matches the value of test_expr on the previous rising edge of clk, the
check is performed.
next_state [width-1:0] Expression that indicates the invalid next state for the assertion check. If the
value of test_exprwas start_state at the previous rising edge of clk, then the
value of test_expr should not equal next_state on the current rising edge of
clk.
Description
Theassert_no_transition assertion checker checks the expressenexpr andstart_state at each
rising edge otik to see if they are the same. If so, the checker evaluates and stores the current
value ofnext_state. At the next rising edge afk, the checker re-evaluatest exprto see if its
value equals the stored valuenekt_state. If so, the assertion fails. The checker returns to
checkingstart_state in the current cycle (unless a fatal failure occurred)
Thestart_state andnext_state expressions are verification events that can change. In particular, the
same assertion checker can be coded to verify multiple types of transitiesisexpr.
Accellera OVL Standard V1 Library Reference Manual 71

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_no_transition

The checker is useful for ensuring certain control structure values (such as counters and finite-state
machine values) do not transition to invalid values.

Assertion Check
ASSERT_no_transition

Cover Point

Expression transitioned from start_state to a value equal to next_state.

start_state Expression assumed a start state value.

Notes

1. The assertion check compares the current valessokxpr with its previous value. Therefore,
checking does not start until the second rising clock edge afterreset n deasserts.

See also

assert_transition

Example

assert_no_transition #(
‘OVL_ERROR,
3,
‘OVL_ASSERT,
“Error: bad state transition”,
‘OVL_COVER_ALL)
valid_transition (
clk,
reset_n,
current_state,
requests > 2 ? ‘FULL : ‘'ONE_IN_Q,
‘EMPTY;

/I severity_level
/1 width

/I property_type
/I msg

/I coverage_level

/I clock

Il reset

/I test_expr
/I start_state
/I next_state

Ensures thaturrent_state does not transition to ‘EMPTY improperly.rfquests is greater than
2 and the current_state is ‘FULtyrrent_state should not transition to ‘EMPTY in the next
cycle. Ifrequests is not greater than 2 ardrrent_state is ‘ONE_IN_Q,current_state should

not transition to ‘EMPTY in the next cycle.

resetn | \ \ \ , , , \ ,)
current_state TDLE | "ONE.IN O _| EMPTY FULL EMPTY | "ONE IN O |
requests 0 I 2 I T I 1 I 2 [1

ASSERT_NO_TRANSITION Error: bad state transition

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

72
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_no_underflow

assert_no_underflow
Ensures that the value of a specified expression does not underflow.

Parameters : Class:
severity level 2-cycle assertion
—»{test_expr [width - 1: 0] width
assert_no_underflow min
max
clk reset_n property_type
T r msg

coverage_level

Syntax

assert_no_underflow
[# (severity_level, width, min, max, property_type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr);

Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Width must be less than or equal to 32.
Default: 1.

min Minimum value in the test range of test_expr. Default: 0.

max Maximum value in the test range of test_expr. Default: 2**width - 1.
property_type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

Ports

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [width-1:0] Expression that should not change from a value of min to a value out of range
or to a value equal to max.

Description

Theassert_no_underflow assertion checker checks the expressenexpr at each rising edge of
clk to determine if its value has changed from a value (at the previous rising edgeait was
equal tomin. If so, the checker verifies that the new value has not underfleive@hat is, it
verifies the value ofest_expris not less thamin or greater than or equal teax (in which case, the
assertion fails).

The checker is useful for verifying counters, where it can ensure the counter does not wrap from
the lowest value to the highest value in a specified range. For example, it can be used to check that
memory structure pointers do not wrap around. For a more general test for underflow, use
assert_delta Orassert_fifo_index.

Accellera OVL Standard V1 Library Reference Manual 73
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_no_underflow

Assertion Check

Cover Points

ASSERT_NO_UNDERFLOW Expression changed value from min to a value not in the range min+ 1 to
max - 1.

cover_test_expr_change Expression changed value.

cover_test_expr_at_min Expression evaluated to min.

cover_test_expr_at_max Expression evaluated to max.

Errors
The parametersin andmax must be specified such that is less than or equal toax.
Otherwise, the assertion fails on each tested clock cycle for wdiichxpr changed fronmax.
Notes
1. The assertion check compares the current valussokxpr with its previous value. Therefore,
checking does not start until the second rising clock edge afterreset n deasserts.
See also
assert_delta, assert_fifo_index, assert_decrement, assert_no_overflow
Example
assert_no_underflow #(
‘OVL_ERROR, /I severity_level
3, I/ width
3, /I min
7, /I max
‘OVL_ASSERT, /I property_type
“Error: addr underflow”, /I msg
‘OVL_COVER_ALL) /I coverage_level
addr_with_underflow (
clk, /I clock
reset_n, Il reset
addr); Il test_expr
Ensures thaiddr does not underflow (i.e., change from a value of 3 at the rising edaetofa
value of 7 or a value less than 3 at the next rising edg)of
clk
e N e~
addr X [v [6 [5 T[T 4 T 3 T 2 T 1 [3 [7 [T 6 [5
ASSERT_NO_UNDERFLOW Error: addr underflovm—J I
ASSERT_NO_UNDERFLOW Error: addr underfloy
Accellera OVL Standard V1 Library Reference Manual 74

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_odd_parity

assert_odd_parity
Ensures that the value of a specified expression has odd parity.

Parameters : Class:
severity _level single-cycle assertion
—=|test_expr [width - 1: 0] width
assert_odd_parity property_type
msg
clk reset_n coverage_level
) T
Syntax
assert_odd_parity
[# (severity_level, width, property type, msg, coverage level)]
instance_name (clk, reset_n, test_expr);
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the test_expr argument. Default: 1.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
test_expr [width-1:0] Expression that should evaluate to a value with odd parity on the rising clock
edge.
Description

Theassert_odd_parity assertion checker checks the expressenexpr at each rising edge afk
to verify the expression evaluates to a value that has odd parity. A value has odd parity if the
number of bits set to 1 is odd.

The checker is useful for verifying control circuits, for example, it can be used to verify a
finite-state machine with error detection. In a datapath circuit the checker can perform parity error
checking of address and data buses.

Assertion Check

ASSERT_ODD_PARITY Expression evaluated to a value whose parity is not odd.
Cover Point
cover_test_expr_change Expression has changed value.
See also
assert_even_parity
Accellera OVL Standard V1 Library Reference Manual 75

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_odd_parity

Example
assert_odd_parity #(
‘OVL_ERROR, Il severity_level
8, /I width
‘OVL_ASSERT, /I property_type
“Error: data has even parity”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_data_odd_parity (
clk, /I clock
reset_n, Il reset
data); Il test_expr
Ensures thadata has odd parity at each rising edgeiaf
ok Lo reJrererererererer—
resetn __[\ \ \ \ \ \ \) ' ')
data B 7] 7 [E 1T 9 B 1 2 [1T T D
l—» ASSERT_ODD_PARITY
Error: data has even parity
Accellera OVL Standard V1 Library Reference Manual 76

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_one_cold

assert_one_cold
Ensures that the value of a specified expression is one-cold (or equals an inactive state value, if

specified).
Parameters : Class:
severity level single-cycle assertion
—»|{test_expr [width - 1: 0] width
assert_one_cold inactive

property_type

clk reset_n msg

[} [} coverage_level

Syntax

assert_one_cold
[# (severity_level, width, inactive, property_type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr);

Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the test_expr argument. Default: 32.

inactive Inactive state of test_expr: ‘OVL_ALL_ZEROS, ‘OVL_ALL_ONES or
‘OVL_ONE_COLD. Default: ‘OVL_ONE_COLD.

property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

Ports

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

test_expr [width-1:0] Expression that should evaluate to a one-cold or inactive value on the rising
clock edge.

Description

Theassert_one_cold assertion checker checks the expresgismexpr at each rising edge ofk

to verify the expression evaluates to a one-cold or inactive state value. A one-cold value has
exactly one bit set to 0. The inactive state value for the checker is setitcthe parameter.
Choices are: ‘OVL_ALL_ZEROS (e.g., 4'b0000), ‘OVL_ALL_ONES (e.g.,4'b1111) or
‘OVL_ONE_COLD. The defaultractive parameter value is ‘OVL_ONE_COLD, which indicates
test_expr has no inactive state (so only a one-cold value is valid for each check).

The checker is useful for verifying control circuits, for example, it can ensure that a finite-state
machine with one-cold encoding operates properly and has exactly one bit asserted low. In a
datapath circuit the checker can ensure that the enabling conditions for a bus do not result in bus
contention.

Accellera OVL Standard V1 Library Reference Manual 77
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_one_cold

Assertion Checks

ASSERT_ONE_COLD Expression assumed an active state with multiple bits set to 0.
test_expr contains X/Z value Expression evaluated to a value with an X or Z bit, and ‘OVL_XCHECK_OFF
is not set.
Cover Points
cover_all_one_colds_checked Expression evaluated to all possible combinations of one-cold values.
cover_test_expr_all_zeros Expression evaluated to the inactive state and the inactive parameter was set

to ‘OVL_ALL_ZEROS.

cover_test_expr_all_ones Expression evaluated to the inactive state and the inactive parameter was set
to ‘OVL_ALL_ONES.

cover_test_expr_change Expression has changed value.

Notes
1. By default, thessert_one_cold assertion is pessimistic and the assertion faitsifexpr is
active and multiple bits are not 1 (i.e.equals 0, X, Z, etc.). However, if ‘OVL_XCHECK_OFF
is set, the assertion fails if and onlyd$:_expr is active and multiple bits are 0.
See also
assert_one_hot, assert_zero_one_hot
Examples
assert_one_cold #(
‘OVL_ERROR, /I severity_level
4, /I width
‘OVL_ONE_COLD, /l inactive (no inactive state)
‘OVL_ASSERT, I property_type
“Error: sel_n not one-cold”, / msg
‘OVL_COVER_ALL) /I coverage_level
valid_sel_n_one_cold (
clk, /I clock
reset_n, /I reset
sel_n); /I test_expr
Ensures thatel_n is one-cold at each rising edgect¥.
ok — Lo Lrrrrrreerereerererererer
resetn __[. . . ' . . ' . ' ' .
sel_n TXXXX [1101] 1011 [IT01 TO0ITd [{170 _ Jiiii [0131 T 71011
test_expr contains X/Z value
ASSERT_ONE_COLD Error: sel_n not one-cold
Accellera OVL Standard V1 Library Reference Manual 78

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_one_cold #(

‘OVL_ERROR, Il severity_level
4, /I width
‘OVL_ALL_ONES, I inactive
‘OVL_ASSERT, /I property_type
“Error: sel_n not one-cold or inactive”, /l msg

‘OVL_COVER_ALL)
valid_sel_n_one_cold (

/I coverage_level

clk, /I clock
reset_n, Il reset
sel_n); Il test_expr

Ensures thatel_n is one-cold or inactive (4'b1111) at each rising edgekof

clk
resetn __ [\ \ \ \ \ \ ') ' '
sel_n TXXXX [111t 1011 [1701 [1700 [1110] TI1T

[0111 [71011

test_expr contains X/Z value '~ ASSERT_ONE_COLD

Error: sel_n not one-cold or inactive

assert_one_cold #(

‘OVL_ERROR, Il severity_level
4, /1 width
‘OVL_ALL_ZEROS, I/l inactive
‘OVL_ASSERT, I property_type
“Error: sel_n not one-cold”, / msg

‘OVL_COVER_ALL)
valid_sel_n_one_cold (

/I coverage_level

clk, /I clock
reset_n, Il reset
sel_n); Il test_expr

Ensures thatel_n is one-cold or inactive (4’b0000) at each rising edgekof

clk LML r
resetn __ [, \ \ \ \ \ \ \ \ \ \
sel_n XXXX] 0000 | 1011 I 1101 [0111 [1710]]

T 011t [71011

test_expr contains X/Z value
ASSERT_ONE_COLD Error: sel_n not one-cold or inactive

assert_one_cold

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

79
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_one_hot

assert_one_hot
Ensures that the value of a specified expression is one-hot.

Parameters : Class:
severity level single-cycle assertion
—»{ test_expr [width - 1: 0] width
assert_one_hot property_type
msg
clk reset_n coverage_level
) T
Syntax
assert_one_hot
[# (severity_level, width, property_type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr);
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the test_expr argument. Default: 32.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
test_expr [width-1:0] Expression that should evaluate to a one-hot value on the rising clock edge.
Description

Theassert_one_hot assertion checker checks the expressonexpr at each rising edge a@fk to
verify the expression evaluates to a one-hot value. A one-hot value has exactly one bit set to 1.

The checker is useful for verifying control circuits, for example, it can ensure that a finite-state
machine with one-hot encoding operates properly and has exactly one bit asserted high. In a
datapath circuit the checker can ensure that the enabling conditions for a bus do not result in bus

contention.
Assertion Checks
ASSERT_ONE_HOT Expression evaluated to zero or to a value with multiple bits set to 1.
test_expr contains X/Z value Expression evaluated to a value with an X or Z bit, and ‘OVL_XCHECK_OFF
is not set.
Cover Points
cover_all_one_hots_checked Expression evaluated to all possible combinations of one-hot values.
cover_test_expr_change Expression has changed value.
Accellera OVL Standard V1 Library Reference Manual 80

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_one_hot

Notes
1. By default, thessert_one_hot assertion is optimistic and the assertion faitssif expr is
zero or has multiple bits not set to 0 (i.e.equals 1, X, Z, etc.). However, if
‘OVL_XCHECK_OFF is set, the ASSERT_ONE_HOT assertion fails if and onégifexpr
is zero or has multiple bits that are 1.
See also
assert_one_cold, assert_zero_one_hot
Example
assert_one_hot #(
‘OVL_ERROR, /I severity_level
4, /I width
‘OVL_ASSERT, /I property_type
“Error: sel not one-hot”, /I msg
‘OVL_COVER_ALL) /I coverage_level
valid_sel_one_hot (
clk, /I clock
reset_n, Il reset
sel); /I test_expr
Ensures thatel is one-hot at each rising edgect¥.
ek Lo reJrerereJrerererer—
resetn __ [, \ \ \ \ \ \ \ \ , , \
sel “XXXX [1000 0100 [0010 [0011 [0001 [0100 [0000 [0100 _
L» test_expr contains X/Z value L» ASSERT_ONE_HOT <——J
Error: sel not one-hot
Accellera OVL Standard V1 Library Reference Manual 81

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_proposition

assert_proposition

Syntax

Parameters

Ports

Description

Assertion Check

Ensures that the value of a specified expression is always combinationally TRUE.

Parameters : Class:
severity level combinational assertion
—»|test_expr property_type
assert_proposition msg

coverage_level

reset_n

I}

assert_proposition
[# (severity_level, property type, msg, coverage level)]
instance_name (reset_n, test_expr) ;

severity _level Severity of the failure. Default: ‘OVL_ERROR.

property _type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

reset_n Active low synchronous reset signal indicating completed initialization.
test_expr Expression that should always evaluate to TRUE.

Theassert_proposition assertion checker checks the single-bit expresssorexpr when it
changes value to verify the expression evaluates to TRUE.

ASSERT_PROPOSITION Expression evaluated to FALSE.
Cover Points
none
Notes
1. Formal verification tools and hardware emulation/acceleration systems might ignore this
checker. To verify propositional properties with these tools, consider assing_always.
See also
assert_always, assert_always_on_edge, assert_implication, assert_never
Accellera OVL Standard V1 Library Reference Manual 82

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_proposition

Example
assert_proposition #(
‘OVL_ERROR, /I severity_level
‘OVL_ASSERT, /I property_type
“Error: current_addr changed while bus granted”, /l msg
‘OVL_COVER_ALL) Il coverage_level
valid_current_addr (
bus_gnt, Il reset
current_addr == addr); Il test_expr
Ensures thaturrent_addr equalsaddr while bus_gnt is TRUE.
bus_gnt __ |
addr FFFF I AAOO
current_addr FFFE | AA00 AAFO
ASSERT_PROPOSITION Error: current_addr changed while bus granted
Accellera OVL Standard V1 Library Reference Manual 83

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_quiescent_state

assert_quiescent_state

Ensures that the value of a specified state expression equals a corresponding check value if a
specified sample event has transitioned to TRUE.

Parameters : Class:
severity level 2-cycle assertion
—»{sample_event width
assert_quiescent_state property_type
—»| state_expr [width - 1: 0] ms
—»{ check_value [width - 1: 0] g
clk reset_n coverage_level
) T
Syntax
assert_quiescent_state
[# (severity_level, width, property type, msg, coverage_level)]
instance_name (clk, reset_n, state_expr, check value, sample_event) ;
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the state_expr and check_value arguments. Default: 1.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
State_expr [width-1:0] Expression that should have the same value as check_value on the rising
edge of clk if sample_event transitioned to TRUE in the previous clock cycle
(or is currently transitioning to TRUE).
check value [width-1:0] Expression that indicates the value state _expr should have on the rising edge
of clk if sample_event transitioned to TRUE in the previous clock cycle (or is
currently transitioning to TRUE).
sample_event Expression that initiates the quiescent state check when its value transitions
to TRUE.
Description
Theassert_quiescent_state assertion checker checks the expressiaiple_event at each rising
edge ofclk to see if its value has transitioned to TRUE (i.e., its current value is TRUE and its value
on the previous rising edge gk is not TRUE). If so, the checker verifies that the current value of
state_expr equals the current value gfeck_value. The assertion fails dtate_expr is not equal to
check_value.
The state_expr andcheck_value expressions are verification events that can change. In particular,
the same assertion checker can be coded to compare different check values (if they are checked in
different cycles).
The checker is useful for verifying the states of state machines when transactions complete.
Accellera OVL Standard V1 Library Reference Manual 84

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_quiescent_state

Assertion Check

ASSERT_QUIESCENT_STATE The sample_event expression transitioned to TRUE, but the values of
state_expr and check_value were not the same.

Cover Points

none
Notes
1. The assertion check compares the current vals@mfe_event with its previous value.
Therefore, checking does not start until the second rising clock edgeatitrreset n
deasserts.
2. The checker recognizes the Verilog macro ‘OVL_END_OF_SIMULATI@b=signal. If set,
the quiescent state check is also performed at the end of simulationeavhsgnal asserts
(regardless of the value sdmple_event).
3. Formal verification tools and hardware emulation/acceleration systems might ignore this
checker.
See also
assert_no_transition, assert_transition
Example
assert_quiescent_state #(
‘OVL_ERROR, /I severity_level
4, I/ width
‘OVL_ASSERT, I property_type
“Error: illegal end of transaction”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_end_of_transaction_state (
clk, /I clock
reset_n, /I reset
transaction_state, /I state_expr
prev_tr == ‘TR_READ ? ‘TR_IDLE : ‘TR_WAIT /I check_value
end_of_transaction); /I sample_event
Ensures that whenevend_of_transaction asserts at the completion of each transaction, the value
of transaction_state is ‘TR_IDLE (if prev_tr is ‘TR_READ) or ‘TR_WAIT (otherwise).
ck —L_ L Lo LI
resetn _ [.
end_of_transaction : : N e : : : : :
check_value ‘TR _WAIT [TR IDLE | 0 ‘TR_WAIT
transaction_state X[‘TR_READ [TR IDLE [TR WRITE [‘TR_IDLE] ‘TR_READ
ASSERT_QUIESCENT_STATE Error: illegal end of transactio
Accellera OVL Standard V1 Library Reference Manual 85

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_range

assert_range

Ensures that the value of a specified expression is in a specified range.

—»{test_expr [width - 1: 0]

clk

assert_range

reset_n

Parameters : Class:

severity level single-cycle assertion
width

min

max

property_type

¥

Syntax

assert_range

I}

msg
coverage_level

[# (severity_level, width, min, max, property_type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr);

Parameters
severity _level
width
min
max
property_type
msg

coverage_level

Ports
clk

reset_n

test_expr [width-1:0]

Description

Severity of the failure. Default: ‘OVL_ERROR.

Width of the test_expr argument. Default: 1.

Minimum value allowed for test _expr. Default: 0.

Maximum value allowed for test_expr. Default: 2**width - 1.
Property type. Default: ‘OVL_ASSERT.

Error message printed when assertion fails. Default: “VIOLATION".
Coverage level. Default: ‘OVL_COVER_ALL.

Clock event for the assertion. The checker samples on the rising edge of the
clock.

Active low synchronous reset signal indicating completed initialization.

Expression that should evaluate to a value in the range from min to max
(inclusive) on the rising clock edge.

Theassert_range assertion checker checks the expresgismexpr at each rising edge ofk to
verify the expression falls in the range fronm to max, inclusive. The assertion fails iést_expr <

min Or max < test_expr.

The checker is useful for ensuring certain control structure values (such as counters and finite-state
machine values) are within their proper ranges. The checker is also useful for ensuring datapath
variables and expressions are in legal ranges.

Assertion Check
ASSERT_RANGE

Expression evaluated outside the range min to max.

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

86
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_range

Cover Points

cover_cover_test_expr_change Expression changed value.
cover_test_expr_at_min Expression evaluated to min.
cover_test_expr_at_max Expression evaluated to max.
Errors
The parametersin andmax must be specified such tha is less than or equal taax.
Otherwise, the assertion fails on each tested clock cycle.
See also
assert_always, assert_implication, assert_never, assert_proposition
Example
assert_range #(
‘OVL_ERROR, /I severity_level
3, /1 width
2, /I min
5, /I max
‘OVL_ASSERT, /I property_type
“Error: sel_high - sel_low not within 2 to 5, /I msg
‘OVL_COVER_ALL) Il coverage_level
valid_sel (
clk, /I clock
reset_n, Il reset
sel_high - sel_low); Il test_expr
Ensures thatsel_high - sel_low) is in the range 2 to 5 at each rising edgeliof
ck T LI LI LI LI
resetn _[: : : : : :
sel_high - sel_low X 172 1 T 7 T 5 2
ASSERT_RANGE Error: sel_high - sel_low not within 2 to 5
Accellera OVL Standard V1 Library Reference Manual 87

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_time

assert_time

Ensures that the value of a specified expression remains TRUE for a specified number of cycles
after a start event.

Parameters : Class:

severity level n-cycle assertion
—»| start_event num_cks

assert_time action_on_new_start

— test_expr property_type

clk reset_n msg
)) coverage_level

Syntax
assert_time
[# (severity_level, num_cks, action_on_new_start, property_type, msg, coverage_level)]
instance_name (clk, reset_n, start_event, test_expr) ;
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
num_cks Number of cycles after start_eventis TRUE that test_expr must be held
TRUE. Default: 1.
action_on_new_start Method for handling a new start event that occurs while a check is pending.
Values are: ‘OVL_IGNORE_NEW_START, ‘OVL_RESET_ON_NEW_START
and ‘'OVL_ERROR_ON_NEW_START. Default:
‘OVL_IGNORE_NEW_START.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
start_event Expression that (along with num_cks) identifies when to check test_expr.
test_expr Expression that should evaluate to TRUE for num_cks cycles after
start_event initiates a check.
Description
Theassert_time assertion checker checks the expressiamn event at each rising edge ofk to
determine whether or not to initiate a check. Once initiated, the check evadsatespr each
rising edge otk for num_cks cycles to verify that its value is TRUE. During that time, the
assertion fails each cycle a sampled valuewfexpr is not TRUE.
Accellera OVL Standard V1 Library Reference Manual 88

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_time

The method used to determine what constitutes a start event for initiating a check is controlled by
the action_on_new_start parameter. If no check is in progress whan_event is sampled TRUE, a

new check is initiated. But, if a check is in progress whan_eventis sampled TRUE, the checker

has the following actions:

O ‘OVL_IGNORE_NEW_START
The checker does not samptert_event for the nexthum_cks cycles after a start event.
0 ‘OVL_RESET_ON_NEW_START

The checker samplesart_event every cycle. If a check is pending and the valugtast event
is TRUE, the checker terminates the check and initiates a new check without sampling
test_expr.

0 ‘OVL_ERROR_ON_NEW_START

The checker samplesart_event every cycle. If a check is pending and the valustaf event

is TRUE, the assertion fails with adimegal start event violation. In this case, the checker does
not initiate a new check, does not terminate a pending check and reports an additional
assertion violation ifest_expris FALSE.

Assertion Checks

ASSERT_TIME The value of test_exprwas not TRUE within num_cks cycles after start_event
was sampled TRUE.

illegal start event The action_on_new_start parameter is set to
‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was monitoring test_expr.

Cover Points

cover_window_open A time check was initiated.

cover_window_close A time check lasted the full num_cks cycles.

cover_window_resets The action_on_new_start parameter is ‘OVL_RESET_ON_NEW_START,
and start_event was sampled TRUE while the checker was monitoring
test_expr.

See also
assert_change, assert_next, assert_frame, assert_unchange,
assert_win_change, assert_win_unchange, assert_window

Accellera OVL Standard V1 Library Reference Manual 89

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_time

Examples
assert_time #(
‘OVL_ERROR, /I severity_level
3, /I num_cks
‘OVL_IGNORE_NEW_START, /[action_on_new_start
‘OVL_ASSERT, /I property_type
“Error: invalid transaction”, /l msg
‘OVL_COVER_ALL) Il coverage_level
valid_transaction (
clk, /I clock
reset_n, Il reset
req==1, /I start_event
ptr >= 1 && ptr <= 3); Il test_expr
Ensures thattr is sampled in the range 1 to 3 for three cycles attqris sampled equal to 1 at the
rising edge otik. If req is sampled equal to 1 when the checker sanpplea new check is not
initiated (i.e., the new start is ignored).
clk
reset_n : : : : : : : : : : : '
ptr X1 0 3 T 7 T 1 0 [[£ 1 0
req==1 ____ | [, . . P I . P I
ptr >= 1 && ptr <= 3 ' ' : . - X N T
ASSERT_TIME Error: invalid transaction ‘)
assert_time #(
‘OVL_ERROR, /I severity_level
3, /I num_cks
‘OVL_RESET_ON_NEW_START, /I action_on_new_start
‘OVL_ASSERT, /I property_type
“Error: invalid transaction”, /I msg
‘OVL_COVER_ALL) /I coverage_level
valid_transaction (
clk, /I clock
reset_n, Il reset
req==1, /I start_event
ptr >= 1 && ptr <= 3); /I test_expr
Ensures thattr is sampled in the range 1 to 3 for three cycles atiqris sampled equal to 1 at the
rising edge otlk. If req is sampled equal to 1 when the checker sanmplea new check is
initiated (i.e., the new start restarts a check).
ck /L L0 7rrfrrrl
resetn [, I I I I I I I I I I
pr X -0 1 3 1 2 T 0 [2 [T 1 0
req==1 ; \ : X . . iy N I , I I
ptr>=18&&ptr<=3 ___ . . [L. X : \ : : ' '
ASSERT_TIME Error: invalid transaction 4)
Accellera OVL Standard V1 Library Reference Manual 90

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_time

assert_time #(

‘OVL_ERROR, /I severity_level
3, /I num_cks
‘OVL_ERROR_ON_NEW_START, /[action_on_new_start
‘OVL_ASSERT, /I property_type
“Error: invalid transaction”, /l msg
‘OVL_COVER_ALL) Il coverage_level
valid_transaction (

clk, /I clock

reset_n, Il reset

req==1, /I start_event

ptr >= 1 && ptr <= 3); Il test_expr

Ensures thattr is sampled in the range 1 to 3 for three cycles attqris sampled equal to 1 at the
rising edge otlk. If req is sampled equal to 1 when the checker samgdeshe checker issues an
illegal start event violation and does not start a new check.

resetn | ' ' ' '
ptr —XJ 0 [3 1T 2 1 T 3 1 P [L 1T 0
eq==1 __ [———— . . l_m_‘ . . .

pr>=1&&pr<=3 __ . | [,

illegal start event o
no violation

Accellera OVL Standard V1 Library Reference Manual 91
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_transition

assert_transition
Ensures that the value of a specified expression transitions properly from a start state to the

Syntax

Parameters

Ports

Description

specified next state.

—»|{test_expr [width - 1: 0]

—»| start_state [width - 1: 0]
—»| next_state [width - 1: 0]

assert_transition

clk reset_n

Parameters : Class:

severity level 2-cycle assertion
width

property_type

msg

coverage_level

¥

assert_transition

[# (severity_level, width, property type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr, start_state, next_state) ;

severity _level
width

property_type
msg

coverage_level

clk

reset_n
test_expr [width-1:0]

start_state [width-1:0]

next_state [width-1:0]

Severity of the failure. Default: ‘OVL_ERROR.

Width of the test_expr argument. Default: 1.

Property type. Default: ‘OVL_ASSERT.

Error message printed when assertion fails. Default: “VIOLATION".
Coverage level. Default: ‘OVL_COVER_ALL.

Clock event for the assertion. The checker samples on the rising edge of the
clock.

Active low synchronous reset signal indicating completed initialization.

Expression that should transition to next_state on the rising edge of clk if its
value at the previous rising edge of clk is the same as the current value of
start_state.

Expression that indicates the start state for the assertion check. If the start
state matches the value of test_expr on the previous rising edge of clk, the
check is performed.

Expression that indicates the only valid next state for the assertion check. If

the value of test_exprwas start_state at the previous rising edge of clk, then
the value of test_expr should equal next_state on the current rising edge of

clk.

Theassert_transition assertion checker checks the expresgismexpr andstart_state at each

rising edge otik to see if they are the same. If so, the checker evaluates and stores the current
value ofnext_state. At the next rising edge afk, the checker re-evaluateEst _expito see if its

value equals the stored valuenekt_state. If not, the assertion fails. The checker returns to
checkingstart_state in the current cycle (unless a fatal failure occurred)

Thestart_state andnext_state expressions are verification events that can change. In particular, the
same assertion checker can be coded to verify multiple types of transitiesisexpr.

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

92
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_transition

The checker is useful for ensuring certain control structure values (such as counters and finite-state
machine values) transition properly.

Assertion Check

ASSERT_TRANSITION Expression transitioned from start_state to a value different from next_state.
Cover Point
start_state Expression assumed a start state value.
Notes
1. The assertion check compares the current valessokxpr with its previous value. Therefore,
checking does not start until the second rising clock edge afterreset n deasserts.
See also
assert_no_transition
Example
assert_transition #(
‘OVL_ERROR, /I severity_level
3, /I width
‘OVL_ASSERT, /I property_type
“Error: bad count transition”, /I msg
‘OVL_COVER_ALL) /I coverage_level
valid_count (
clk, /I clock
reset_n, I reset
count, /I test_expr
3d3, /I start_state
(sel_8 ==1'b0) ? 3'd0 : 3'd4); /I next_state
Ensures thatount transitions from 3'd3 properly. Hel_8 is 0,count should have transitioned to
3'd0. Otherwisegount should have transitioned to 3'd4.
clk
reset_n 1 T T T T T T T T T T
sel_8]]]]]]]] ﬁ
(sel_8 == 1'b0) ? 30 : 3'd4 0 I 7
T T 1 1 1 1 1 I/VI T T
count X[0 [T [72 [3 [0 [T [2 [3 [0 [T [2
ASSERT_TRANSITION Error: bad count transition/
Accellera OVL Standard V1 Library Reference Manual 93

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_unchange

assert_unchange

Ensures that the value of a specified expression does not change for a specified number of cycles
after a start event initiates checking.

—| start_event

assert_unchange

—»{test_expr [width - 1: 0]

clk reset_n

Parameters : Class:

severity level n-cycle assertion
width

num_cks

action_on_new_start
property_type

T T

Syntax

assert_unchange

msg
coverage_level

[# (severity_level, width, num_cks, action_on_new_start, property_type,

msg, coverage_level)]

instance_name (clk, reset_n, start_event, test_expr) ;

Parameters

severity level
width

num_cks

action_on_new_start

property_type
msg

coverage_level

Ports
clk

reset_n

start_event

test_expr [width-1:0]

Description

Severity of the failure. Default: ‘OVL_ERROR.
Width of the test_expr argument. Default: 1.

Number of cycles test_expr should remain unchanged after a start event.
Default: 1.

Method for handling a new start event that occurs before num_cks clock
cycles transpire without a change in the value of test_expr. Values are:
‘OVL_IGNORE_NEW_START, ‘OVL_RESET_ON_NEW_START and
‘OVL_ERROR_ON_NEW_START. Default: ‘OVL_IGNORE_NEW_START.

Property type. Default: ‘OVL_ASSERT.
Error message printed when assertion fails. Default: “VIOLATION".
Coverage level. Default: ‘OVL_COVER_ALL.

Clock event for the assertion. The checker samples on the rising edge of the
clock.

Active low synchronous reset signal indicating completed initialization.

Expression that (along with action_on_new_start) identifies when to start
checking test_expr .

Expression that should not change value for num_cks cycles from the start
event unless the check is interrupted by a valid new start event.

Theassert_unchange assertion checker checks the expressiam event at each rising edge of
clk to determine if it should check for a change in the valuesofexpr. If start_event is sampled
TRUE, the checker evaluatest expr and re-evaluatesst expr at each of the subsequenitmn_cks
rising edges ofik. Each time the checker re-evaluates expr, if its value has changed from its
value in the previous cycle, the assertion fails.

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

94
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_unchange

The method used to determine how to handle a new start event, when the checker is in the state of
checking for a change ist_expr, is controlled by theaction_on_new_start parameter. The checker
has the following actions:

O ‘OVL_IGNORE_NEW_START
The checker does not samptert_event for the nexthum_cks cycles after a start event.
0 ‘OVL_RESET_ON_NEW_START

The checker samplesart_event every cycle. If a check is pending and the valugtast event
is TRUE, the checker terminates the check and initiates a new check.

0 ‘OVL_ERROR_ON_NEW_START

The checker samplesart_event every cycle. If a check is pending and the valustaf event
is TRUE, the assertion fails with adimegal start event violation. In this case, the checker does
not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events. For example, it
can be used to check that multiple-cycle operations with enabling conditions function properly
with the same data. It can be used to check that single-cycle operations function correctly with data
loaded at different cycles. It also can be used to verify synchronizing conditions that require date to
be stable after an initial triggering event.

Assertion Checks

ASSERT_UNCHANGE The test_expr expression changed value within num_cks cycles after
start_event was sampled TRUE.

illegal start event The action_on_new_start parameter is set to
‘OVL_ERROR_ON_NEW_START and start_event expression evaluated to
TRUE while the checker was in the state of checking for a change in the value
of test_expr.

Cover Points

cover_window_open A change check was initiated.
cover_window_close A change check lasted the full num_cks cycles.
cover_window_resets The action_on_new_start parameter is ‘OVL_RESET_ON_NEW_START,

and start_event was sampled TRUE while the checker was monitoring
test_expr without detecting a changed value.

See also
assert_change, assert_time, assert_win_change, assert_win_unchange,
assert_window

Accellera OVL Standard V1 Library Reference Manual 95

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets

Examples

assert_unchange #(
‘OVL_ERROR,
8,
8,
‘OVL_IGNORE_NEW_START,
‘OVL_ASSERT,

“Error: a changed during divide”,

‘OVL_COVER_ALL)
valid_div_unchange_a (
clk,
reset_n,
start ==1,
a);

assert_unchange

/I severity_level

/1 width

/I num_cks

/[action_on_new_start
/I property_type

/l msg

Il coverage_level

/I clock

Il reset

/I start_event
Il test_expr

Ensures that remains unchanged while a divide operation is performed (8 cycles). Restarts during
divide operations are ignored.

resetn L[
start=1 A S oy A S
a 0 | 17 | 31

assert_unchange #(

ASSERT_UNCHANGE Error: a changed during divide/

‘OVL_ERROR, /I severity_level
8, /1 width
8, /I num_cks

‘OVL_RESET_ON_NEW._START,

‘OVL_ASSERT,

/I action_on_new_start
/I property_type

“Error: a changed during divide”, /l msg

‘OVL_COVER_ALL)
valid_div_unchange_a (

/I coverage_level

clk, /I clock
reset_n, Il reset

start == 1, /I start_event
a); Il test_expr

Ensures that remains unchanged while a divide operation is performed (8 cycles). A restart
during a divide operation starts the check over.

resetn] : . : :
start== 1 . ' ' L ' ' '
a 0 I 7 I 31

ASSERT_UNCHANGE Error: a changed during divide/

Accellera OVL Standard V1 Library Reference Manual

© 2006 Accellera Organization, Inc. All Rights Reserved

96
V1.6 — 3/17/06

OVL Assertion Data Sheets

assert_unchange #(

‘OVL_ERROR,
8,
8,
‘OVL_ERROR_ON_NEW_START,
‘OVL_ASSERT,
“Error: a changed during divide”,
‘OVL_COVER_ALL)
valid_div_unchange_a (

clk,

reset_n,

start ==1,

a);

assert_unchange

/I severity_level

/1 width

/I num_cks

/[action_on_new_start
/I property_type

/l msg

Il coverage_level

/I clock

Il reset

/I start_event
Il test_expr

Ensures that remains unchanged while a divide operation is performed (8 cycles). A restart

during a divide operation is a violation.

clk
reset_n . ; . \) A . \ \ , \
start== 1 ' ' ' ' l_.C_l ' ' \:\ ' '
X
a 0 | 17 1 31

illegal start event e

ASSERT_UNCHANGE Error: a changed during divide‘)

Accellera OVL Standard V1 Library Reference Manual
© 2006 Accellera Organization, Inc. All Rights Reserved

97
V1.6 — 3/17/06

OVL Assertion Data Sheets assert_width

assert_width

Ensures that when value of a specified expression is TRUE, it remains TRUE for a minimum
number of clock cycles and transitions from TRUE no later than a maximum number of clock
cycles.

Parameters : Class:

severity level n-cycle assertion
min_cks

—{testexpr ggssert_width max_cks

property_type

clk reset_n msg
)) coverage_level

Syntax
assert_width
[# (severity_level, min_cks, max_cks, property_type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr);
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
min_cks Minimum number of clock edges test_expr must remain TRUE once it is
sampled TRUE. The special case where min_cks is 0 turns off minimum
checking (i.e., test_expr can transition from TRUE in the next clock cycle).
Default: 1 (i.e., same as 0).
max_cks Maximum number of clock edges test_expr can remain TRUE once it is
sampled TRUE. The special case where max_cks is 0 turns off maximum
checking (i.e., test_expr can remain TRUE for any number of cycles). Default:
1 (i.e., test_expr must transition from TRUE in the next clock cycle).
property_type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports

clk Clock event for the assertion. The checker samples on the rising edge of the

clock.

test_expr Expression that should evaluate to TRUE for at least min_cks cycles and at

most max_cks cycles after it is sampled TRUE.
Description
Theassert_width assertion checker checks the single-bit expresssorexpr at each rising edge
of clk. If the value oftest_expris TRUE, the checker performs the following steps:

1. Unless itis disabled by settimgn_cksto 0, aminimum check is initiated. The check evaluates
test_expr at each subsequent rising edgelkfIf its value is not TRUE, the minimum check
fails. Otherwise, aftemin_cks -1 cycles transpire, th@inimum check terminates.

2. Unless it is disabled by settingix_cks to 0, amaximum check is initiated. The check
evaluatesest_expr at each subsequent rising edgelkflf its value does not transition from
TRUE by the timenax_cks cycles transpire (from the start of checking),tteimum check
fails.

Accellera OVL Standard V1 Library Reference Manual 98

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_width

3. The checker returns to checkirgt_exprin the next cycle. In particular ikst_expris TRUE, a
new set of checks is initiated.

Assertion Checks

MIN_CHECK The value of test_exprwas held TRUE for less than min_cks cycles.

MAX_CHECK The value of test_expr was held TRUE for more than max_cks cycles.

min_cks > max_cks The min_cks parameter is greater than the max_cks parameter (and
max_cks >0). Unless the violation is fatal, either the minimum or maximum
check will fail.

Cover Points

cover_test_expr_asserts A check was initiated (i.e., test_expr was sampled TRUE).

cover_test_expr_asserted_for_ The expression test_expr was held TRUE for exactly min_cks cycles

min_cks (min_cks > 0).

cover_test_expr_asserted_for_ The expression fest_expr was held TRUE for exactly max_cks cycles

max_cks (max_cks > 0).

See also
assert_change, assert_time, assert_unchange
Example
assert_width #(
‘OVL_ERROR, /I severity_level
2, /I min_cks
3, /I max_cks
‘OVL_ASSERT, /I property_type
“Error: invalid request”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_request (
clk, /I clock
reset_n, Il reset
req == 1); Il test_expr
Ensureseq asserts for 2 or 3 cycles.
1 2 1 1 2 3 4
ok —L [L LT L L LU LU L UL L
resetn
req ! : N I e N I N N L. .
MIN_CHECK Error: invalid request/ MAX_CHECK Error: irtalid request
Accellera OVL Standard V1 Library Reference Manual 99

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_win_change

assert_win_change

Syntax

Parameters

Ports

Description

Assertion Check

Ensures that the value of a specified expression changes in a specified window between a start
event and an end event.

Parameters : Class:
—»|start_event severity _level event-bounded assertion
—{end_event width
assert_win_unchange property_type
—»test_expr [width - 1: 0] msg
clk reset_n coverage_level
) T

assert_win_change
[# (severity_level, width, property type, msg, coverage_level)]
instance_name (clk, reset_n, start_event, test_expr, end_event) ;

severity _level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property _type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

start_event Expression that opens an event window.

test_expr [width-1:0] Expression that should change value in the event window

end_event Expression that closes an event window.

Theassert_win_change assertion checker checks the expresstan _event at each rising edge of
clk to determine if it should open an event window at the start of the next cystet Bvent is
sampled TRUE, the checker evaluates expr. At each subsequent rising edgectsf the checker
evaluatesnd_event and re-evaluatesst_expr. If end_eventis TRUE, the checker closes the event
window and if all sampled values @bt _expr equal its value at the start of the window, then the
assertion fails. The checker returns to the state of monitegirtgevent at the next rising edge of
clk after the event window is closed.

The checker is useful for ensuring proper changes in structures in various event windows. A
typical use is to verify that synchronization logic responds after a stimulus (for example, bus
transactions occurs without interrupts or write commands are not issued during read cycles).
Another typical use is verifying a finite-state machine responds correctly in event windows.

ASSERT_WIN_CHANGE The test_expr expression did not change value during an open event window.

Accellera OVL Standard V1 Library Reference Manual 100

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_win_change

Cover Points

cover_window_open An event window opened (start_event was TRUE).

cover_window_close An event window closed (end_event was TRUE in an open event window).

See also
assert_change, assert_time, assert_unchange, assert_win_unchange,
assert_window
Example
assert_win_change #(
‘OVL_ERROR, /I severity_level
32, /1 width
‘OVL_ASSERT, /I property_type
“Error: read not synchronized”, /l msg
‘OVL_COVER_ALL) Il coverage_level
valid_sync_data_bus_rd (
clk, /I clock
reset_n, Il reset
rd, /I start_event
data, /I test_expr
rd_ack); /I end_event
Ensures thadata changes value in every data read window.
clk
reset_n —AJI 1 1 1 1 1 1 1 1 1 1 1
rd X 1 1 1 X X 1 1 1 X X X
e e
data —X] FF T 3A T C7
ASSERT_WIN_CHANGE Error: read not synchronized/
Accellera OVL Standard V1 Library Reference Manual 101

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_win_unchange

assert_win_unchange

Syntax

Parameters

Ports

Description

Assertion Check

Ensures that the value of a specified expression does not change in a specified window between a
start event and an end event.

Parameters : Class:
—»|start_event severity _level event-bounded assertion
—{end_event width
assert_win_unchange property_type
—»test_expr [width - 1: 0] msg
clk reset_n coverage_level
) T

assert_win_unchange
[# (severity_level, width, property type, msg, coverage_level)]
instance_name (clk, reset_n, start_event, test_expr, end_event) ;

severity _level Severity of the failure. Default: ‘OVL_ERROR.

width Width of the test_expr argument. Default: 1.

property _type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

start_event Expression that opens an event window.

test_expr [width-1:0] Expression that should not change value in the event window

end_event Expression that closes an event window.

Theassert_win_unchange assertion checker checks the expresstan _event at each rising edge
of clk to determine if it should open an event window at the start of the next cystet Bvent is
sampled TRUE, the checker evaluates expr. At each subsequent rising edgectsf the checker
evaluateend_event and re-evaluatesst_expr. If a sampled value afest_expris changed from its
value in the previous cycle, then the assertion failsidfevent is TRUE, the checker closes the
event window and returns to the state of monitoswag _event at the next rising edge ofk.

The checker is useful for ensuring certain variables and expressions do not change in various event
windows. A typical use is to verify that synchronization logic responds after a stimulus (for
example, bus transactions occurs without interrupts or write commands are not issued during read
cycles). Another typical use is to verify that non-deterministic multiple-cycle operations with
enabling conditions function properly with the same data.

ASSERT_WIN_UNCHANGE The test_expr expression changed value during an open event window.

Accellera OVL Standard V1 Library Reference Manual 102
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_win_unchange

Cover Points

cover_window_open An event window opened (start_event was TRUE).

cover_window_close An event window closed (end_event was TRUE in an open event window).

See also
assert_change, assert_time, assert_unchange, assert_win_change,
assert_window
Example
assert_win_unchange #(
‘OVL_ERROR, /I severity_level
8, /I width
‘OVL_ASSERT, /I property_type
“Error: a changed during divide”, /l msg
‘OVL_COVER_ALL) Il coverage_level
valid_div_win_unchange_a (
clk, /I clock
reset_n, Il reset
start, /I start_event
a, Il test_expr
done); /I end_event
Ensures that the input to the divider remains unchanged while a divide operation is performed
(i.e., in the window fromstart todone).
k /(L L qrrrrerrerererere e r e
resetn [, . : : . .
start B e . . ' ' ' ' . ' '
done] 1 1 1 '—:—l]] 1 ['l]
a 01 17 I 3T [87
ASSERT_WIN_UNCHANGE Error: a changed during divide /
Accellera OVL Standard V1 Library Reference Manual 103

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_window

assert_window

Syntax

Parameters

Ports

Description

Assertion Check

Ensures that the value of a specified expression is TRUE in a specified window between a start
event and an end event.

Parameters : Class:
—»|start_event severity _level event-bounded assertion
—»end_event property_type
assert_window msg
—»|test_expr coverage_level
clk reset_n
) T

assert_window
[# (severity_level, property type, msg, coverage level)]
instance_name (clk, reset_n, start_event, test_expr, end_event) ;

severity _level Severity of the failure. Default: ‘OVL_ERROR.

property _type Property type. Default: ‘OVL_ASSERT.

msg Error message printed when assertion fails. Default: “VIOLATION".

coverage_level Coverage level. Default: ‘OVL_COVER_ALL.

clk Clock event for the assertion. The checker samples on the rising edge of the
clock.

reset_n Active low synchronous reset signal indicating completed initialization.

start_event Expression that opens an event window.

test_expr Expression that should be TRUE in the event window

end_event Expression that closes an event window.

Theassert_window assertion checker checks the expressian event at each rising edge ofk
to determine if it should open an event window at the start of the next cystte: Bvent is
sampled TRUE, at each subsequent rising edg#,dhe checker evaluatead_event and
test_expr. If a sampled value aést_expr is not TRUE, then the assertion failsetil_event is
TRUE, the checker closes the event window and returns to the state of monimringvent at the
next rising edge ofik.

The checker is useful for ensuring proper changes in structures after various events. For example, it
can be used to check that multiple-cycle operations with enabling conditions function properly
with the same data. It can be used to check that single-cycle operations function correctly with data
loaded at different cycles. It also can be used to verify synchronizing conditions that require date to
be stable after an initial triggering event.

ASSERT_WINDOW The test_expr expression changed value during an open event window.

Accellera OVL Standard V1 Library Reference Manual 104

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_window

Cover Points
cover_window_open A change check was initiated.

cover_window_close A change check lasted the full num_cks cycles.

See also
assert_change, assert_time, assert_unchange, assert_win_change,
assert_win_unchange
Example
assert_window #(
‘OVL_ERROR, /I severity_level
‘OVL_ASSERT, /I property_type
“Error: write without grant”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_sync_data_bus_write (
clk, /I clock
reset_n, Il reset
write, /I start_event
bus_gnt, /I test_expr
write_ack); /I end_event
Ensures that the bus grant is not deasserted during a write cycle.
ck /Lo rrrrrreererererererered
reset_n _I 1 1 1 1 1 1 1 1 1 1 1 1
write . . : . . . Lo : : :
bus_gnt X X \ \\. \ \ I \ \ M
_window_open ' ' ' 1 ' ' ' .
ASSERT_WINDOW Error: write without grantA/
Accellera OVL Standard V1 Library Reference Manual 105

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_zero_one_hot

asse rt_zero_one_h ot
Ensures that the value of a specified expression is zero or one-hot.

Parameters : Class:
severity level single-cycle assertion
—»{ test_expr [width - 1: 0] width
assert_zero_one_hot property_type
msg
clk reset_n coverage_level
) T
Syntax
assert_zero_one_hot
[# (severity_level, width, property_type, msg, coverage_level)]
instance_name (clk, reset_n, test_expr);
Parameters
severity _level Severity of the failure. Default: ‘OVL_ERROR.
width Width of the test_expr argument. Default: 32.
property _type Property type. Default: ‘OVL_ASSERT.
msg Error message printed when assertion fails. Default: “VIOLATION".
coverage_level Coverage level. Default: ‘OVL_COVER_ALL.
Ports
clk Clock event for the assertion. The checker samples on the rising edge of the
clock.
reset_n Active low synchronous reset signal indicating completed initialization.
test_expr [width-1:0] Expression that should evaluate to either 0 or a one-hot value on the rising
clock edge.
Description

Theassert_zero_one_hot assertion checker checks the express®enexpr at each rising edge of
clk to verify the expression evaluates to a one-hot value or is zero. A one-hot value has exactly one

bit set to 1.

The checker is useful for verifying control circuits, circuit enabling logic and arbitration logic. For
example, it can ensure that a finite-state machine with zero-one-cold encoding operates properly
and has exactly one bit asserted high—or else is zero. In a datapath circuit the checker can ensure

that the enabling conditions for a bus do not result in bus contention.

Assertion Checks

ASSERT_ZERO_ONE_HOT Expression evaluated to a value with multiple bits set to 1.
test_expr contains X/Z value Expression evaluated to a value with an X or Z bit, and ‘OVL_XCHECK_OFF
is not set.

Accellera OVL Standard V1 Library Reference Manual

106

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Assertion Data Sheets assert_zero_one_hot

Cover Points

cover_all_one_hots_checked Expression evaluated to all possible combinations of one-hot values.
cover_test_expr_all_zeros Expression evaluated to 0.
cover_test_expr_change Expression has changed value.

Notes
1. By default, theassert_zero_one_hot assertion is optimistic and the assertion fail&t_expr
has multiple bits not set to O (i.e.equals 1, X, Z, etc.). However, if ‘'OVL_XCHECK_OFF is
set, the assertion fails if and onlydbt_expr has multiple bits that are 1.
See also
assert_one_cold, assert_one_hot
Example
assert_zero_one_hot #(
‘OVL_ERROR, /I severity_level
4, /I width
‘OVL_ASSERT, I property_type
“Error: sel not zero or one-hot”, /l msg
‘OVL_COVER_ALL) /I coverage_level
valid_sel_zero_one_hot (
clk, /I clock
reset_n, Il reset
sel); Il test_expr
Ensures thatel is zero or one-hot at each rising edgelkf
ok oo rrrrr e e er—
resetn __[. . . ' . . ' , , , ,
sel TXXXX [1000 0100 [0010 [0011 [0001] 0100 [1000 [0100
test_expr contains X/Z value ASSERT_ZERO_ONE_HOT
Error: sel not zero or one-hot
Accellera OVL Standard V1 Library Reference Manual 107

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL D EFINES

Global Defines

Type
Language

Synthesizable Logic

Function

Reset

Reporting

X/Z Values

DEFINE
‘OVL_VERILOG
‘OVL_SVA
‘OVL_SVA_INTERFACE

‘OVL_PSL

‘OVL_SYNTHESIS_OFF

‘OVL_ASSERT_ON
‘OVL_COVER_ON

‘OVL_GLOBAL_RESET=reset_signal

‘OVL_MAX_REPORT_ERROR

‘OVL_MAX_REPORT_COVER_
POINT

‘OVL_INIT_MSG

‘OVL_END_OF_SIMULATION=
eos_signal

‘OVL_XCHECK_OFF

Internal Global Defines

The following global variables are for internal use and the user should not redefine

them:

‘endmodule
‘module

‘OVL_RESET_SIGNAL
‘OVL_SHARED_CODE

Description
(default) Creates assertion checkers defined in Verilog.
Creates assertion checkers defined in System Verilog.

Ensures OVL assertion checkers can be instantiated in an SVA interface
construct. Default: not defined.

Creates assertion checkers defined in PSL. Default: not defined.

Ensures OVL logic is synthesizable. Default: not defined.

Activates assertion logic. Default: not defined.
Activates coverage logic. Default: not defined.

Overrides the reset_n port assignments of all assertion checkers with the
specified global reset signal. Default: each checker’s reset is specified by
the reset_n port.

Discontinues reporting a checker’s assertion violations if the number of
times the checker has reported one or more violations reaches this limit.
Default: unlimited reporting.

Discontinues reporting a checker’s cover points if the number of times the
checker has reported one or more cover points reaches this limit.Default:
unlimited reporting.

Reports configuration information for each checker when it is instantiated
at the start of simulation. Default: no initialization messages reported.
Performs quiescent state checking at end of simulation when the
eos_signal asserts. Default: not defined.

Turns off checking of values with X and Z bits. Disables all
assert_never_unknown checkers. Default: 0/1/X/Z semantics assumed on
assert_never, assert_never_unknown, assert_one_cold, assert_one_hot
and assert_zero_one_hot checkers.

‘OVL_STD_DEFINES_H

‘OVL_VERSION

Accellera OVL Standard V1 Library Reference Manual

© 2006 Accellera Organization, Inc. All Rights Reserved

108
V1.6 — 3/17/06

OVL Defines Defines Common to All Assertions

Defines Common to All Assertions

Parameter DEFINE Description
severity_level ‘OVL_FATAL Runtime fatal error.
‘OVL_ERROR (default) Runtime error.
‘OVL_WARNING Runtime Warning.
‘OVL_INFO Assertion failure has no specific severity.
property_type ‘OVL_ASSERT (default) All the assertion checker’s checks are asserts.
‘OVL_ASSUME All the assertion checker’s checks are assumes.
‘OVL_IGNORE All the assertion checker’s checks are ignored.
coverage_level ‘OVL_COVER_ALL (default) Activates coverage logic for the checker if ‘OVL_COVER_ON is
defined.
‘OVL_COVER_NONE De-activates coverage logic for the checker, even if ‘OVL_COVER_ON is
defined.
‘OVL_COVER_SANITY, Reserved for future use.

‘OVL_COVER_BASIC,
‘OVL_COVER_CORNER,
‘OVL_COVER_STATISTIC

Defines for Specific Assertions

Parameter Checkers DEFINE Description
action_on_new_start assert_change ‘OVL_IGNORE_NEW_START (default) Ignore new start events.
assert_frame ‘OVL_RESET_ON_NEW_START Restart check on new start events.
assert_time
assert_unchange ‘OVL_ERROR_ON_NEW_START Assert fail on new start events.
edge_type assert_always_on_edge ‘OVL_NOEDGE (default) Always initiate check.
‘OVL_POSEDGE Initiate check on rising edge of sampling
event.
‘OVL_NEGEDGE Initiate check on falling edge of sampling
event.
‘OVL_ANYEDGE Initiate check on both edges of sampling
event.
necessary_condition assert_cycle_sequence ‘OVL_TRIGGER_ON_MOST_PIPE (default) Necessary condition is full sequence.

Pipelining enabled.

‘OVL_TRIGGER_ON_FIRST_PIPE Necessary condition is first in sequence.
Pipelining enabled.

‘OVL_TRIGGER_ON_FIRST_NOPIPE Necessary condition is first in sequence.
Pipelining disabled.

inactive assert_one_cold ‘OVL_ALL_ZEROS Inactive state is all 0's.

Accellera OVL Standard V1 Library Reference Manual 109
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Defines Defines for Specific Assertions

Parameter Checkers DEFINE Description
‘OVL_ALL_ONES Inactive state is all 1's.
‘OVL_ONE_COLD (default) No inactive state.
Accellera OVL Standard V1 Library Reference Manual 110

© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

OVL Defines Defines for Specific Assertions

Accellera OVL Standard V1 Library Reference Manual 111
© 2006 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

| NDEX

A

assert_always 26
assert_always_on_edge 28
assert_change 31
assert_cycle_sequence 35
assert_decrement 39
assert_delta 41
assert_even_parity 43
assert_fifo_index 45
assert_frame 48
assert_handshake 52
assert_implication 56
assert_increment 58
assert_never 60
assert_never_unknown 62, 64
assert_next 66
assert_no_overflow 69
assert_no_transition 71
assert_no_underflow 73
assert_odd_parity 75
assert_one_cold 77
assert_one_hot 80
assert_proposition 82
assert_quiescent_state 84
assert_range 86
assert_time 88
assert_transition 92
assert_unchange 94
assert_width 98
assert_win_change 100
assert_win_unchange 102
assert_window 104
assert_zero_one_hot 106

C

checkers
assert_always 26
assert_always_on_edge 28
assert_change 31
assert_cycle_sequence 35
assert_decrement 39
assert_delta 41
assert_even_parity 43
assert_fifo_index 45
assert_frame 48
assert_handshake 52
assert_implication 56
assert_increment 58
assert_never 60
assert_never_unknown 62, 64
assert_next 66
assert_no_overflow 69
assert_no_transition 71
assert_no_underflow 73
assert_odd_parity 75

Accellera OVL Standard V1 Library Reference Manual
© 2005 Accellera Organization, Inc. All Rights Reserved

112
V1.6 — 3/17/06

assert_one_cold 77
assert_one_hot 80
assert_proposition 82
assert_quiescent_state 84
assert_range 86
assert_time 88
assert_transition 92
assert_unchange 94
assert_width 98
assert_win_change 100
assert_win_unchange 102
assert_window 104
assert_zero_one_hot 106

D
data sheets, checkers 25

Accellera OVL Standard V1 Library Reference Manual 113
© 2005 Accellera Organization, Inc. All Rights Reserved V1.6 — 3/17/06

	Introduction
	About this Manual
	Notational Conventions
	Verilog Assertion Syntax Format

	References

	OVL Basics
	OVL Assertion Checker Implementation
	OVL Assertion Checker Characteristics
	Checker Class
	Clock and Reset
	Checker Parameters
	severity_level
	property_type
	msg
	coverage_level

	Assertion Checks
	Cover Points

	OVL Use Model
	Setting the Implementation Language
	Instantiation in an SVA Interface Construct
	Limitations for PSL

	Enabling Assertion and Coverage Logic
	Asserting, Assuming and Ignoring Properties
	Monitoring Coverage

	Reporting Assertion Information
	Limiting a Checker’s Reporting
	Reporting Initialization Messages
	End-of-simulation Signal to assert_quiescent_state Checkers

	Generating Synthesizable Logic
	Checking of X and Z Values
	Backward Compatibility
	V1.6
	V1.5
	V1.1
	V1.0
	assert_fifo_index

	OVL Verilog/SVA Library
	Library Characteristics
	Library Layout
	Examples
	Header File
	Assertion Checker Interface Files
	Assertion Checker Logic Files (Verilog 95)
	Assertion Checker Logic Files (System Verilog 3.1a)
	Assertion Checker Logic Files (PSL 1.1)
	Assertion Checker vunit Files (PSL 1.1)

	OVL Assertion Data�Sheets
	assert_always
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Example

	assert_always_on_edge
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Examples

	assert_change
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Examples

	assert_cycle_sequence
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	See also
	Examples

	assert_decrement
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_delta
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point
	Errors

	Notes
	See also
	Example

	assert_even_parity
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	See also
	Examples

	assert_fifo_index
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points
	Errors

	Notes
	See also
	Examples

	assert_frame
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Point

	Notes
	See also
	Examples

	assert_handshake
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	assert_implication
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_increment
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_never
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example

	assert_never_unknown
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example

	assert_never_unknown_async
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example

	assert_next
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	assert_no_overflow
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points
	Errors

	Notes
	See also
	Example

	assert_no_transition
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_no_underflow
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points
	Errors

	Notes
	See also
	Example

	assert_odd_parity
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	See also
	Example

	assert_one_cold
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Examples

	assert_one_hot
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example

	assert_proposition
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	Notes
	See also
	Example

	assert_quiescent_state
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	Notes
	See also
	Example

	assert_range
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points
	Errors

	See also
	Example

	assert_time
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	assert_transition
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Point

	Notes
	See also
	Example

	assert_unchange
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Examples

	assert_width
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	See also
	Example

	assert_win_change
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Example

	assert_win_unchange
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Example

	assert_window
	Syntax
	Parameters
	Ports

	Description
	Assertion Check
	Cover Points

	See also
	Example

	assert_zero_one_hot
	Syntax
	Parameters
	Ports

	Description
	Assertion Checks
	Cover Points

	Notes
	See also
	Example

	OVL Defines
	Global Defines
	Internal Global Defines

	Defines Common to All Assertions
	Defines for Specific Assertions

