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� We're ready to look at an implementation of the MIPS

� Simplified to contain only:
� memory-reference instructions:  lw, sw 

� arithmetic-logical instructions:  add, sub, and, or, slt

� control flow instructions:  beq, j

� Generic Implementation:

The Processor: Datapath and ControlThe Processor: Datapath and Control

2

� Generic Implementation:

� use the program counter (PC) to supply instruction address

� get the instruction from memory

� read registers

� use the instruction to decide exactly what to do

� All instructions use the ALU after reading the registers
Why?  memory-reference?  arithmetic? control flow?

� Abstract / Simplified View:

More Implementation DetailsMore Implementation Details
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Two types of functional units:
� Elements that operate on data values (combinational)

� Elements that contain state (sequential)
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� Built using D flip-flops
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� Note:  we still use the real clock to determine when to 
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Simple ImplementationSimple Implementation

� Include the functional units we need for each 
instruction
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a. Instruction memory b. Program counter c. Adder

extend

b. Sign-extension unit
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a. Data memory unit

ALU control
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Building the DatapathBuilding the Datapath

� Use multiplexers to stitch them together
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RR--Type Instructions Type Instructions 
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II--Type Instructions Type Instructions 
(e.g. lw $4, 1000($15))(e.g. lw $4, 1000($15))
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II--type Instruction for Branchestype Instruction for Branches
(e.g. beq $4, $5, Label7)(e.g. beq $4, $5, Label7)
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� Selecting the operations to perform (ALU, read/write, etc.)

� Controlling the flow of data (multiplexer inputs)

� Information comes from the 32 bits of the instruction

� Example:

add $8, $17, $18 Instruction Format:
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000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

� ALU's operation based on instruction type and 

function code

� e.g., what should the ALU do with this instruction

� Example:  lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

� ALU control input

ControlControl

ALU control
3
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� ALU control input

000 AND

001 OR

010 add

110 subtract

111 set-on-less-than

� Why is the code for subtract 110 and not 011?  What do you need for 
slt instruction?

ALU

result
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� Must describe hardware to compute 3-bit ALU control input

� given instruction type 
00 = lw, sw
01 = beq, 
11 = arithmetic (incl. slt)

� function code for arithmetic

� Describe it using a truth table (can turn into gates):

ALUOp 

computed from instruction type

Control the ALUControl the ALU

ALUOp
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ALUOp Funct field ALU
ControlALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010

X 1 X X X X X X 110

1 X X X 0 0 0 0 010

1 X X X 0 0 1 0 110

1 X X X 0 1 0 0 000

1 X X X 0 1 0 1 001

1 X X X 1 0 1 0 111

inst[5:0]inst[5:0]Generated fromGenerated from
Decoding inst[31:26]Decoding inst[31:26]
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� Simple combinational logic (truth tables)
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Control Unit SignalsControl Unit Signals
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R-format Iw sw beq
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To harness To harness 
the datapaththe datapath

� All of the logic is combinational

� We wait for everything to settle down, and the right thing to be 

done

� ALU might not produce “right answer” right away

� we use write signals along with clock to determine when to write

� Cycle time determined by length of the longest path

Our Simple Control StructureOur Simple Control Structure

18

� Cycle time determined by length of the longest path

We are ignoring some details like setup and hold times

Clock cycle

State 
element 
1

Combinational logic
State 
element 
2

Single Cycle ImplementationSingle Cycle Implementation

� Calculate cycle time assuming negligible delays except:

� memory (2ns), ALU and adders (2ns), register file access (1ns)
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Where we are headedWhere we are headed

� Single Cycle Problems:

� what if we had a more complicated instruction like floating point?

� wasteful of area

� One Solution:

� use a “smaller” cycle time

� have different instructions take different numbers of cycles

� a “multicycle” datapath:
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� a “multicycle” datapath:
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