
ECE3055 ECE3055
Computer Architecture and Computer Architecture and
Operating SystemsOperating Systems

Lecture 5 DatapathLecture 5 Datapath

1

Prof. Prof. HsienHsien--HsinHsin Sean LeeSean Lee

School of Electrical and Computer EngineeringSchool of Electrical and Computer Engineering

Georgia Institute of Georgia Institute of TechnologyTechnology

Edited by Ney Edited by Ney CalazansCalazans

08/10/200808/10/2008

� We're ready to look at an implementation of the MIPS

� Simplified to contain only:
� memory-reference instructions: lw, sw

� arithmetic-logical instructions: add, sub, and, or, slt

� control flow instructions: beq, j

� Generic Implementation:

The Processor: Datapath and ControlThe Processor: Datapath and Control

2

� Generic Implementation:

� use the program counter (PC) to supply instruction address

� get the instruction from memory

� read registers

� use the instruction to decide exactly what to do

� All instructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

� Abstract / Simplified View:

More Implementation DetailsMore Implementation Details

Registers

Register #

Data

Register #

AddressPC Instruction ALU

Instruction

Address

3

Two types of functional units:
� Elements that operate on data values (combinational)

� Elements that contain state (sequential)

Register #

Data
memory

Data

Register #

Instruction
memory

� Built using D flip-flops

Register FileRegister File

Register 0

Register 1

Register n – 1

M

u
x

Read data 1

Read register
number 1

Read register
number 1 Read

data 1
Read register

4

M

u
x

Register n – 1

Register n

x

Read data 2

Read register
number 2

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

Register FileRegister File

� Note: we still use the real clock to determine when to
write

n-to-1

Register 0
C

C

D

Register number

Write

0

1

5

n-to-1
decoder Register 1

Register n – 1

C

C

D

D

Register n

C

D

Register number

Register data

n – 1

n

Simple ImplementationSimple Implementation

� Include the functional units we need for each
instruction

PC

Instruction
memory

Instruction
address

Instruction Add Sum

16 32
Sign

extend

MemWrite

Read

data
Address

6

a. Instruction memory b. Program counter c. Adder

extend

b. Sign-extension unit

MemRead

Data

memory
Write

data

a. Data memory unit

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

Building the DatapathBuilding the Datapath

� Use multiplexers to stitch them together

Add

RegWrite

4 0

M
u
x

1

Shift
left 2

PCSrc

Add
ALU

result

7

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Instruction [5–0]

16 32Instruction [15–0]

0

Registers

Write
register

Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU

control

ALU

RR--Type Instructions Type Instructions
(e.g. add $2, $3, $4; Not JR/JALR)(e.g. add $2, $3, $4; Not JR/JALR)

Instruction [25–21]

Add

RegWrite

4

Read

0

M
u
x

1

Shift
left 2

PCSrc

Add ALU
result

8

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Instruction [5–0]

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU
control

ALU

II--Type Instructions Type Instructions
(e.g. lw $4, 1000($15))(e.g. lw $4, 1000($15))

Instruction [25–21]

Add

RegWrite

4

Read

0

M
u
x

1

Shift
left 2

PCSrc

Add ALU
result

9

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Instruction [5–0]

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU
control

ALU

II--type Instruction for Branchestype Instruction for Branches
(e.g. beq $4, $5, Label7)(e.g. beq $4, $5, Label7)

Instruction [25–21]

Add

RegWrite

4

Read

0

M
u
x

1

Shift
left 2

PCSrc

Add ALU
result

10

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Instruction [5–0]

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data1

Read
data2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU
control

ALU

ControlControl

� Selecting the operations to perform (ALU, read/write, etc.)

� Controlling the flow of data (multiplexer inputs)

� Information comes from the 32 bits of the instruction

� Example:

add $8, $17, $18 Instruction Format:

11

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

� ALU's operation based on instruction type and

function code

� e.g., what should the ALU do with this instruction

� Example: lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

� ALU control input

ControlControl

ALU control
3

12

� ALU control input

000 AND

001 OR

010 add

110 subtract

111 set-on-less-than

� Why is the code for subtract 110 and not 011? What do you need for
slt instruction?

ALU

result

ALU

Zero

3

� Must describe hardware to compute 3-bit ALU control input

� given instruction type
00 = lw, sw
01 = beq,
11 = arithmetic (incl. slt)

� function code for arithmetic

� Describe it using a truth table (can turn into gates):

ALUOp

computed from instruction type

Control the ALUControl the ALU

ALUOp

13

ALUOp Funct field ALU
ControlALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010

X 1 X X X X X X 110

1 X X X 0 0 0 0 010

1 X X X 0 0 1 0 110

1 X X X 0 1 0 0 000

1 X X X 0 1 0 1 001

1 X X X 1 0 1 0 111

inst[5:0]inst[5:0]Generated fromGenerated from
Decoding inst[31:26]Decoding inst[31:26]

ALU control

ALU

result

ALU

Zero

3

add
sub
add
sub
and
or

slt

lw/sw

beq

arith

ALU
control

ALUOp

funct =
inst[5:0]

ALU ControlALU Control

� Simple combinational logic (truth tables)

ALUOp1

ALUOp0

ALUOp

ALU control block

14

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31–26]

4

0M
u
x

0

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Shift
left 2

M
u
x

ALU
result

Zero

Read
data

M
u

1

Instruction [15–11]

ALU
Address

15

Instruction RegDst ALUSrc

Memto-

Reg

Reg

Write

Mem

Read

Mem

Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

memory

Instruction [5–0]

16 32
Instruction [15–0]

0

x
1 Write

data

Sign
extend

u
x
1

Data
memory

Write
data

u
x

Instruction [15–11]

ALU
control

Use rt not rd

Add

MemtoReg

ALUOp

MemRead

Branch
RegDst

Instruction [31–26]

4

Control

Add ALU
result

M
u
x

0

1

Shift
left 2

Use rt not rd

Instruction RegDst ALUSrc

Memto-

Reg

Reg

Write

Mem

Read

Mem

Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

16

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Instruction [5–0]

ALUOp

MemWrite

RegWrite

ALUSrc

16 32
Instruction [15–0]

0

0M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address

Control Unit SignalsControl Unit Signals

Op0

Op1

Op2

Op3

Op4

Op5

Inputs Inst[31:26]Inst[31:26]

17

R-format Iw sw beq

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

To harness To harness
the datapaththe datapath

� All of the logic is combinational

� We wait for everything to settle down, and the right thing to be

done

� ALU might not produce “right answer” right away

� we use write signals along with clock to determine when to write

� Cycle time determined by length of the longest path

Our Simple Control StructureOur Simple Control Structure

18

� Cycle time determined by length of the longest path

We are ignoring some details like setup and hold times

Clock cycle

State
element
1

Combinational logic
State
element
2

Single Cycle ImplementationSingle Cycle Implementation

� Calculate cycle time assuming negligible delays except:

� memory (2ns), ALU and adders (2ns), register file access (1ns)

Add

RegWrite

4 0

M
u
x

1

Shift
left 2

PCSrc

Add
ALU

result

19

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read

address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Instruction [5– 0]

16 32Instruction [15– 0]

0

Registers

Write

register

Write

data

Write
data

Read

data 1

Read

data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data

memory

Address Read
data

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU

control

left 2

ALU

Where we are headedWhere we are headed

� Single Cycle Problems:

� what if we had a more complicated instruction like floating point?

� wasteful of area

� One Solution:

� use a “smaller” cycle time

� have different instructions take different numbers of cycles

� a “multicycle” datapath:

20

� a “multicycle” datapath:

PC

Memory

Address

Instruction

or data

Data

Instruction

register

Registers

Register #

Data

Register #

Register #

ALU

Memory

data
register

A

B

ALUOut

