cadence

Spectre® Circuit Simulator Measurement
Description Language User Guide and
Reference

Product Version 17.1
November 2017

© 2003-2018 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.
Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

MMSIM contains technology licensed from, and copyrighted by: C. L. Lawson, R. J. Hanson, D. Kincaid,
and F. T. Krogh © 1979, J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson © 1988, J. J.
Dongarra, J. Du Croz, |I. S. Duff, and S. Hammarling © 1990; University of Tennessee, Knoxville, TN and
Oak Ridge National Laboratory, Oak Ridge, TN © 1992-1996; Brian Paul © 1999-2003; M. G. Johnson,
Brisbane, Queensland, Australia © 1994; Kenneth S. Kundert and the University of California, 1111 Franklin
St., Oakland, CA 94607-5200 © 1985-1988; Hewlett-Packard Company, 3000 Hanover Street, Palo Alto,
CA 94304-1185 USA © 1994, Silicon Graphics Computer Systems, Inc., 1140 E. Arques Ave., Sunnyvale,
CA 94085 © 1996-1997, Moscow Center for SPARC Technology, Moscow, Russia © 1997; Regents of the
University of California, 1111 Franklin St., Oakland, CA 94607-5200 © 1990-1994, Sun Microsystems, Inc.,
4150 Network Circle Santa Clara, CA 95054 USA © 1994-2000, Scriptics Corporation, and other parties ©
1998-1999; Aladdin Enterprises, 35 Efal St., Kiryat Arye, Petach Tikva, Israel 49511 © 1999 and Jean-loup
Gailly and Mark Adler © 1995-2005; RSA Security, Inc., 174 Middlesex Turnpike Bedford, MA 01730 ©
2005.

All rights reserved. Associated third party license terms may be found at <install_dir>/doc/OpenSource/*

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or
registered trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are
used with permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document
are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522. All other
trademarks are the property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and
contains trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or
distribution of this publication, or any portion of it, may result in civil and criminal penalties. Except as
specified in this permission statement, this publication may not be copied, reproduced, modified, published,
uploaded, posted, transmitted, or distributed in any way, without prior written permission from Cadence.
Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its

customer.

2. The publication may not be modified in any way.

3. Any authorized copy of the publication or portion thereof must include all original copyright,
trademark, and other proprietary notices and this permission statement.

4. The information contained in this document cannot be used in the development of like products or
software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or
costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
Contents
Preface. ... 11
What MDL DOBS .. .ottt e e e e e e e e e 12
The MDL FIOW e e e e e 13
The MDL LangQuUagettt ettt e 14
Related DOCUMENIS e 14
Typographic and Syntax Conventionst 14
1
Defining and Using Measurement Aliases..................... 17
Defining a Measurement Alias it 18
Using a Measurement AlI@Sottt e 19
Defining Measurement Aliasesonthe Fly i i, 21
Propagating Variables 21
Defining @ MacCro i e e 22
Accessing Netlist or Model Parameters 22
Accessing Model Names and TYPES oot ittt e 23
Accessing Noise Parameters e 23
Using Named and Primitive AnalySes 24
Looping Statements e 24
foreach Statement 25
search Statement e 30
mvarsearch Statement 33
Include Statement e 37
Evaluating Expressions Selectively 38
If/Else Statement 38
Ternary Expression Statement 40
Specifying the Output File Format 41
AULOSIOD ... 44
Monte Carlo 45
Supported Spectre Circuit Simulator Analyses, 46
Supported Spectre Circuit Simulator Formats 50
November 2017 5 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
Optimizations and Tips and TrickS i e e e 50
Data Output Optimizations i 50
Performance Optimizations e 51
MDL REUSE ..ottt 51
Common Pitfalls e 52
MIiSCEIANEOUS e 52
2
Constructing MDL Expressions 55
Basic Language Elements and Scope Rules i 56
White Space e 56
COMMENES ...t 56
Identifiers 57
Scope RUIES e 57
Data TYPES ..o e e 58
NUMDEIS . .o e 58
Enumeration Names 60
Predefined Constants 60
BNUM .ot e e e e e e e 61
Nt e 62
Terminal ... 62
ANAlYSIS . .. e 62
AITAY . 63
Declarations e 66
OpEratOrS . .. 69
Overview of Operators e 69
Unary Operators e 70
Binary Operators e 70
Operator Precedence e 71
3
Running MDL in Batch Mode.................................... 73
SpeCtremMdl e e 74
SYNAX .. 74
ArQUMENES ... e 74
November 2017 6 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

EXamples ... 76

4

Running MDL in Post-processingMode 79

Ml L e 80
SV X . e 80
ArQUMENES . . . e 80
Limitations e 82

A

Built-In Functions 85
ADS . e 86
= 1070 87
ACOSN L e 88
ANAlSIOp ... 89
ANGIE . e 90
P2 T (0 10 91
AFGMIN e e e e 93
ASIN L e 94
ASINN . e 95
AlAN 96
AlANN L 97
AVG i e e e e 98
AVOABY . e 99
bw (bandwidth) e 100
eIl L e 103
CH 104
o o 105
oo 107
CONVOIVE ..t e e e 108
COS ittt e e e e e e 110
COSN e e 111
O X o e e 112
0] (0 1= 113
07 (0 1=T= 010 o o 115

November 2017 7 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
ClOS S S . i it ittt e e e e e e e e 116
d2r (degrees-to-radians) 119
AD 120
A0 .. e 121
AbDmM 122
deltaX ..o e 123
dellaXeS ... e e 127
eIV . e 128
AUIYCYCIE . e e 129
AUEYCYCIES . ..o 130
EXD ot e 132
falltime ... e e 133
1 136
11 138
OO . e e 140
It e 141
1= o 142
freq Jiter ... 144
QaiNBWPIOd ... 146
QaAINMAIGIN . .ttt et e 147
getinfo ... e 148
AroUPdElaY . .. e 149
RIStO . .o e 151
b e 153
111 154
e .o 156
00 158
1 159
1012 o 160
DN e 161
10ga0 162
1072 T 163
10107 164
1000 165
MO . e e 166
MOVINGAVE .« & ettt e e e e e e e e e e e e e e e e e e 167
November 2017 8 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
OVEerShOOt ... e 168
1= T Yo N 11 = 170
PR e 171
phasemargin 172
00 173
pp (peak-to-peak) e 174
PZDOAE .. e e 175
074 111 (=Y 177
r2d (radians-to-degrees)ottt 180
D i e e 181
Al .. 182
SEtIME .. . e 183
10017010 1T 186
rMS (FOOt-MEAN-SAUAKE)t ittt et et e e et et e ettt 187
FOUNA . e e 188
S 189
SAMPIE . 191
settlingtime 194
SION o e e 196
SI o e 197
SINN L e e e e 198
SIZE L 199
SlEWIatE . .. 201
SHCE . e 203
= 1 204
SO . e e e 206
Stathisto 207
SIAAEV . . e 209
SUNM L oot ittt e e e e e e 210
o151 (=] 1 211
AN e 212
AN e 213
0 214
N e e 216
VAN ANCE . . ittt e 217
WINAOW .. e 218
November 2017 9 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
XVAl o e e e 227
Y 229
YVl L 230
2 232
B
SPICE Compatibility for Analyses 233
C
SPICE Compatibility for options supported by MDL......... 237
Support the SPICE option .option co=<number>uirireeinnn... 237
Support equal interval output for .print 238
November 2017 10 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Preface

Spec’[re® Circuit Simulator Measurement Description Language (MDL) is a productivity-
enhancing tool for simulation and data analysis. This user guide and reference describes
MDL and explains how to make the best use of it.

This preface discusses the following:
B What MDL Does on page 12

B Related Documents on page 14

m Typographic and Syntax Conventions on page 14

November 2017 11 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

What MDL Does

MDL is a scripting language that you can use to control the Spectre® circuit simulator and the
Virtuoso® Visualization and Analysis tool. With MDL, you can

m Create measurement aliases that can be easily reused in different circuits. A
measurement alias is a reusable, easily tailored procedure that includes a single analysis
statement and a collection of one or more MDL expressions to be evaluated at runtime.

m Efficiently run simulations in batch mode.
B Parameterize measurement aliases, making them reusable over various applications.
B Use the wild card (\ *) in the MDL control file for all signals mapping.

Note: The wild card support has been added in the MMSIM 12.1 release.

With these features, MDL allows you to verify circuits easily and with confidence.

November 2017 12 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

The MDL Flow

As illustrated by the following figure, MDL interacts with a variety of inputs, outputs, and tools.
Inputs consist of design files and files containing measurement blocks. Outputs include sets
of simulation results, the values returned by MDL expressions, and log files. Interacting tools
include Spectre, which simulates the design, and Virtuoso® Visualization and Analysis tool,
which you can use to plot and post-process the results of the simulation.

N N

Design SpectreMDL

Files Files
SpectreMDL
A

SpectreMDL
Output

Spectre
Simulator

Simulation
Results

Virtuoso Visualization and Analysis XL

November 2017 13 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

The MDL Language

Most of this document is devoted to describing the language used by the MDL tool. That
language, like any language, has elements that must be used according to rules. You will find
that although MDL is easily learned, the power it gives you to control simulations is great.

Related Documents

For information about related products, consult the sources listed below.
B Virtuoso® Analog Design Environment User Guide

Cadence Analog Mixed-Signal Simulation Interface Option

[
m Spectre Circuit Simulator Reference
(]

Spectre Circuit Simulator and Accelerated Parallel Simulator User Guide

Typographic and Syntax Conventions

Special typographical conventions distinguish certain kinds of text in this document. The
formal syntax used in this reference uses the definition operator, : : =, to define the more
complex elements of MDL in terms of less complex elements. However, for simplicity, the
syntax for the user-compiled functions omits the definition operator.
B Lowercase words represent syntactic categories. For example,

identifier
B Boldface words represent elements of the syntax that must be used exactly as

presented. Such items include keywords, operators, and punctuation marks. For
example,

real

m Variables are set in italic font,

allowed_errors

m Vertical bars indicate alternatives. You can choose to use any one of the items separated
by the bars. For example,

termID ::=
designID
| unsignedInteger

B Square brackets enclose optional items. For example,

November 2017 14 Product Version 17.1
©2003-2018 All Rights Reserved.

../spectreref/spectrerefTOC.html#firstpage
../spectreuser/spectreuserTOC.html#firstpage

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

parameter declaration statement ::=
[input] real parameter [= expression]

B Braces enclose an item that can be repeated zero or more times. For example,

unsigned num ::=
decimal digit { decimal digit }

Code examples are set in constant-width font.

/* This is an example of the font used for code.*/

Keywords and filenames are set in constant-width font, like this: keyword, file_name.

November 2017 15 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

November 2017 16 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Defining and Using Measurement Aliases

A measurement alias is a Measurement Description Language (MDL) procedure that you can
use to run an analysis and extract information about the performance of the circuit. For
example, you might use a measurement alias to determine the bandwidth of an amplifier.

Measurement aliases provide a way for you to bind analyses to MDL expressions, creating
procedures that can be called multiple times and parameterized for specific applications.

This chapter includes the following sections.

Defining a Measurement Alias on page 18
Using a Measurement Alias on page 19

Defining Measurement Aliases on the Fly on page 21

Propagating Variables on page 21

Accessing Netlist or Model Parameters on page 22

Using Named and Primitive Analyses on page 24
Looping Statements on page 24

Include Statement on page 37

Evaluating Expressions Selectively on page 38
Specifying the Output File Format on page 41

Autostop on page 44

Monte Carlo on page 45

Supported Spectre Circuit Simulator Analyses on page 46
Supported Spectre Circuit Simulator Formats on page 50
Optimizations and Tips and Tricks on page 50

November 2017 17 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Defining a Measurement Alias

Defining a measurement alias involves combining a call to an analysis with one or more MDL
expressions into a reusable procedure. You can define or include an alias measurement only
at the top level of an MDL control file. An alias measurement must be defined before it is used

in a MDL run statement.

alias measurement statement ::=
alias measurement measurement_name {
{initialization_block}
run analysis [as othername]
{export_block}

}

analysis :: =

BuiltInAnalysis

BuiltInAnalysis :: =

dc | ac | tran

alias measurement

measurement_name

initialization_block

run analysis

as othername

November 2017
© 2003-2018

PredefinedAnalysis | AnalysisVariable

noise | info | sp

Keyword to define a measurement block.The block of
MDL statements to be run when the measurement is
called. The statements are executed in the defined
order. A variable must be defined before it can be
used.

The name of the measurement alias you are defining.
Note: You can use special characters like hyphen (-),
ampersand (&), caret (1), and so on in the
measurement alias names, variable names, and
analysis names. However, these special characters
must be preceded by an escape symbol (\). For
example,

alias measurement transim\-montecarlo

The initialization block. Input variables can be defined
only in this block, otherwise MDL ignores them and
issues warning messages that they are ignored.

The run statement can be used to call a built in
Spectre analysis such as dc, ac or tran, to call an
analysis defined in the circuit netlist , or to call an
analysis variable.

The results dataset is named ot hername if the as
option is used. If othername is not specified, the
results dataset is given the measurement_name.

18 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

export_block One or more MDL expressions that are evaluated
as a result of the analysis. However, you cannot use
the search or foreach commands in the
export_block, norcanthe export_block
include a measurement alias.

PredefinedAnalysis Name of the analysis defined in the netlist or MDL
control file. For information on the analyses supported
by MDL, see Supported Spectre Circuit Simulator
Analyses on page 46 and SPICE Compatibility for
Analyses on page 233.

AnalysisVariable Name of a pre-defined analysis variable or an element
of an array of analyses. For more information, see

Analysis on page 62.

For example, consider the following MDL control file.

alias measurement showmaxmin { // The measurement alias is defined here.
run tranl (stop=1u)
export real maxout=max (V (out))
export real minout=min (V (out))

}

run showmaxmin // This statement runs the measurement.

This control file first defines a measurement alias called showmaxmin. The run statement
then runs the measurement alias and writes the maxout and minout values to the dataset.

Using a Measurement Alias

You must define a measurement alias before you can use it. To use a measurement alias, use
the run command. If the measurement alias is defined appropriately, you can pass in
parameters to the run command in the measurement alias to further specify the behavior.
For example, assume you have an MDL control file with the following contents.

alias measurement falldelay {

input real transtop=2u // This variable is given a default value.
input real prop_ thresh // This variable has no default value.
run tran (stop=transtop) // A run statement is required.

export real prop delay fall=deltax(sigl=V(inp), sig2=V(out),
dirl=’fall, nl=1, startl=0, threshl=prop_ thresh,
dir2=’fall, n2=2, start2=0, thresh2=prop_ thresh)

}
run falldelay (transtop=1lu, prop_ thresh=2)

Notice how transtop and prop_thresh are declared as input variables in the
measurement alias. The transtop input variable is given a default value of 2u. If you do not

November 2017 19 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

pass a value to transtop on the run statement, MDL uses the default value. However, the
prop_thresh input variable does not have a default value, so if you do not pass in a value
for it, MDL issues an error. Notice how, in this example, the values to be used for the input
variables are passed in on the run runtran (transtop=1u, prop_thresh=2)
statement.

You can also use netlist variables in the MDL control file without declaring the variables as
input parameters. For example, notice the use of vdd_val in the risetime expression of
the following control file.
alias measurement runtran {

input real transtop=2u

input real prop_ thresh
run tran (stop=transtop)

export real rise=risetime (trim(sig=V (out),
from=10n, to=70n), initval=vdd val/5, // vdd val is used here...
inittype='y, finalval=(vdd val/5)+2, // and here.
finaltype='y, thetal=10, theta2=90)

}

The vdd_val parameter is a top level variable in the netlist. Notice how in the following netlist
fragment, vdd_val is defined as a parameter.
global 0 vdd! wvss!

include "./testmodels.scs" section tt
parameters capval=2.5p vss val=-5 vdd val=5 // vdd val is defined here.

//top level
v2 (vss! 0) vsource dc=vss_val type=dc
vl (vdd! 0) vsource dc=vdd val type=dc

Statements that require simulation results/computation should follow the analysis statement,
as shown in the following example.
alias measurement cvmeas {

run acl

export real cv = im(DUT:d) / (6.28319 * 100000)
}

There are two ways to define variables in a measurement alias. These are explained using
the following example of a measurement alias.

alias measurement tranmeas {

export real outcross, maxg

run tran (stop=40n)

outcross=cross (V(q),thresh=2.5)
maxg=max (V(q))

In the following two lines in the measurement alias definition, the maxqg variable is declared
with the export qualifier in a statement that is separate from the statement that uses the
variable.

export real outcross, maxg
maxg=max (q)

November 2017 20 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Alternatively, you can specify the maxqg variable in the statement that uses it, as shown below,
after the run statement.

export real outcross
export real maxg=max (J)

Defining Measurement Aliases on the Fly

You can define measurement aliases on the fly by adding the as keyword to the run
command.

run ac (center=1MHz, span=1kHz) as pb
run ac(start=1 Hz, stop=10MHz) as sb

The simulator creates the alias before running the analysis, so in these examples, the default
parameter values for the base ac analysis are not affected.

The as keyword must follow a measurement and applies only to that measurement. The
following example

temp=50

run dc as dcath0

reruns the dc analysis with temp=50.

You can extend the same concept to analyses. For example, in this pair of statements

run tran (stop=10u) as tranl
run tranl

the second statement runs tran with stop=10u. The first command creates an alias to run
tran (stop=10u) as a new analysis called tranl.

Propagating Variables

MDL allows you to propagate variables through your code. For example, in the following
measurement alias, notice how rise_edge and fall_edge are first calculated and then
used later to calculate the value pw.

alias measurement trans {
run tran(stop=5u)
real rise edge=cross(sig=V(out), dir='rise, n=1, thresh=1.5, start=0)
real fall:edge=cross(sig=V(out), dir=’fall, n=1, thresh=1.5, start=0)
export real pw=fall edge-rise edge

}

run trans

November 2017 21 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Defining a Macro

You can define a macro in the MDL control file using the #define directive. However, to read
and run the macro, you must use must specify +/=md1le at the command line. For example,
you can define a macro for the export statement in the mdl control file, as follows:

#define insat (device) export real insat /**/device = Idut.device.m0O:vdss
alias measurement dcmeas {

run dc

insat (M11)

insat (M22)

insat (M09)

run dcmeas

When MDL is run, the above statements expand to the following:

run dc
export real insat Mll=Idut.device.mO:vdss
export real insat M22=Idut.device.mO:vdss

export real insat MO09=Idut.device.mO:vdss

Accessing Netlist or Model Parameters

MDL allows you to access the parameters in different hierarchical depths of the netlist by
specifying the full path to the parameter in a measurement alias.

For example, in a MDL measurement alias,
B A global parameter v_vdd can be accessed by:
export real par vdd = v_vdd

B A subcircuit parameter mm can be accessed by:
export real par mm=x1.xmmO:mm

B Aninstance parameter vth can be accessed by:
export real par vth=il.mpO:vth

B A model parameter vth0 can be accessed by:
export real par vth=il.mpO.pchl:vthO

B An 1v/1x parameter of an element can be accessed by:

November 2017 22 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

export real mnO 1lvl=i0.mnO:1vl

export real mnO 1lv1l=i0.mn0:1x2

You can also change the value of a parameter by specifying the full path to the parameter
either in a measurement alias or at the top level of a MDL control file. For example:

B The value of a global parameter v_vdd can be changed by:
v vdd = 1.7

B The value of a subcircuit parameter mm can be changed by:

x1.xmmO:mm = 3

B The value of a model parameter vth0 can be changed by:
il.mpO.pchl:vth0 = 1.5

Accessing Model Names and Types

MDL allows you to access the model names and model types defined in the netlist.

For example, in a MDL measurement alias:
B A model name, say mod1, can be accessed by:
export real mdname=modl: masterName

If mod1l is the name of a model, the model name is returned. If mod1 is the name of a
subcircuit, the subcircuit name is returned.

B The model type for the model mod1 can be accessed by:

export real mdtype=modl: type

If mod1 is a model, the primitive name for the model is returned. If mod1 is a subcircuit,
"subckt" is returned.

Note: Primitive name refers to the built-in device names predefined in Spectre.

Accessing Noise Parameters

MDL allows you to access the noise parameters as follows:
B The noise parameter rd can be accessed by:
export real rd noise=mn:rd

Note: If a parameter is both a noise parameter and a device parameter, it is treated as
a noise parameter.

November 2017 23 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

B Spot noise at given frequency can be accessed by:
export real spot noise=mn:rd @lk

B The total noise for a model can be accessed by:
export real total noise=mn:total

B The total noise for a circuit can be output by:

export total noise noise:out

Using Named and Primitive Analyses

In MDL, you can use both primitive analyses and named analyses. The primitive analyses are
those built into Spectre. Named analyses are ones that you define in the netlist. For example,
the following measurement alias runs tranl, which must be defined in the netlist.

alias measurement trans {
run tranl // This is an analysis specified in the netlist.

real rise edge=cross(sig=V(out), dir='rise, n=1, thresh=1.5, start=0)
real fall edge=cross(sig=V(out), dir=’'fall, n=1, thresh=1.5, start=0)

export real pw=fall edge-rise_ edge

}
In contrast, the following measurement alias runs tran, one of the analyses provided by the
simulator.

alias measurement trans {

run tran(stop=1lu) /* This is a built-in, primitive analysis,
which is not defined in the netlist. */

real rise edge=cross(sig=V(out), dir='rise, n=1, thresh=1.5, start=0)
real fall edge=cross(sig=V(out), dir=’fall, n=1, thresh=1.5, start=0)

export real pw=fall edge-rise edge

Looping Statements

MDL provides the foreach statement to automate repetitive simulations and for sweeps, and
provides the search statement to identify values that are associated with significant circuit
events. With the mvarsearch statement, you can set up performance goals for a circuit
along with parameters that may be varied in attempts to reach these goals. Spectre iterates
to find the optimal solution.

November 2017 24 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

foreach Statement

The foreach statement provides a way for you to run a simulation repeatedly.

foreach statement ::=
foreach foreach specifier [onerror=conditions]{
block_of_statements

}

foreach_specifier ::=
param_to_vary from alternatives
| paramset_name

alternatives ::=
{list}
| array
| swp (swp param)

SWp_param ::=
start = strt, stop = stop [, step def]
| center = cntr, span = spn [, step def]

step def ::=
step = step
| lin = 1in_num steps
| dec = steps_per_decade

| log = log num steps

conditions ::=
[1 . [.
ex1t| continue

param_to_vary The parameter that the foreach statement is to vary. This can
be an MDL variable, a netlist parameter, or a device parameter.
Valid data types are real, int, cplx, and analysis.

Each time the block_of_statements iterates, the
param_to_vary is replaced by the next value from the
alternatives, except when the param_to_varyis
analysis. Whenthe param to_varyisanalysis, a run
statement is required to iterate the next value from the
alternatives (see Example 3 for details).

paramset_name Name of the paramset definition from the netlist.

block_of_statements One or more MDL statements, except variable declarations,
measurement alias declarations, and include statements.

November 2017 25 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

{l1ist}

array

Strt

stop

cntr

spn

step

lin num_steps
steps_per_decade
log num_ steps

‘exit

‘continue

November 2017
© 2003-2018

A list of values containing alternative values for
param_to_varyinthe form{valil, val2,..valN}.

Valid data types are real, int, cplx, and analysis. If an
array is present, it must be a de-referenced array element such
asmytran[0], mytran[1l], etc.

An array of sweep values.

The starting value for param_to_vary. The strt and
s top parameters are used together to specify sweep limits.

The ending value for param_to_vary.The strt and stop
parameters are used together to specify sweep limits.

If you do not give a step_def, the sweep is linear when the ratio
of stop to strt values is less than 10, and logarithmic when this
ratio is 10 or greater.

Center value of sweep. The cntr and spn parameters are
used together to specify sweep limits.

Span of sweep. The cntr and spn parameters are used
together to specify sweep limits.

If you do not give a step_def, the sweep is linear when the
ratio of the end point of the span to the start point of the span is
less than 10, and logarithmic when this ratio is 10 or greater.

Step size for linear sweeps.

Number of steps for linear sweeps.

Number of points per decade for log sweeps.
Number of steps for logarithmic sweeps.

A keyword specifying that the foreach loop is to end when
the simulation experiences an error, such as a convergence
issue. This is the default behavior if the onerror option is not
specified.

A keyword specifying that the foreach loop is to continue
even when the simulation experiences an error, such as a
convergence issue.

26 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example 1

For example, you might define a measurement and foreach statement like the following to
determine the maximum output voltage of a circuit. Notice that the foreach statement is not
placed inside the alias measurement statement.
alias measurement findmax {

run tran(stop=1u)

export real maxout=max (V (out))

}

foreach vdd val from swp(start=5, stop=7, step=0.5) {
foreach temp from {25, 50, 75, 100} {
run findmax

}
}

In this example, the outer foreach statement varies the value of vdd_val and the inner
foreach varies the value of temp. As a result, the £findmax measurement alias runs with
each combination of values, producing a .measure file like this.

Swept Measurements

Measurement Name : findmax

Analysis Type : tran

maxout vdd val @ 5 temp @ 25 = 3.07027
maxout vdd val @ 5 temp @ 50 = 3.07326
maxout vdd val @ 5 temp Q@ 75 = 3.07565
maxout vdd val @ 5 temp @ 100 = 3.08015
maxout vdd val @ 5.5 temp @ 25 = 3.06517
maxout vdd val @ 5.5 temp @ 50 = 3.06917
maxout vdd val @ 5.5 temp @ 75 = 3.07468
maxout vdd val @ 5.5 temp @ 100 = 3.07433
maxout vdd val @ 6 temp Q@ 25 = 3.06553
maxout vdd val @ 6 temp @ 50 = 3.06703
maxout vdd val @ 6 temp @ 75 = 3.06865
maxout vdd val @ 6 temp @ 100 = 3.07364
maxout vdd val @ 6.5 temp @ 25 = 3.06373
maxout vdd val @ 6.5 temp @ 50 = 3.06524
maxout vdd val @ 6.5 temp @ 75 = 3.0695
maxout vdd val @ 6.5 temp @ 100 = 3.07092
maxout vdd val @ 7 temp Q@ 25 = 3.06274
maxout vdd val @ 7 temp @ 50 = 3.06595
maxout vdd val @ 7 temp @ 75 = 3.06798
maxout vdd val @ 7 temp @ 100 = 3.07035
Example 2

As another example, the paramset statement is defined as follows in a netlist

data v paramset {
vhi vlo
1.9 1.32
1.8 1.2

}

data fet paramset {
nw nl pw pl

November 2017 27 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

5u 3u 9u 3u
4u 3u 7u 3u
}

The alias and foreach statements are defined as follows in the .md1 file

alias measurement findvth {
run tran (stop=100n)
export real outVth = cross(sig=V(out), dir='cross, n=1, thresh=2.5, start=0)

}

foreach temp from {0, 130} {
foreach data v {
foreach data fet {
run findvth

}
}

In this example, there are three-level nested sweeps: the inner foreach statement varies the
value of nw, n1, pw and pl from the data_fet paramset statement defined in the netlist;
the middle foreach statement varies the value of vhi and v1o from the data_v paramset
statement defined in the netlist; and the outer foreach statement varies the value of temp.
As a result, the findvth measurement alias is run eight times by MDL, producing a
.measure file like this:

Swept Measurements
Measurement Name : findvth
Analysis Type : tran

outVth temp @ O
vhi @ 1.9
vlio @ 1.32
5e-06
3e-06
9e-06
3e-06 = 9.89772e-10

nw
nl
pw
pl

®» ® @ @®

outVth temp @ O
vhi @ 1.9
vlio @ 1.32
nw @ 4e-06
nl @ 3e-06
pw @ 7e-06

pl @ 3e-06 1.01348e-09

outVth temp @ O
vhi @ 1.8
vio @ 1.2
nw 5e-06
nl 3e-06
pw 9e-06
pl 3e-06 = 1.37049e-09

® ® @® @®

November 2017 28 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
outVth temp @ O
vhi @ 1.8
vio @ 1.2
nw @ 4e-06
nl @ 3e-06
pw @ 7e-06
pl @ 3e-06 = 1.74369e-09
outVth temp @ 130
vhi @ 1.9
vlo @ 1.32
nw @ 5e-06
nl @ 3e-06
pw @ 9e-06
pl @ 3e-06 = 9.56855e-10
outVth temp @ 130
vhi @ 1.9
vlo @ 1.32
nw @ 4e-06
nl @ 3e-06
pw @ 7e-06
pl @ 3e-06 = 9.82614e-10
outVth temp @ 130
vhi @ 1.8
vio @ 1.2
nw @ 5e-06
nl @ 3e-06
pw @ 9e-06
pl @ 3e-06 = 1.17573e-09
outVth temp @ 130
vhi @ 1.8
vlio @ 1.2
nw @ 4e-06
nl @ 3e-06
pw @ 7e-06
pl @ 3e-06 = 1.22687e-09
Example 3
alias measurement myrun {
input analysis tranRun = tranl
run tranRun
}
analysis myAltergroups([] = { agl, ag2, ag3, ag4d }
analysis ag, myAnalysis
foreach ag from myAltergroups {
run ag //This is required to activate the next analysis
foreach myAnalysis from { dcl, dcswp, tranl } {
run myrun(tranRun = myAnalysis) as myAnalysis
November 2017 29 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Specifying the foreach Statement Within the measurement Alias

MDL also supports the foreach statement within the measurement alias.

Example

alias transient {
export real vl
export real temper
temper=temp
run tran(stop=7e-08)
vli=aa*avg (V(vin))

}

alias measurement top test
export real sum =0;
export real each vl1[];
int index=0;
foreach aa from {10, 20 ,30} {
run transient as inner;

sum = sum + inner->vl;
each vl[index] = inner->vl;
index = index+1;

}

search Statement

The search statement provides a way for you to find the value of a design parameter that
corresponds to the circuit meeting or failing a specific performance criterion. The function
operates by running the simulation repeatedly, varying the values of interest each time, until
a specified condition is met. This capability is typically used to determine values such as
setup time and maximum load.

search statement ::=
search search specifier [output=conditions] {
block_of statements
} method (condition_statements)

search specifier ::=
param_to_vary from binary (start=strt, stop=stp, tol=tol
round=['no|’yes])

conditions ::=
"none | ’"last | 'all | ’'each

November 2017 30 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

method: :=
until
| while
| bisection

param_to_vary

Strt

Stp

tol

round='no|’'yes

block_ _of statemen
ts
condition_stateme

nts

"none

rlast

rall

reach

November 2017
© 2003-2018

The parameter that the search statement is to vary in a binary
way.

The starting value for param to_vary. The strt and stp
values should straddle the expected value. If both strt and
stpresultina condition_statement thatis true or if
both resultin a condition_statement thatis false, the
search statement fails.

The ending value for param_to_vary. The strt and stp
values should straddle the expected value. If both strt and
stpresultina condition_statement thatis true or if
both resultin a condition_statement thatis false, the
search statement fails.

The tolerance value, which specifies how precisely the final
value is calculated.

If set to ’yes, each iteration of the search is an integral value
that is rounded of to the nearest middle value.

One or more run statements.

A statement that determines when the search statement stops.
You can use multiple boolean expressions in conditional
statements.

A keyword indicating that no analysis output is to be saved to
the raw directory irrespective of whether the search succeeds
or fails.

A keyword indicating that the analysis output is to be saved
only when the last iteration of the search succeeds. No output
will be saved to the raw directory if the search fails.

A keyword indicating that the analysis output is to be saved to
the raw directory irrespective of whether the search succeeds
or fails. This is the default keyword.

A keyword indicating that the analysis output for each iteration
of the search is saved to the raw directory irrespective of
whether the search succeeds or fails.

31 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

until A keyword indicating that the search statement is to continue
looping until the value of param_ to_vary causes
condition_statements to become true and then return
the first iteration value that meets the tolerance (to1l) criteria
when condition_statements is true. If you use this
keyword, condition_statements must initially be false.

while A keyword indicating that the search statement is to continue
looping until the value of param_to_vary causes
condition_statements to become false and then return
the last iteration value that meets the tolerance (tol) criteria
when condition_statements is true. If you use this
keyword, condition_statements must initially be true.

bisection A keyword indicating that the search statement is to continue
looping till either an until or a while condition is first met.

Example 1

For example, you might define a measurement and search statement like the following to
determine the setup time of a flip-flop.
alias measurement setup {
export real vddelay, outcross, Tsetup, vcdelay, setdelay, maxqg
run tran (stop=40n)
vddelay=cross (sig=V(data), thresh=2.5, dir=’'rise, n=1)
vcdelay=cross (sig=V(clock), thresh=2.5, dir=’'rise, n=1)
outcross=cross (V(q),thresh=2.5)
maxg=max (V (q))
setdelay=vdata:delay
Tsetup=vcdelay-vddelay
}

search vdata:delay from binary(start=2n, stop=10n, tol=1lp) {
run setup
} until (setup->maxg < 2.5)

In this example, the search statement varies the parameter vdata:delay, which is a
parameter named delay on a instance named vdata. The simulation determines when

V (g) crosses a threshold value. When v (g) fails to cross the threshold, maxg remains less
than 2.5, making the condition_statements true. The setup->maxqg syntax in the
condition_statement, refers to the maxg value in the setup block.

Through repeated simulations, the search statement closes in on the value of
vdata:delay that marks the change from condition_statements being false to
condition_statements being true.

November 2017 32 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example 2

You can also choose whether to save the search results to the raw directory by specifying an
output parameter. This feature can be used to prevent creating large size output files that may
cause memory issues.

For example, in the following search statement, two conditions are specified in the while
criteria. The simulator will exit and return the last successful value whenever one of the two
conditions fails.

search vdata:delay from binary(start=2n,stop=10n,tol=1p) output='last {

run setup
} while (setup->maxqg > 1.8 && setup->outcross < 10.3n)

As output="'1ast is set, the analysis output of the setup measurement will be saved to the
raw directory only when the last iteration of the search is successful, otherwise no analysis
result is saved.

Note: If the two conditions in the while criteria are defined in an OR relationship (using the
Il operator), but not in an AND relationship (using the && operator), the simulator will exit and
return the last successful value only when both the conditions fail.

mvarsearch Statement

The mvarsearch statement provides a way for you to find the values of design parameters
that correspond to the optimal solution of a group of measurements. In essence, this
statement provides a multi-parameter, multi-goal search functionality.

This statement works by setting the design parameters to a value, running the defined
measurement, evaluating the goal functions, calling an optimizer to determine the next set of
design parameter values, and repeating. The statement iterates until an optimal solution is
found, or until the maximum number of optimization iterations have been performed.

When the mvarsearch is used inside a foreach loop, the restoreParam option must be set
to 1 to reset the parameters to their initial values after the optimization is complete and avoid
any errors in subsequent foreach loops.

mvarsearch statement ::=
mvarsearch

option {
options_statements

}

parameter {
parameter_statements

}

exec {
exec_statement

November 2017 33 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

}

zZero

zero_statements

}
}

options statement
[method =
[accuracy =
[deltax =
[maxiter =
[

]

parameter statement
{ param_name,

method

conv_tol

diff_tol

November 2017
© 2003-2018

method
conv_tol
diff tol
maxiter],
restoreParam

i
i
i

1,

= restoreParam

init_val, lower_val, upper_val)

The method to be used in the algorithm method. Possible values
are ‘newton (newton solver) and 1m (levenburg marquardt).
While ‘newton is faster than *1m, ‘' 1m has more robust
convergence properties. You should use ‘newton only when
init_val values are close to the final solution and you want a
faster optimization.

‘newton assumes that the number of
param_statement=numberof zero_statement. If thisis
not true, mvarsearch automatically changes method to * 1m.
Default value: ‘' 1m

Convergence tolerance. The optimization ends if the relative
error in the sum of squares of the calculated objectives in the
zero_statements islessthan conv_tol. For example,
given objectives tmp1l and tmp2, the optimization ends if:
(tmpl*tmpl + tmp2*tmp2) < conv_tol

The smaller the value of conv_ tol, the more accurate the
optimization solution.

Default value: 1.0e-04

Step length for the forward-difference approximation to compute
the numerical derivatives. For a design parameter of value x, the
approximation uses di ff_ tol*x as the step length. If x is very
small (less than the machine precision), the step length is taken
asdiff_ tol.

Default value: 5.0e-03

34 Product Version 17.1

All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

maxiter Maximum number of optimization iterations that should be
evaluated before automatically exiting the optimization loop.
Default value: 300

restoreParam Specifies if the parameters to be optimized should be reset to
their initial values after the optimization is complete
(restoreParam=1).
Default value: 0

param_name The parameter to be optimized.

init_val Initial value for the parameter to be optimized. This value
provides the optimization algorithm with an initial guess for the
parameter to be optimized.
Default value: 1.0

lower_val Lower limit for the parameter to be optimized. The optimization
limits parameter to the value of Iower_val if it becomes less
than the specified value. Iower_val can be used to force a
lower limit on physical parameters (such as MOSFET channel
width) to ensure that the optimized solution is physically possible.

upper_val Upper limit for the parameter to be optimized. The optimization
limits the parameter to the value of upper_val if it exceeds the
specified value. upper_val can be used to force an upper limit
on physical parameters (such as MOSFET channel width) to
ensure that the optimized solution is physical possible.
Setting Iower_val and upper_val too close to each other
can result in discontinuities, making the optimization
unsuccessful.
Default value: 2.0*init_val

exec_statement run statement to compute goal values.

zero_statement Goal value to be minimized.

For example, you may define a measurement and mvarsearch statement as follows to
obtain the optimal values of p-channel width and n-channel width, and an equivalent rise and
fall time of 3ns for an inverter chain.

alias measurement trans {
run tran(stop=lu, autostop='yes)
export real rise=risetime(sig=V(d), initval=0, inittype=’y, finalval=3.0,
finaltype='y, thetal=10, theta2=90) // measured from 10% to 90%
export real fall=falltime(sig=V(d), initval=3.0, inittype='y, finalval=0.0,
finaltype='y, thetal=90, theta2=10) // measured from 10% to 90%

November 2017 35 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
}
mvarsearch {
option {
accuracy = le-3 // convergence tolerance of trans->rise
deltax = le-3 // numerical difference % of design variables
maxiter = 100 // limit to 100 iterations
}
parameter

{para pw, 1.2u, 0.1lu, 10u}
{para nw, 1.2u, 0.lu, 10u}
}
exec {
run trans

}

zero |
tmpl = trans->rise - 3ns
tmp2 = trans->fall - 3ns

}

In the above example, design parameters para_pw and para_nw are varied by the
optimization algorithm starting at an initial value of 1.2 microns with a maximum value of 10
microns and a lower limit of 0.1 microns. At each iteration, the measurement alias trans is
run after the design parameter value is set. The zero values tmp1l and tmp2 are then
computed using the results from the measurement alias. This iteration continues until one of
the following happens:

B tmpl and tmp?2 satisfy the conv_ too1 criteria determined by the following equation:
(tmpl*tmpl + tmp2*tmp2) < 1.0e-03
B the maxiter parameter value is exceeded

During this optimization, the parameters para_pw and para_nw are clamped between the
lower limit of 0.1u and the upper limit of 10u. This clamping forces the channel widths of the
MOSFETs in this circuit to remain within defined limits while the optimization is performed.

The above example results in the following output:

Swept Measurements

Measurement Name : trans-meas optimize
Analysis Type : tran
fall para pw @ 2.3745e-06
para nw @ 1.16767e-06 = 2.99999997237325e-09
rise para pw @ 2.3745e-06
para nw @ 1.16767e-06 = 3.00129681779706e-09

You can define a mvarsearch statement inside foreach statements as follows:

foreach v_vdd from {3, 2.5}

{
foreach temp from {25, 30}

{

mvarsearch {

November 2017 36 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
option {
accuracy = le-3 // convergence tolerance of trans
deltax = le-3 // step length
maxiter = 100 // limit to 100 iterations
restoreParam=1 // a must
}
parameter {

{pw, 2u, 0.05u, 10u}
{nw, 2u, 0.05u, 10u}

}

exec {
run trans

}

zero {
tmpl
tmp2

}

trans->rise-25p
trans->fall-25p

}

The above example results in the following output (with -tab option in the spectremdl
command line):

Swept Measurements

Measurement Name : trans

Analysis Type : tran

v_vdd temp pw nw fall rise

3 25 5.58951e-06 4.08718e-06 2.38087e-11 2.6299%6e-11
3 30 3.6754e-06 3.39895e-06 2.41le-11 2.66064e-11

2.5 25 3.72744e-06 2.05837e-06 2.32133e-11 2.87913e-11

2.5 30 3.35662e-06 1.84146e-06 2.41816e-11 2.96455e-11

Include Statement

The include statement provides a way for you to insert the contents of an MDL control file
into another control file. This feature is useful for creating an MDL control file using other
control files as components.

include statement ::=
include “mdlifile”

mdlfile Path and filename of the MDL file to be inserted.
Remember the following rules when using the include statement.
1. The include statement is allowed at the top level of the MDL file only.

2. Alias measurement blocks, foreach, search, mvarsearch, and montecarlo statements do
not support the include statement as a subordinate command.

In the following example,

November 2017 37 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

//File main.mdl
include "simple.mdl"
run tr

the main.mdl and simple.mdl files are placed in the current directory.

In the following example,

//File simple.mdl

include "meas/mdl2.2"

alias measurement t

run tran (stop=140n)
export real vall=3*V(1l1l)
}

run tr3

include "meas/mdl1.2"

run tr2

themdl1l.2 andmdl1l. 2 files are placed in the meas directory.

Evaluating Expressions Selectively

You can specify the criteria based on which you want MDL to run other statements and
evaluate expressions.

If/Else Statement

The if/else statement provides a way for MDL to run other statements selectively
according to criteria that you specify.

if (CONDITION) {
TRUESTATEMENTS
}

else if (ELSEIFCONDITION) {

ELSEIFSTATEMENTS
}
)+
]
[
else {
FALSEESTATEMENTS
}
]
[...] Optional block.
(-.)+ Indicates that the block can be repeated.
if Indicates that this is an if block of the 1 £/else statement.
November 2017 38 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
else Indicates that this is an else block of the if/else statement.
CONDITION Conditional expression which returns 1 if the condition is true

and 0 if the condition is false

ELSEIFCONDITION Conditional expression which returns 1 if the condition is true
and 0 if the condition is false.

TRUESTATEMENTS Statements that are read only if CONDITION is true.

ELSEIFSTATEMENTS Statements that are read only if ELSEIFCONDITION is true and
CONDITION and all previous ELSEIFCONDITION are false.

FALSESTATEMENTS Statements that are read only if CONDITION and all previous
ELSEIFCONDITION are only.

The if/else statement is allowed

m atthe top level of an MDL file, and it can include assign, run, mvarsearch, search,
foreach, montecarlo, print statements

B inside alias measurement block and executed blocks of mvarsearch, search, montecarlo,
foreach statements

Example 1

int count=0
foreach count from swp(start=1l, stop=3, step=1l) {
if (count==1)

{
}

else 1f (count == 2)

{

run tr3

if (tr2->val2 == 5)
{

}

run trl

run tr2

}

else

{

run tr2

}

Example 2

The following example shows the value of v(11) change from 0 to 5 during the simulation.

November 2017 39 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

alias measurement trl {
run tran (stop=160n)
export real val2
export real vall
export real val3
export real valid
export real valb
export real valo
export real val7
export real val8

if (v(11l) > 4)

{
if (v(11l) < 4.06)
{

}
val2 = min(v(11))

vall=v(1l1l)

}
else if (v(11) > 3)
{
if ((v(11l) > 3.5) && (v (11)<3.7))
{
val3= max(v (11)
vald= v (11)
}
else
{
val5=v (11)
val6=max (v (11l))

}

else

{
val7 = max (v (11l))
val8 = v (11)
}

}

run trl

In the example above, val7 = 2.955, because the max function is a buffered function and
assign statement val7 = max (v (11)) is executed while v(11) <= 3.

Ternary Expression Statement

The ternary expression statement provides a way for MDL to evaluate expressions selectively
according to criteria that you specify. A ternary expression statement may be used at any
location where an expression is supported. Furthermore, as this statement is an expression,
its return value may be used as the argument to an assignment statement.

(CONDITION) ? TRUEEXPRESSION : FALSEEXPRESSION

? MDL keyword indicating that this is a ternary if-operator.

November 2017 40 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

MDL keyword separates TRUEEXPRESSION and
FALSEEXPRESSION.

CONDITION Conditional expressions which returns 1 if the condition is true
and 0 if the condition is false.

TRUEEXPRESSION Expression returned if CONDITION is true.

FALSEEXPRESSION Expression returned if CONDITION is false.

Remember the following when using a ternary expression statement:

B Addaspace before a not-equal-mark (!=). This is to differentiate the not-equal from value
assignment to a global signal which is usually suffixed with “!”.

B Add aparenthesis before the colon mark (:) when a letter follows it. This is to differentiate
the TRUEEXPRESSION from the expression of instance: terminal

Example
val2 = (v(11l) == 5)&&(vall != 'nan) 2?2 v(11l) : 2*v(1l1l)
val3 =(vall !'= 'nan)? mag(V(11l)==5?max(V(11)):10)+3 : 2*V(11)

Specifying the Output File Format

The print statement provides a way for you to write strings and variables (such as parameters
and measurement results) from an MDL control file to the standard output file or an output file
defined by you.

You can add a print statement at the following levels:
at the top level of an MDL control file

at the level of an alias measurement

inside a foreach looping statement

inside an optimization looping statement (such as search or mvarsearch)

inside a monte-carlo analysis

print statement::=
print fmt ("format", args) [to=file | addto=file]

format: :=
$ [flag][width][.precision] type [\n| \t]
November 2017 41 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

flag::=

type: :=

d,i | E,e | £] G, gl o] S| s |ul]Xx |V

flag

width

precision

type

\n
\t

to

addto

file

November 2017
© 2003-2018

Symbol used to align the text in the output file. - left-aligns the
text. If £1ag is not specified, the text is right-aligned.

Minimum field width.

Maximum number of the significant digits to be printed for g, G,
S, and s types, or the number of decimal digits to be printed for
e, E and £ types.

Default value: 6

Defines how the text is to be printed to the output file. The
following are supported in MDL:

d, i — signed decimal integer

E, e — floating point (in scientific notation)

£ — floating point (in decimal)

G, g —the shorter of %e, %E and %f (suppresses non-significant
Zeros)

o — unsigned octal integer

S — engineering scale number (e.g. 5m, 5K)

s — string

u — unsigned decimal integer

X, x — unsigned hexadecimal integer.

V — the value of the args

Specifies that a new line is to be inserted.

Specifies that a tab space is to be inserted.

Specifies that the existing results in the output file are to be
overwritten by the new results. You should use the to option in
the first print statement to clean the old results in the specified
results file.

Specifies that the results are to be appended to the output file.

File name.

42 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example 1

The enum, string, net, termand analysis type data can be output by print statements.
The following example shows output of both numbers and strings.

alias measurement printmeas {
input string out="myfile.out"
print fmt ("Header is %s\n", out) to=out
print fmt ("%s\t%s\t\t%s\t%s\t%s\n", "maxq", "ming", "REG", \
"INTREG", "REALREG") addto=out

run tranl

export real maxg=max (V(q))

export real ming=min (V(q))

enum REG = 10.mpO:region

export int INTREG = i1i0.mpO:region

export real REALREG = real (REG)

print fmt ("$VALSVALSVALSVALEVAN", maxq, ming, REG, INTREG, \

REALREG) addto=out

print fmt ("\n%s\t%s\t%s\t%s\tss\tss\tss\n", \
"%d", n%in, n%gn, "%G", "%e", "%E", "%f") addto=out

print fmt ("$d\t%i\t%g\t3G\t%e\tSE\tSf\n\n", \
10,10,10,10,10,10,10) addto=out

print fmt ("\n%$s\t%s\t%s\t%s\n", "%o","%x","%X","%u") addto=out

print fmt ("%o\t%x\t%X\t%u\n",10,10,10,10) addto=out

}

run printmeas (out="test.dat")

The simulator writes the following results to the test . dat file:

Header is test.dat

maxq ming REG intReG realREG
1.81826 -0.0144086 off 0 0

sd %1 3%g %G %e SE st

10 10 10 10 1.000000e+011.000000E+0110.000000
%0 X X su

12 a A 10

Example 2

print fmt ("\n****Print Results of Foreach Sweep:****\n\n") addto="print.dat"
print fmt ("%$-15s%-15s%-15s%-15s\n", "vdd", "delay", "rise", "fall")
addto="print.dat"
foreach vdd from {1.5, 1.8, 2} {
run tranmeas
print fmt ("%$-159%-15e%-155%-15.8S\n", vdd, tranmeas->q delay, \
tranmeas->q rise time, tranmeas->gq fall time) addto="print.dat"

}

The simulator writes the following results to the print . dat file:

****Print Results of Foreach Sweep:****

vdd delay rise fall

1.5 2.016334e-10 106.898p 66.053876p

1.8 1.618669%9e-10 87.7326p 60.830271p

2 1.460035e-10 79.6162p 58.993397p

November 2017 43 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example 3

The following example shows how to print the intermediate results of an mvarsearch
statement.

print fmt ("\n****Print Results of Optimization Analysis****\n\n")
to="print opt.dat"
print fmt ("%$-15s%-15s%-15s%-15s\n", "pw","nw","rise","fall")
addto="print opt.dat"
mvarsearch {

exec |

print fmt ("%$-15e%-15e", pw, nw) addto="print opt.dat"

run trans -

print fmt ("%$-15e%-15e\n", trans->rise,trans->fall) \
addto="print opt.dat"

}

}

The simulator writes the following results to the print_opt.dat file:

****Print Results of Optimization Analysis****

pw nw rise fall
2.000000e-062.000000e-062.469632e-112.371606e-11
2.063246e-062.000000e-062.451040e-112.387945e-11

2.007259e-061.719886e-062.499470e-112.500292e-11
2.00725%-061.719886e-062.499470e-112.500292e~11

Autostop

Autostop is a feature that halts simulation as soon as enough data has been collected to
evaluate the MDL expressions associated with a transient analysis. Using the autostop
feature can save you an enormous amount of simulation time when you characterize circuits.
The autostop feature is supported only for transient analysis.

Only functions that determine specific events, such as delay and event measurements, can
cause an automatic stop. However, if non-event functions such as max and min are included
in the same measurement alias, the functions are evaluated over the simulation period
defined by the event functions.

To use the autostop feature, you turn on the autostop parameter of the tran statement. For
example, the tran statement defined in the design file might look like this.

tranl tran stop=6u method=gear2only autostop=yes

Then, in the MDL control file, you specify the information you want to gather. For example,
your control file might look like this.

November 2017 44 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

alias measurement trans {
run tranl
export real out lu=V(out)@lu
export real prop delay fall=deltax(sigl=V(inp), sig2=V(out), dirl='fall,
nl=1, startl=0, threshl=1.5, dir2=’'fall, n2=1, start2=0, thresh2=1.5)
}

run trans

This example control file contains two expressions. The first measures the output voltage at
1us, and the second determines the delay between the input and output falling edges.
Because the autostop feature is enabled, the simulation runs only as long as necessary to
calculate the two specified values.

If the control file also specifies a third expression such as

export real outmax=max (V(out))

the simulator finds the maximum value only in the part of the simulation prior to the automatic
halt. If there happens to be a greater maximum that occurs after the automatic halt, the
simulator does not find it when autostop is enabled.

Monte Carlo

Monte Carlo statements provide a way to run Monte Carlo in MDL for measurement and
statistical figures of merit.

montecarlo statement::=
run montecarlo (options_statements)

{

block of statements

}

options statement ::=

[numruns = <int>,]
seed = <int>,]
variations= <'process |'mismatch |'all >,]

[

[

[firstrun = <int>,]

[donominal = < 'yes, 'no>,]
[scalarfile =filename,]

[appendsd = < 'yes, 'no >,]

For more information on the block of statements, see Using a Measurement Alias on
page 19.The options in the options_statement are consistent with the Monte Carlo
analysis in Spectre. For more information on these options, see the Spectre Circuit
Simulator and Accelerated Parallel Simulator User Guide.

From the MMSIM6.1 release, you can have a Monte Carlo statement inside a foreach loop.

The following information is written to the output file:

B number of iterations

November 2017 45 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

B exported measurement values for each of runs

Statistical figures of merit are also computed and output as part of the termination of the MDL
Monte Carlo run:

max The maximum value.

min The minimum value.

mean The mean value.

var The variance from the mean.

stddev The standard deviation.

avgdev The average deviation, mean absolute deviation.
failedtime The number of failed runs.

When the monte carlo analysis is run in MDL for measurement, max, min, mean, var,
stddev, and avgdev are computed and written to the output file and NULL values are
ignored.

For more information on the functions, see Appendix A, “Built-In Functions,”.

For example, you can define a measurement and Monte Carlo statement like the following for
a flip-flop circuit

alias measurement tranmeas {
export real rise out
run tran(stop=40n, errpreset='conservative)
rise out=risetime (V(q), initval=ming, finalval=maxq, inittype='y, \\
finaltype='y, thetal=10, theta2=90)
}
run montecarlo (scalarfile="dflip.dat",numruns=50, seed=8, donominal='no,
variations='all, firstrun=1l)

{

run tranmeas

}

Supported Spectre Circuit Simulator Analyses

MDL supports the following Spectre circuit simulator analyses inside an alias measurement
block:

B Transient analysis, including transient noise, transient ac, and transient info (tran)

November 2017 46 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

AC analysis (ac)

DC analysis (dc)

Sweep analysis (sweep)
Noise analysis (noise)
Monte Carlo (montecarlo)
Circuit Information (info)
Alter Group (altergroup)
S-parameter analysis (sp)

Stability Analysis (stb)

Reliability Analysis (rel)

The analysis can be defined in the netlist or in the MDL control file.

November 2017 47 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

The following table displays the syntax differences between Spectre and MDL.

Analysis |Spectre Circuit Simulator Syntax MDL Syntax
transient tranl tran stop=1lu run tranl [as tran2]
errpreset=conservative
or
run tran (stop=1lu,
errpreset=’'conservative) [as
tran?]
transient tran2 tran actimes=[0 20n 40n] run tran?
ac acnames=[CaptabInfo ac-2] stop=40n or
run tran (actimes={0, 20n, 40n},
acnames={CaptabInfo, ac-2},
stop=40n}
transient tran3 tran infotimes=[10n 30n] run tran3
info infoname=opInfo stop=40n or
run tran (infotimes={10n, 30n},
infoname=opInfo, stop=40n}
transient tranl tran stop=50n noiseseed=10 run tran (stop=50n,
noise noisefmax=30G noisefmin=1M noiseseed=10, noisefmax=30G,
noisefmin=1M)
acl ac start=0.1G stop=1G dec= run ac as ac
AC 1 0.1 1G dec=25 11 2]
or
run ac (start=0.1G, stop=1G,
dec=25) [as ac2]
DC dcl dc oppoint=logfile run dcl [as dc2]
or
run dc (oppoint='logfile) [as
dc2]
DC sweep dcswpl dc param=temp start=-40 stop=40 |run dcswpl [as dcswp2]
step=10
or
run dc (param=temp, start=-40,
stop=40, step=10) [as dcswp2]
sweep swpl sweep param=temp values=[25 50] {|run swpl
swp2 sweep param=vdd values=[0.8
3.3] { or
tranl tran stop=10n
foreach temp swp from{25, 50} {
} } foreach vdd swp from {0.8, 3.3}
{
run tran(stop=10n)
}
}
November 2017 48 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

noise findNoise (out gnd) noise oprobe=out |run findNoise [as findNoise2]
iprobe=v4 start=1 stop=1MHz dec=10
or
run noise(oprobe=out,
iprobe=v4, start=1l, stop=1M
dec=10, terminals={"out", "gnd"})
[as findNoise2]
montecarlo |mcl montecarlo scalarfile=monte5a.dat |run montecarlo
numruns=10 variations=all seed=1 { (scalarfile="monte4.dat",
. numruns=10, variations='all,
} seed=1) {
}
circuit dcOpInfo info what=oppoint run dcOpInfo [as dcOpInfo2]
information where=rawfile
or
run info (what='oppoint
where='rawfile) [as dcOpInfo2]
aﬂergroup alterl altergroup { ..} run alterl [as alter?2]
S- spl sp ports=[PORT 1 PORT 2] dec=20 run spl [as sp2]
parameter start=0.1G stop=20G
or
run sp (ports={PORT 1, PORT 2},
dec=20, start=0.1G, stop=20G)
[as sp2]
Stab"ﬁy stbl stb start=1 stop=1lel0 dec=100 run stb(start=1, stop=1lel0,
: = =100 robe=Vprobe)
AnaIyS|s probe=Vprobe dec ;P P
Reliability |rel reliablity { run reliability (time age=[10y],
; age time = [10y] deltad value = 0.1) {
AnaIySIS deltad value = 0.1

Note that ac or info analyses used as part of a tran statement (opInfo, ac-2, and
CaptabInfo in the above table) must be defined in the netlist.

Almost all Spectre netlist pre-defined core analyses are supported by MDL, except for sweep
and montecarlo analyses. Therefore almost any predefined analysis can be defined and run
outside the alias measurement blocks in an MDL control file, such as at the top level or
anywhere a run statement may be present which includes inside the foreach, montecarlo,
search and mvarsearch statements. But the results may not be accessible, nor may
measurements be performed on the results as real time data from analyses is accessible only
when the analysis is supported inside an alias measurement block.

November 2017

©2003-2018

49

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Supported Spectre Circuit Simulator Formats

The following Spectre circuit simulator formats allow the creation of an MDL .measure file:
PSFBIN

PSFASCII

SST2

FSDB

WDF

TROASCII

The following Spectre circuit simulator formats are not supported and do not allow the
creation of an MDL .measure file:

m PSFBINF
m WSFBIN
m WSFASCII
m NUTBIN

m NUTASCII

Optimizations and Tips and Tricks

Data Output Optimizations

1. Use simulator option save=nooutput in your design file to disable simulator data save
and enhance performance. If you want to save simulator data, use save=selectedin
your design file and specify the signals to be saved.

2. Use the -rmrawfiles command line option to delete the . raw directory after each
MDL run. The .measure file is preserved. This minimizes disk space usage between
runs.

3. Use rawfmt=psfbin (default setting) for best output performance.

4. Only export the variables that you need written to the .measure file.

November 2017 50 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Performance Optimizations

—h

. Use the paramset in the foreach loop if multiple foreach runs are desired.

N

. Use the autostop parameter on the transient analysis runs with the functions
cross (), trim(), deltax () to specify termination of the analysis run after values
have been computed.

3. Use default accuracy (moderate) on the transient analysis, as MDL thresholds and
breakpoints ensure accuracy. You do not need to specify small timesteps for equivalent
accuracy with MDL.

4. Instead of recomputing multiple identical expressions, use a single expression
computation and temporary variables in the measurement aliases.

5. To speed up mvarsearch runs, set the nominal value of each varied parameter close to
the expected value, if known.

6. Use multiple measurement functions such as crosses () and dutycycles () instead
of using multiple cross () ordutycycle () measurements.

MDL Reuse

1. Use parameterized alias measurements and include statements for MDL alias
measurement code reuse.

2. To share data between alias measurement runs, or access data from a run at the top
level, use the -> operator in the top level constructs for accessing previous alias
measurement run results.

3. When using the -> operator to access computed data, remember that re-naming the
measurement alias run using the as command changes the measurement alias name for
the “->” operator. For example,

alias measurement maxout
{
input net mynet;
export real out;
run tranl;
out = max(V(mynet));

}

run maxout (mynet=out) ;
// maxout->out = max (V(out))

run maxout (mynet=dout) as maxdout;
// maxout->out = max (V(out))

4. Avoid the use of design file global variables, if possible. Instead, use the input variable
functionality of MDL to pass parameter values to the measurement alias.

November 2017 51 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

5. Use ; at the end of each statement in a measurement alias.

6. Use the v () and I() access functions to access voltages and currents instead of just

inserting the signal name itself.

7. Define the analysis to be run in the MDL control file and do not rely on the design

containing the analysis definition. This is particularly important if you plan to parameterize
or reuse the analysis run itself.

Common Pitfalls

1.

To avoid search failures, ensure that the start and/or stop values of the search meet the
search condition(s) before running the search.

. Use the search command when the conditions are continuous and monotonically

increasing or decreasing. If the conditions are discontinuous or non-monotonic, use
mvarsearch.

. Run newly defined alias measurements using default settings prior to inserting them into

higher level constructs such as foreach, montecarlo, search, or mvarsearch to
ensure that the alias measurement does not contain errors.

. Statements in the alias measurement block before the run statement are executed only

once before the run statement is executed. Use this functionality to compute constant
values, or testbench setup. These expressions are not evaluated at each iteration of the
run analysis itself.

. Ensure that variables are not forward referenced by defining them prior to their usage.

. When specifying enumerated arguments, remember to include the single quotation

mark. For example, to set errpreset on an MDL defined transient analysis, use
errpreset="moderate.

Miscellaneous

1. If an MDL run is inadvertently terminated prior to normal termination, or the output

.measure file is inadvertently removed, use the processmdl script located at
install-path/tools/mdl/bin to recreate the .measure file. The syntax is as
follows:

processmdl [options] md1filename

This is also useful for recreating the .measure file from the raw directory in tabular
format (-tab) or for changing the precision of the results (-prec). The initial raw
directory must remain intact for this to function correctly.

November 2017 52 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

2. Toaccess online help on predefined functions, type spectremdl -h functionname
in a terminal window (for example, spectremdl -h cross). For a list of predefined
functions, type spectremdl -h functions.

November 2017 53 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

November 2017 54 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Constructing MDL Expressions

A Measurement Description Language (MDL) expression consists of a series of language
elements that conforms to the rules of the language. This chapter defines the SpectreMDL
language elements and describes the rules for combining the elements into expressions. As
described in the next chapter, expressions can be used, in turn, to make measurements.

The major topics in this chapter include

m Basic Language Elements and Scope Rules on page 56
Data Types on page 58

Declarations on page 66

Operators on page 69

November 2017 55 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Basic Language Elements and Scope Rules

The basic language elements include white space, comments, and identifiers.

White Space

The MDL tool ignores blanks, tabs, and pairs consisting of a backslash immediately followed
by a new-line character, except when these characters or combinations are in strings or when
they separate other language elements.

For example, in MDL, this code fragment,

export real p2p rise=pp (trim(sig=V (out), \
from=0, to=100n))

has an effect identical to that of the following fragment.

export real p2p rise=pp(trim(sig=V(out), from=0, to=100n))

Comments

In MDL, you can designate a comment in either of two ways.

B Anin-line comment starts with the two characters // (provided they are not part of a
string) and ends with a new-line character. Within an in-line comment, the characters /
/, /*,and */ have no special meaning. An in-line comment can begin anywhere in the
line.
// This code fragment contains four in-line comments.
// Three comments affect whole lines; one is at the end of a line

run dc // Run the analyses.

//

B A block comment starts with the two characters / * (provided they are not part of a string)
and ends with the two characters * /. Within a block comment, the characters *, /*, and
// have no special meaning.
/*
* This is an example of a block comment. A block
* comment can continue over several lines, making it
* easy to add extended comments to your file.

*/

November 2017 56 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Identifiers

You use an identifier to give a unique name to an object such as a variable, a measurement
alias, or an analysis name in the run or run as statement. The unique name allows you to
reference the object from other places. Identifiers are case sensitive.

identifier ::=
letter {letter or digit}

letter or digit ::=

letter
| digit
letter ::=
a-z
| A-7
L
digit ::=
0-9

For example, the following statements use identifiers that comply with this syntax.

real An Identifier Name = 15.0
real a 2nd name = 15.0
real many underscores = 20.

alias measurement tran2 {
alias measurement tran3 {

The following identifier does not comply with this syntax.
real 2identifier = 15.0 // ILLEGAL! Must begin with a letter.

The following two identifiers are different, because their capitalization is different.

14.0
16.0

real rise
real RISE

Scope Rules

The scope of an MDL variable is the measurement alias in which it is defined. For example,
assume you have an MDL control file that contains the following statements:
alias measurement mytranl {

export real out 160n=V(out)@1l60n
}

alias measurement mytran2 {
export real out 160n=V(out)@1l60n
}

run mytranl

run mytran?

November 2017 57 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

In this example, there is no conflict between the two out_160n values because each is
visible only within the measurement alias that defines the variable.

Data Types

Supported data types include: numbers, enumeration names, variables, predefined
constants, strings, enum, nets, terminals, arrays, and analyses.

Numbers

MDL supports two data types for arithmetic operations: integer numbers and real
numbers.

Integer Numbers

The syntax for an integer number is

integer number ::=
[sign] unsigned num

sign ::=
unsigned num ::=

decimal digit { decimal digit }
decimal digit ::=

ol 112131145161 7]8]129

Examples of integer numbers include

277195000
-634 // A negative number
0005

Real Numbers

The syntax for a real number is

real number

[sign] unsigned num .unsigned num
| [sign] unsigned num [.unsigned num] e [sign] unsigned num
| [sign] unsigned num [.unsigned num] E [sign] unsigned num
| [sign] unsigned num [.unsigned num] scale letter
sign =
+ | -
November 2017 58 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

unsigned num ::=
decimal digit { decimal digit }

decimal digit ::=

scale letter ::=

scale_letter A scale_letter listed in the following table. If you use
scale_letter, you must not have any white space between
the number and scale_letter. Be certain that you use the
correct case for scale_letter.

scale_letter Scale factor

T 1012
G 109
M 108
K 108
k 108
_ 1

m 103
u 10
n 10
D 10-12
£ 10°1°
a 10718

Examples of real numbers include

2.5K // 2500
le-6 // 0.000001
1.3u

5.46M

47p

100m

50

213116.223642

November 2017 59 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Complex Numbers

Complex numbers are numbers that fall on the complex plane. They consist of two real
numbers, the first representing the real part and the second the imaginary part. In this
release, you can use complex number declaration only to export a number of that type. For
example, you can use a statement like the following one.

export cplx out lu=V(out)@lu

Assigning a real number to a complex variable sets the real part to the real number and the
imaginary part to zero. As a result, the previous statement produces output like the following.

out 1lu = (2.99983, 0)

Enumeration Names

Enumeration names consist of a single quote followed by an identifier.

The syntax for a name is

name ::=
"identifier

Names can be used to access predefined constants and to select choices in the built-in
functions.

Examples of constants include:

Ipl
"avogadro

The following statement illustrates using the name ' fall in the cross function.

export real crossOut = cross(arg=V(out), dir=’fall, n=1, thresh=1)

Predefined Constants

MDL provides the following predefined constants.

Integer Constants
'yes Boolean true

"no Boolean false 0

Real Mathematical Constants

November 2017 60 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

"pi T 3.14159265
‘e e 2.71828183
"inf oo infinity
‘nan Not a number (result of an NaN

invalid operation)
Real Physical Constants
'q Charge of an electron 1.6021918-10719 C
e Speed of light 2.99792458:-108 m/s
'k Boltzmann’s constant 1.3806226:10723 J/IK
'h Planck’s constant 6.6260755:1073* J-s
' eps0 Permittivity of a vacuum 8.85418792394420013968-10~12 F/m
"epsrsi Relative permittivity of silicon 11.7
10 Permeability of a vacuum nx 4.0:107" H/m
"celsius0 0 celsius 273.15K
‘micron 10%m
"angstrom 1070 m
ravogadro Avogadro’s number 6.022169-10%3
'logicO The value of logic 0 0
"logicl The value of logic 1 5

In the following example, the name ' pi corresponds to the predefined constant & and is
automatically converted to the value = for the calculation.

export real cos2pi=cos(2*’pi) // Using pi as a parameter.

enum

An enum variable can be passed as an input parameter or used as temporary storage for
predefined constants or enumerated variables inside an alias measurement as illustrated by
the following statements:

input enum outdir = 'fall

enum doubleindirection = outdir

enum mypi = 'pi

November 2017 61 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

The enum variable contains a reference to a particular enumeration or constant, but does not
contain the value represented by that enumeration or constant. For instance:

enum mypi = 'pi //here mypi stores "'pi"
real myrealpi = 'pi //myrealpi is 3.1415..
real myvarpi = mypi //myvarpi is 3.1415..

export real cosl = cos (mypi)

You cannot use the enum variable as the argument to an output or an export statement.

Net

A net in the netlist for which the v () access function can be used. Hierarchical path of net
such as 1 0. c is supported. net can be used only with the input qualifier. For example,

net in=data //data is a node in netlist

input net out=I0.vout //IO.vout is a node in the netlist

input net arrnets[]={data, g, IO0.vout}

Terminal

An instance terminal in the netlist for which the T () access function can be used. Hierarchical
path of term such as 10 .m0 : d is supported. term can be used only with the input qualifier.
For example,

term tl=vdd:1 //vdd:1 is a terminal in the netlist

input term t2=I0.mp0:1 //I0.mpO:1 is a terminal in the netlist

input term arrterms|[]={vdd:1, I0.I1.mpO:1}

Analysis

The analysis declaration statement provides a method to store an analysis defined in the
netlist or created by as statement in a run statement. The analysis statement can be used
only with the input qualifier.

analysis declaration statement ::=
[qualifier] analysis identifier [= initvalues]

qualifier ::=
input

initvalues::=
init _val | { valuel, value2, ..., valuelN }

November 2017 62 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

identifier Name to be used for the analysis or analysis array variable. For
example, analysisl, analysis2[].

input Keyword to declare input data.

analysis Keyword to represent the analysis type data.
init_val A single initial analysis name.

{valuel,value2, ..., valueN }List of analyses names to initialize an array.

The following MDL control file defines an array of analyses, where at1, tranl, agl, and
tran?2 are pre-defined analyses in the netlist.

analysis ArrAnalysis[]={atl, tranl, agl, tran2}

alias measurement myrun {
input analysis mytran=tran 1 //tran 1 is initial value
run mytran
}

run ArrAnalysis[0]

run myrun (mytran= ArrAnalysis[l]) as measl

run ArrAnalysis[2]

run myrun (mytran= ArrAnalysis[3]) as meas?2

Array

An array declaration statement provides a method for defining, using, storing, and outputting
a vector of data. You may access this data by a 0-based index, or by passing the entire data
using the array name. In addition, you can also output this data to the .measure file.

You can use the array declaration statement to declare a data array and indicate whether the
array is used for input, export, or output.

array declaration ::=
[MDL qualifier] datatype MDL_id [= initvalues]

MDL qualifier ::=

input | export | output
datatype ::=
real | int | cplx | string | net | term | analysis
initvalues ::={
valuel, value2,...valueN | init_val_array
MDL_id Name to be used for the array. For example, arr[1.
November 2017 63 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
input Keyword to declare an array of input data.
export Keyword to declare an array of export data.
output Keyword to declare an array of output data.
real Keyword indicating that the vector consists of real numbers.
int Keyword indicating that the vector consists of integer numbers.
cplx Keyword indicating that the vector consists of complex numbers.
string Keyword indicating that the vector consists of strings.
net Keyword indicating that the vector consists of nets.
term Keyword indicating that the vector consists of instance terminals.
analysis Keyword indicating that the vector consists of one or more

analysis names.

valuel, valueZ2,...valuelN
List of initial values of the array.

init_val_array Array used to set initial values.

Example 1

For the following MDL control file,

//An example of the array variable syntax.
alias measurement mytran {

input real varr[] = {1.0,2.0,3.0}
run tran(stop=160n)
export real outvarr[] = varr

}

run mytran as mytranl

int i=0

// Print result

print fmt (" Default values \n") to = "print.txt"

foreach i1 from swp(start=0, stop=2 , step=1l) {

print fmt("varr[%V]=%V\n" ,i, mytranl->outvarr[i]) addto="print.txt"
}

//

run mytran(varr={4.0,5.0,6.0}) as mytran?

November 2017 64 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
//Print result
print fmt (" Pass list \n") addto = "print.txt"
foreach i from swp(start=0, stop=2 , step=1l) {
print fmt("varr[%V]=%V\n" ,i, mytran2->outvarr[i]) addto="print.txt"
}
real argarr = {7.0,8.0,9.0}
run mytran (varr=argarr) as mytran3
print fmt (" Pass array variable \n") addto = "print.txt"
foreach i from swp(start=0, stop=2 , step=1l) {
print fmt("varr[%V]=%V\n" ,1, mytran3->outvarr[i]) addto="print.txt"

}

The output file, print . txt, looks as follows:

Default values

varr[0]
varr[1l]
varr[2]

Pass 11
varr [0
varr([1l
varr[2

I wm

[

Pass arr
varr[0]
varr[1l]
varr[2]

y variable

O oo Jw ol W

Example 2

In the following example, multiple cross times of a node voltage are saved to the .measure
file.

alias measurement findgcross {
run tran (stop=200n, step=40n)
export real outcross[]= crosses (V(q), n=2, thresh=vdd/2) }
run findgcross.

The .measure file for the above MDL control file is as follows:

Measurmement Name: findgcross

Analysis Type : tran
outcross[0] = 4.07e-08
outcross[1l] = 9.017e-08
outcross[2] = 1.207e-07
outcross[3] = 1.702e-07
Example 3

The following statement:

export real xOut = crosses (sig=V(out), thresh=1)

has the following result:

November 2017 65 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

xOut[0]1=0.2, xOut[l1l]=0.3, xOut[2]=0.5

You can get the maximum index in the above array by the following statement:

real xOutSize = max (xval (xOut))

Example 4

The following MDL control file measures the delay on bus signals ouT[0] and OUT[1].

alias measurement delay {

input net inputnets[] = {a, b}
run tran (stop=80n)
export real dl = cross(V(inputnets[0]), dir='fall, n=1,

cross (V(inputnets[1l]), dir='fall, n=1,

export real d2

}
run delay (inputnets

//Print results
print fmt ("dl1=%Vv, d2=%v\n", dl->dl1, dl1->d2) to="arr.print"

{OUT[0], OUT[1]}) as dl

The .measure file for the above control file is as follows:

Measurement Name: dl
Analysis Type : tran

dl = 5.0075e-08
d2 = 4.2075e-08

The output file, arr .print, looks as follows:
d1=5.0075e-08, d2=4.2075e-08

Declarations

variable declaration statement ::=

thresh=vdd/2)
thresh=vdd/2)

[qualifier] datatype variable [= expression]{, variable [= expression]}

qualifier ::=
input | export | output

datatype ::=

real | int | cplx | string | net | term | array | enum

parameter declaration statement ::=

input real parameter [= expression]{, parameter [= expression]}

November 2017 66
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
qualifier Declares the input variables
input Declares input variables that may be included as an

argument to the alias measurement. The input
variables must precede the run statement in an
alias measurement. Although input variables can be
initialized with the default value or expression (if
present), the value in the parameter list in the run
statement has higher priority to the default value.

output Declares output variables which are visible outside
the alias measurement. They will not be saved to the
measurement dataset, nor will they be presented in
the .measure file. The output variables are defined
and evaluated with the default value or expression (if
present). If no default value is present, then they
have no value (that is, 'nan).

export Declares export variables which are visible outside
the alias measurement and are also written to the
PSF measurement dataset and the .measure file.
The .measure file name is constructed by adding
the .measure extension to the base name of the
MDL control file. The .measure file is placed in the
same directory as the results directory. Only the
numbers data type is available for export. The export
variables are defined and evaluated with the default
value or expression (if present). If no default value is
present, then they have no value (that is, 'nan).

If you do not specify the qualifier, the associated parameters are
considered by MDL as local variables whose value is only effective
inside the alias measurement. If you calculate values that are used
only in later calculations, you can omit the qualifier to minimize the
number of expression values written to the .measure file.

datatype The types to declare the variables. Some types you can use are:
real Indicates a real number.
int Indicates an integer.
cplx Indicates a complex number.
string Indicates a string.
November 2017 67 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

net Indicates a net in the netlist for which the v ()
access function can be used. net can be used only
with the input keyword. Hierarchical path of net
such as i0.c is supported.

term Indicates an instance terminal in the netlist for which
the 1 () access function can be used. term can be
used only with the input keyword. Hierarchical path
of term such as 10.m0:d is supported.

array Indicates a vector of data. The data type can be
integer, real, complex, string, net, term, and
analysis. An array of integers, real, and complex
numbers can be used with the input, output, or
export qualifier, while an array of string, net, term,
and analysis can only be used with the input
qualifier. An array can be accessed by a 0-based
index, can be passed by using the array name only,
and can be initialized by a list of values with a
comma in between or by an existing array.

enum Indicates an enumerated variable used as a
reference to a particular enumeration or constant. It
can only be used with the input qualifier or
without a qualifier.

analysis Indicates an analysis variable.

variable The variables used in the measurement aliases. You must separate
multiple variables by commas. You must declare variables before you
use them, but you can declare them anywhere and initialize them
when they are declared. The variable name must begin with a letter.
For more information, see ldentifiers on page 57.

Variables with calculated values can be used in subsequent MDL expressions. For example,
you might make a complicated expression easier to read by using other expressions to
calculate preliminary values.

real ig2c=I(il.g2:c)
real ig2b=I(il.g2:b)
real ig3b=I(il.g3:b)
real ig4b=I(il.g4:b)

i

export real iref = ig2c + ig2b + ig3b + ig4b

November 2017 68 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Operators

The following sections describe the operators that you can use in MDL and explains how to
use them to form expressions. For basic definitions, see

m ‘“Unary Operators” on page 70

m “Binary Operators” on page 70

For information about precedence, see

m “Operator Precedence” on page 71

Overview of Operators

An expression is a construct that combines operands with operators to produce a result that
is a function of the values of the operands and the semantic meaning of the operators. Any
legal operand is also an expression. Expressions can be used only on the right-hand side of
an assignment operator.

The operators associate from left to right. That means that when operators have the same
precedence, the one farthest to the left is evaluated first. In this example

A+ B - C
the simulator does the addition before it does the subtraction.

When operators have different precedence, the operator with the highest precedence is
evaluated first. In this example

A+ B/ C

the division (which has a higher precedence than addition) is evaluated before the addition.

For information on precedence, see “Operator Precedence” on page 71.

You can change the order of evaluation with parentheses. If you code

(A + B) / C

the addition is evaluated before the division.

The operators divide into groups, according to the number of operands the operator requires.
The groups are the unary operators and the binary operators.

November 2017 69 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Unary Operators

The unary operators each require a single operand.

Operator Definition Type of Argument Example

+ Unary plus integer, real, complex val = +13 // val=13

- Unary minus integer, real, complex val = -(4-5) // val=1l

! Unary not integer Val =!(V(out)>0)

Binary Operators

The binary operators each require two operands.

Operator Definition Type of Argument Example

I= a not equal to b; real, integer I 5.2 !'=5.2 // I=0
evaluates to 0 or1

* a multiplied by b real, complex, integer R 2.2 * 2 // R=4.4

+ a plus b real, complex, integer R 10.0 + 3.1 // R=13.1

- a minus b real, complex, integer I 10 - 13 // I= -3

/ a divided by b real, complex, integer I 9/4 // I=2

< a less than p; real, integer T 5 < 7 // I=1
evaluates to 0 or1

<= a less than or real, integer T 5.0 <= 5.0 // I=1
equal to b;
evaluates to 0 or1

== a equal to b; real, integer T 5.2 == 5.2 // I=1
evaluates to 0 or1

> a greater than b; real, integer T 5 > 7 // I=0
evaluates to 0 or1

>= a greater than or real, integer I 5 >= 7 // I=0
equal to b;
evaluates to 0 or1

November 2017 70 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
Operator Definition Type of Argument Example
@ Event operator. real, complex V(out) @ 1u
Interpolates a
signal at a T(R1) @ cross(sig=V(out),
particular X-axis n=1, dir='rise,
value (abscissa). thresh=1.5)
&& Logical AND; integer I=(1==1)&&(2==2) // I=1
evaluates to 0 or1 I=13&&1 // I=1
I Logical OR; integer I=(1==2) || (2==2) // I=1
evaluates to 0 or1 I=13||0 // I=1
Operator Precedence
The following table summarizes the precedence information for the operators.
Operator Precedence
+ - (unary) Highest precedence
@
*/
+ - (binary)
<<=>>=
== =
&& v
Il Lowest precedence
November 2017 71 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

November 2017 72 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Running MDL in Batch Mode

This chapter describes the syntax and options for the spectremdl command, which runs
the Measurement Description Language (MDL) tool. The spectremdl command can now
be used for design files written in both Spectre and SPICE languages.

November 2017 73 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

spectremd]

Runs MDL on design files written in the Spectre language.

In the following syntax, the vertical bar (|) separates alternatives.

Syntax
spectremdl
[options] [-batch] MDL_file
| -batch MDL_file -design design_file
| -usage
| -h function_name
options :: =
spectre_options
| -measure output_file
| -mtO
| -tab
| -prec ’format’
| -rmrawfiles
| -eng numdigits
Arguments
-batch A command line option used to specify the MDL control file.
Notice that you can omit this option and enter simply the name
of the MDL control file when the base name of the MDL control
file is the same as that of design file. You must specify both
-batch and -design arguments if the base names are different.
MDL_file The path and filename of the MDL control file to be used. You
must specify the control file.
-design A command line option used to specify the design file.
design_file The path and filename of the design file to be simulated. If the
-design option is omitted, MDL looks for a design file with the
same basename as the ¥DIL_ £ i 1e name, but with an extension
of .scs or .ckt.
-usage A command line option used to display syntax information for the
spectremdl command.
-h function_name A command line option used to display online help on predefined
functions. For example, spectremdl -h cross. For a list of
November 2017 74 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

spectre_options

-measure

output_file

-mto0

-tab

-nhosort

-prec 'format

-rmrawfiles

November 2017
© 2003-2018

predefined functions, type spectremdl -h functionsina
terminal window.

Spectre options to be passed to the Spectre simulator. For a list
of the options you can use, see spectre -h or Chapter 2,
“Spectre Command Options,” in Spectre Circuit Simulator
Reference.

A command line option used to specify the output file.

If you do not use this option, the output of the measurements is
placed in a file with the same base name as the MDL._ fi1e and
with the extension .measure. Forexample, ifthe MDL_fileis
amp .md1, the output file, by default, has the name

amp .measure. This default file is placed in the directory that
holds the design_file. So if the design file is . /d2/
arith.ckt, the default measure file is . /d2/amp .measure.

The path and file to be used for output data generated by
measurements.

A command line option used to generate .mt* format data files
as well as the default .measure file.

A command line option used to present data in a tabular format
in the .measure file. This is useful for swept data.

A command line option to specify that variables in the measure
file should not be sorted. When this option is specified, the
exported variables in the mdl file appear in the .measure file in
the order in which they are specified in the netlist. Note that by
default, they appear in alphabetically sorted order in .measure
file.

A command line option used to specify the number of significant
digits to be displayed in the signal value inthe . measure file. For
example, '%.15g" displays 15 significant digits for the
measured value.

A command line option used to specify that the raw directory,
including the MDL measure results, be deleted after the
.measure output file is created.

75 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

-eng numdigits A command line option to specify the engineering format of the
signal value output to the measurement file. numdigi ts is the
number of significant digits of the signal value. If numdigitsis
not specified, 6 significant digits are displayed. If both -prec and
-eng arguments are specified, -prec is ignored.

Examples

The following command creates a . measure file called amp . measure in the directory where
you run the command,

spectremdl -batch amp.mdl -design amp.scs

You can simplify the above command because the MDL control file and the design file have
the same basename. The equivalent simpler command is

spectremdl amp.mdl

You need the options when the MDL control file and the design file have different base names
or when the design file has a suffix other than . scs or . ckt.

For example,

spectremdl -batch control.mdl -design topnetlist.scs

spectremdl -batch control.mdl -design netlist.sp

The following command creates a measurement result file called mdlresults in your home
directory.

spectremdl amp.mdl -measure $HOME/mdlresults

The following command creates a .measure file in the directory where the netlist is located
but places the database inthe . /test26/amp.raw directory.

spectremdl netlist/amp.mdl -raw ./test26/amp.raw

spectremdl -batch amp.mdl -design ./netlist/amp.scs -raw ./test26/amp.raw

The following command presents data in a tabular format.

spectremdl -tab -batch foreach.mdl -design dflip.scs

results in the following .measure file (called foreach.measure)

Exported variables from PSF results directory: dflip.raw
date : 9:54:01 AM, Tue May 10, 2005

design : * DFF

simulator : spectre

Swept Measurements

Measurement Name : findgcross
Analysis Type : tran
November 2017 76 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
temp vdd clk g delay
25 1.5 1.91866e-10
25 1.8 1.61376e-10
25 2 1.5053e-10
50 1.5 1.96657e-10
50 1.8 1.66472e-10
50 2 1.55428e-10
75 1.5 2.01521e-10
75 1.8 1.71556e-1
75 2 1.60476e-10
100 1.5 2.0633e-10
100 1.8 1.76775e-10
100 2 1.65437e-10

Without the -tab option, the same command results in the following .measure file

Exported variables from PSF results directory:

date
design
simulator

Swept Measurements
Measurement Name
Analysis Type

clk g delay
clk g delay
clk g delay
clk g delay
clk g delay
clk g delay
clk g delay
clk g delay
clk g delay
clk g delay
clk g delay

clk g delay

November 2017
© 2003-2018

10:20:35 AM, Tue May
* DFF
spectre

findgcross

tran

vdd

vdd

vdd

vdd

vdd

vdd

vdd

vdd

vdd

vdd

vdd

vdd

temp
@1.5
temp
@ 1.8
temp
@ 2

temp
@1.5
temp
@ 1.8
temp
@ 2

temp
@1.5
temp
@ 1.8
temp
@ 2

temp
@1.5
temp
@ 1.8
temp
@ 2

@
@

25
= 1

25
= 1

25
= 1

50
= 1

50
= 1

50
= 1

75
= 2

75
= 1

75
= 1

100
= 2

100
= 1.

100
= 1.654
77

10, 2005

.91866e-10

.61376e-10

.5053e-10

.96657e-10

.66472e-10

.55428e-10

.01521e-10

.71556e-10

.60476e-10

.0633e-10

76775e-10

37e-10

dflip.raw

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

November 2017 78 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Running MDL in Post-processing Mode

MDL supports the post-processing mode that enables the user to evaluate measurements
after the simulation has completed. This is especially helpful if you would like to use the same
language (MDL or . measure statements) that was used for measurements evaluated during
the simulation.

In case the measurements were not set up correctly, or more measurements need to be
evaluated, the simulation needs to be run repeatedly to get the desired results. With post-
processing capability, you can edit the measurements (in a MDL file, or .measure in the
netlist) and then invoke the simulator in a mode, where instead of performing the actual
simulation, it reads the simulation results from a specified results directory or file, depending
upon the waveform format being used.

The MDL post-processing mode allows you to execute a MDL script on an existing results
database. Optionally a netlist can be provided. This allows the MDL script to reference objects
in the netlist. For example the parameters in the netlist could be used in the MDL
measurements.

November 2017 79 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

mdl

Runs MDL in post-processing mode.

In the following syntax, the vertical bar (|) separates alternatives.

Syntax

mdl -batch|-b <file.mdl> [-design|-d netlist] -rawl|-r <rawdir> [options]

mdl -d <netlist containing .measure statement> -raw|-r <rawdir> [options]

Arguments

-batch|-b The filename of the MDL file to be executed.

<file.mdl>

-raw|-r <rawdir> Location of the results directory.

-design]|-d The filename of the netlist to be loaded by MDL. This can also
<netlist> be a netlist containing .measure statemtents.

-measure | -m The default output filename is taken from the basename of the
<file.measure> design argument, and appended with the .measure extension.

This option creates an output file with the specified name. If an
absolute path is not specified, the output file is created in the
directory of the design argument.

+log|+1l <logfile> Copies all messages to "logfile'.
=log|=1 <logfile> Sends all messages to "lodfile".

-prec|-p '<format>' Optional argument to specify the precision of of the measured
value output in the measurement file.

Example: %.15g will output the measured values to 15
significant digits. The argument is ignored if ~engineering
argument is used.

-eng|-e <numdigits> Optional argument to specify the engineering format of the
signal value output to the measurement file. <numdig> is a
number of significant digits of the signal value. <numdig> is
optional. If <numdig> is omitted than value of the <numdig> is
6. -prec argument is ignored.

-tab|-t Optional argument to specify that the measure file should be
displayed in tabular format.

November 2017 80 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

-append | -a Optional argument to specify that the measure file should be
opened in append mode.

-nosort|-n Optional argument to specify that variables in the measure file
should not be sorted.

-outdir|-o Optional argument to specify an alternate output directory
location for all output files. This does not change the location of
the raw directory if explicitly specified with the —raw option.

-warn | -w Optional argument to issue warning for ignoring unsupported
constructs. Default is to issue an error.

Most of the options are consistent with previous versions of spectremdl executable.
However, the -warn option allows unsupported constructs (search, mvarsearch) to be
ignored and evaluation to proceed.

Examples

Assume that an MDL script, test .mdl was used to generate a raw directory, input .raw
using Spectre.

$ spectremdl -batch test.mdl -design input.scs —-raw input.raw

To rerun the script on the results, the following command will be used:

$ mdl -b test.mdl -r input.raw

In this case, the measurement results are written out to the test .measure file. The -m
command-line option can override the name of the output file.

$ mdl -b test.mdl -r input.raw -m input.measure

If the netlist input . scs was used to generate the results, it is possible that the MDL file
references parameters from the netlist. Without the netlist, the MDL measurements cannot
be evaluated, hence the netlist must be provided on the command-line so that those
parameters and their values can be found.

$ mdl -b test.mdl -d input.scs -r input.raw
Another usage is for users who do not have MDL script, but instead use . MEASURE

statements in the netlist (or in a file included in the netlist). Here test . sp may either contain
the complete design or may have just .measure statements.

$ mdl -d test.sp -r test.raw

.include "param.sp" // optional parameter definiton

.include "design.sp" //optional design

November 2017 81 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

.include "test.msr" // contalins measurements

$ mdl -d test.msr -r test.raw

Here test .msr may contains some parameter definition of the parameters referenced in the
.measure statement. There is no need for complete design.

.param VDD=1.8
.meas tran tfr trig v(a) val='0.5*VDD' fall=1 targ v(y) val='0.5*VDD' rise=1
.measure tran tranmaxoutl max v (out)

.measure tran tranavg avg v (out)

Some waveform formats do not use the result directory concept. Cadence formats (such as
PSF or SST), when generated from Spectre, APS, UltraSim, etc place a logFile in the results
directory that is used to associate datasets with the physical files containing the simulation
data. For formats that do not support this, it is necessary to explicitly specify the file contains
the data rather than the results directory itself.

An example using the FSDB format is:

$ mdl -d tran.msr -r input.raw/tran.fsdb

In this example, tran.msr contains the measurements for the specified transient analysis
results file, input .raw/tran. £sdb. The content of tran.msr could be

.measure tran tranmaxoutl max v (out)

.measure tran tranavg avg v (out)

In another example, the some measurements are evaluated using a DC analysis results file.
$ mdl -d dc.msr -r input.raw/dc.fsdb

Here, dc.msr contains the measurements to be evaluated, as in

.measure dc dcnmaxoutl max v (out)

.measure dc dcavg avg v (out)

Limitations

There are limitations when using this mdl tool to execute an MDL script.

The primary limitation that exists with the post-processing flow is a result of the nature of this
flow. It can only work with the data that is in the netlist, MDL file and results database. Hence,
if a signal that is used in an MDL expression is not saved in the database, then the expression
will fail to evaluate.

For example, when the netlist is used, device input parameters can be used in expressions;
however oppoint parameters cannot be used, unless they were already saved.

November 2017 82 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Other restrictions are:

m Other consequences of being only able to use information that is readily available in the
MDL script, netlist (if supplied) and results database are the following;

QO Themvarsearch and search statements are not currently supported. When these
are seen, mdl prints an error message and ignores these statements.

Q For montecarlo, the parameter savefamilyplots=yes must be set during the
simulation run. Else, the waveform data for each iteration of the montecarlo run will
not be saved.

O Re-elaboration is not supported. Hence, if the measurement references the
process or mismatch parameters, mdl will only see the nominal parameter
values.

Q Foreach and montecarlo are only supported for PSF format.

O Result dataset generated from alter/sweep specified in the netlist have different
naming convention. Hence, if a netlist contains alter/sweep then dataset will not
be located. It is recommended to use MDL scripts for alter/sweep so that
corresponding dataset can be found.

B The MDL post-processing flow works on waveforms rather than on each individual point
of a signal as occurs in the SpectreMDL flow. There are following consequences to this:

0 An if statementin a measurement alias can behave differently if the condition
depends upon a signal value. In SpectreMDL, this could result in the true or false
block being executed multiple times for each datapoint on the signal. In the post-
processing flow, the condition is evaluated only once for the complete waveform.

m [f there is a sweep contained in the netlist, the dataset generated by Spectre is different
from the dataset generated by MDL. Hence, MDL will not be able to locate the correct
dataset. This is why currently, the . measure flow is supported for a netlist that does not
contain sweep in the netlist.

November 2017 83 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

November 2017 84 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

A

Built-In Functions

The built-in functions support two syntaxes:

Positional syntax
Requires each optional parameter up to and including the last optional parameter
entered, but beyond that everything can be omitted.

cross(sigl, dir[, n[, thresh|[, start][, xtol[, ytoll, accuracylll]l]l]l])

Named syntax

Allows any optional parameter to be specified — the preceding optional parameters need
not be specified.
cross(sig=sig [, dir=dir] [, n=n] [, thresh=thresh]

[, start=start] [, xtol=xtol] [, ytol=ytol]
[, accuracy=accuracy])

For example, the following statements are equivalent.

export real crossOut = cross(V(out), ’"fall, 1, 1)
export real crossOut = cross(sig=V(out), dir=’fall, n=1, thresh=1l)
November 2017 85 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

abs

Returns the absolute value of a signal.

Syntax
abs(arg)

abs(arg=arg)

Arguments

arg The scalar or signal.

Example

export real myabs = abs(-5)

returns
myabs = 5

export real outabs = abs(arg=V(out))@lm

returns the value of the signal v (out) at 1ms.

November 2017 86
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

acos

Returns the arc cosine of a signal.

Syntax
acos(arg)

acos(arg=arg)

Arguments

arg The scalar or signal.

Example

export real myacos = acos(1)

returns

myacos = 0

November 2017 87
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

acosh

Returns the hyperbolic arc cosine of a signal.

Syntax
acosh(arg)

acosh(arg=arg)

Arguments

arg The scalar or signal.

Example

export real myacosh = acosh(1)

returns

myacosh = 0

November 2017 88
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

analstop

Returns the simulation stop value.

Syntax

analstop()

Arguments

None

Examplei

Used in MDL File

alias measurement transient {
run tran(step=le-12, pstep=le-12,
export real anal stop= analstop()

}

run transient

returns

anal stop = 2e-08

Example2

Used in assert Statement

stop=2e-08)

check full simu time assert message="CHECK FULL SIMU TIME"

expr="full simu time=analstop();

full simu time>10n"

November 2017
© 2003-2018

89

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

angle

Returns the angle of a real or complex number, or a waveform in degrees.

Syntax
angle(arg)

angle(arg=arg)

Arguments

arg The real or complex number, or a waveform.
Example 1

export real myangle = angle(cplx(1l,2))

returns

myangle = 63.43

Example 2
export real phasemargin = angle(s(2,1)) @ ft

returns

phasemargin= 15.0369

November 2017 90 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

argmax

Returns the X value corresponding to the maximum Y value of a signal. If multiple X values
are returned, the first one is used.

Syntax

argmax(sig)

argmax(sig=sig)

Arguments

sig The signal.

Example

export real timeAtMax = argmax(V(out))

November 2017 91 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

The following diagram illustrates how the result is determined.

/_ Maximum Y value

'T

timeAtMax

November 2017 92 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

argmin

Returns the X value corresponding to the minimum Y value of a signal. If multiple X values
are returned, the first one is used.

Syntax

argmin(arg)

argmin(arg=arg)

Arguments

arg The signal.

Example

export real timeAtMin = argmin(V(sinewave))

The following diagram illustrates how the result is determined.

V(sinewave)

& Minimum Y value

T

timeAtMin

November 2017 93 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

asin

Returns the arc sine of a signal.

Syntax
asin(arg)

asin(arg=arg)

Arguments

arg The scalar or signal.

Example

export real myasin = asin(1)

returns

myasin = 1.57

November 2017 94
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

asinh

Returns the hyperbolic arc sine of a signal.

Syntax
asinh(arg)

asinh(arg=arg)

Arguments

arg The scalar or signal.

Example

export real myasinh = asinh(1)

returns
myasinh = 0.88

November 2017 95
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

atan

Returns the arc tangent of a signal.

Syntax
atan(arg)

atan(arg=arg)

Arguments

arg The scalar or signal.

Example

export real myatan = atan(1)

returns
myatan = 1.56

November 2017 96
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

atanh

Returns the hyperbolic arc tangent of a signal.

Syntax
atanh(arg)

atanh(arg=arg)

Arguments
arg The scalar or signal.
November 2017 97 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

avg

Returns the average value of a signal.

Syntax

avg(arg)

avg(arg=arg)

Arguments

arg The signal.

Example

export real myavg = avg(V(out))

November 2017 98 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

avgdev

Returns the mean absolute deviation of a scalar argument or waveform. The mean absolute
deviation is defined as follows:

1/N * (|Xl-mean| + |X2-mean| +...... | XN-mean|)

where | is the absolute value of the difference and I is the total number of Samples.

Syntax
avgdev(arg)

avgdev(arg=arg)

Arguments
arg The scalar argument or waveform.
November 2017 99 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

bw (bandwidth)

Calculates the bandwidth of a waveform.

Syntax

bw(sig, response,

db, max)

bw(sig=sig, response=response, db=db, max=max)

Arguments

sig

response

November 2017
© 2003-2018

The signal. In the SKILL mode, Virtuoso Visualization and
Analysis XL wraps the signal with the mag function. In the MDL
mode, you need to wrap the signal name with the mag function,
otherwise Virtuoso Visualization and Analysis XL returns an
error.

The response type:

When ' 1ow, computes the low-pass bandwidth by determining
the smallest frequency at which the magnitude of the input
waveform drops db decibels below the DC gain.

When ' high, computes the high-pass bandwidth by
determining the largest frequency at which the magnitude of the
input waveform drops db decibels below the gain at the highest
frequency in the response waveform.

When ' band, computes the band-pass bandwidth by:
1. Determining the lowest frequency (£,,.) at which the
magnitude of the input waveform is maximized; 2. Determining
the highest frequency less than £, at which the input
waveform magnitude drops db decibels below the maximum; 3.
Determining the lowest frequency greater than £,,_ . at which the
input waveform magnitude drops db decibels below the
maximum; 4. Subtracting the value returned by step 2 from the
value returned by step 3. The value returned by step 2 or step 3
must exist.

Valid values: ' low, 'high, 'band
Default: ' 1low

100 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

The decibels down from the peak. In the SKILL mode, db is a
number equal to or greater than zero. In the MDL mode, db is a

The maximum amplitude of the waveform. You only need to
specify this if you want to set the maximum amplitude lower than
the waveform’s maximum value. If the max is specified,
Measurement Description Language (MDL) uses this value

db

number less than zero.

Default: -3.01029995664
max

instead of computing a value.
Example

Assume you have the following signal.

— db(vibouti)

L]

=30

-0 L L L L L L L L D D L L B

o7r.7h
freq (MHZ)

Then the following statement

export real bwOut = bw(mag(V(bout)), response=’band)

generates, at the default db value of -3, the bw value

November 2017 101
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

1000004.1627941281Hz

Note that the output in MDL includes the unit (Hz in the above example), whereas in SKILL it
does not.

This value (approximately 1MHz) is illustrated on the graph by the double-ended arrow.

November 2017 102 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

ceil

Rounds a real number up to the closest integer value.

Syntax
ceil(arg)

ceil(arg=arg)

Arguments

arg The real number.

Example

export real myceil = ceil(1.6)

returns

myceil = 2

November 2017 103
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

cfft

Performs a Fast Fourier Transform on a complex time domain waveform and returns its
frequency spectrum. The cf £t function takes two time signals that in combination form a
complex input signal.

Syntax
cfft(sig re, sig_im, from, to, numPoints[, window])

cfft(sig_re=sig re, sig_im=sig im, from=from, to=to, numPoints=numPoints
[, window=window])

Arguments

sig_re The real part of the signal.

Ssig_im The imaginary part of the signal.

from The starting X value.

to The ending Y value.

numPoints The number of data points to be used for calculating the cfft. If
this number is not a power of 2, it is automatically raised to the
next higher power of 2.

window The algorithm used for calculating the cfft. In this release only
one algorithm is supported.
Valid value: ' rectangular
Default: ' rectangular

November 2017 104 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

clip

Returns the portion of a signal between two points along the Y-axis.

Syntax
clip(sig, from, to)

clip(sig=sig, from=from, to=to)

Arguments

sig The signal.

from The starting point on the Y-axis.
to The ending point on the Y-axis.
Example 1

The following example works in an MDL control file.
export real clipOut = avg (clip (sig=V (sinewave), from=0, to=2.5))
Example 2

In Virtuoso Visualization and Analysis XL,

clip (sig=V (sinewave), from=0, to=2.5)

November 2017 105 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

transforms the following input signal

V(sinewave)

to=2.5 —p

from=0 —p

into the following output signal.

November 2017 106 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

conj

Returns the conjugate of a complex number.

Syntax
conj(arg)

conj(arg=arg)

Arguments

arg The complex number.

Example

export cplx mycplx = cplx (1,2)
export cplx conj mycplx = conj (mycplx)

returns

mycplx = (1,2)
conj mycplx = (1,-2)

November 2017 107 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

convolve

Returns a waveform consisting of the time domain convolution of two signals. This function is
available in Virtuoso Visualization and Analysis XL only.

Syntax
convolve(sigl, sig2[, n_interp_steps 1)

clip(sigl=sigl, sig2=sig2[, n_interp_ steps=n_interp_steps])

Arguments

sigl The first signal.

sig2 The second signal.

n_interp_steps Number of steps for interpolating waveforms.
Equation

Convolution is defined by the following equation:

to
j fl(s)f2(t— s)ds
from
Example
real vcdelay[]=crosses(sig=V(clock), thresh=0.9, dir='rise, n=1)
real outcross[]=crosses(V(q),n=6,thresh=vdd/2)
export real myconv[] = convolve (vcdelay,outcross,5)
returns
myconv [00] = 2.57108e-13
myconv [01] = 2.02971e-13
myconv [02] = 1.74678e-13
myconv [03] = 1.81539%9e-13
myconv [04] = 2.03094e-13
myconv [05] = 2.3083e-13
myconv [06] = 2.65196e-13
myconv [07] = 3.06643e-13
myconv [08] = 3.55544e-13
November 2017 108 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
myconv [09] = 3.84546e-13
myconv [10] = 3.94928e-13
myconv [11] = 3.96003e-13
myconv [12] = 3.88035e-13
myconv [13] = 3.70677e-13
myconv [14] = 3.43269e-13
myconv [15] = 3.05072e-13
November 2017 109 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

COS

Returns the cosine of a signal.

Syntax
cos(arg)

cos(arg=arg)

Arguments

arg The scalar or signal.

Example

export real mycos = cos(1)

returns
mycos = 0.54

November 2017 110
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

cosh

Returns the hyperbolic cosine of a signal.

Syntax
cosh(arg)

cosh(arg=arg)

Arguments

arg The scalar or signal.
Example

export real mycosh = cosh(1)

returns

mycosh = 1.54

November 2017 111
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

cplx

Returns a complex number created from two real arguments.

Syntax

cplx(R[, I])

cplx(R=R [, I=I])

Arguments

R The value representing the real part.

T The value representing the imaginary part.

Example
export cplx mycplx = cplx(1,2)

returns
mycplx = (1,2)
November 2017 112 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Cross

Returns the X value where a signal crosses the threshold Y value.

Syntax

cross(sigl, dir[, nl[, thresh[, start][, xtoll, ytol[, accuracylll111]1])

cross(sig=sigl[, dir=dir] [, n=n] [, thresh=thresh] [, start=start] [,

xtol=xtol] [, ytol=ytol] [, accuracy=accuracy])

Arguments

sig The signal.

dir The direction of the crossing event. ' rise directs the function to
look for crossings where the Y value is increasing, ' fall for
crossings where the Y value is decreasing, and ' cross for
crossings in either direction.
Valid values: 'cross, 'rise, ' fall
Default: ' cross

n The occurrence of the crossing. The first crossing is n=1, the
second crossing is n=2, and so on. The value of n can be
negative numbers: n=-1 for the last occurrence before the end of
the waveform, n=-2 for the second-last occurrence before the
end of the waveform, and so on.
Default: 1

thresh The threshold to be crossed.
Default: 0

start The time at which the function is enabled.
Default: 0

xtol The relative tolerance in percentage value in the X direction.
Default: 1

ytol The relative tolerance in percentage value in the Y direction.
Default: 1

accuracy Specifies whether the function should use interpolation, or use
iteration controlled by the absolute tolerances to calculate the

November 2017 113 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

value. ' interp directs the function to use interpolation, and
"exact directs the function to consider the xtol and yval values.
Data types: name for scalar

Valid values: ' interp, ’'exact

Default: ' exact

Example

export real crossOut = cross(sig=V(out), dir=’'fall, n=1, thresh=1)

The following diagram illustrates how the result is determined.

V(out1)

thresh = {-----f-------mmmmmi oo

crossOut

November 2017 114

Product Version 17.1
© 2003-2018

All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

crosscorr

Returns the cross correlation of the specified signals. This function is available only in
Virtuoso Visualization and Analysis XL.

When the input signals are double waveforms,
crosscorr (sigl, sig2) = convolve (sigl, flip(sig?2))
When one of the input signals is a complex waveform (s ig2 in the following case),

crosscorr (sigl, sig2) = convolve (sigl, £lip(coni(sig?2)))

Syntax

crosscorr(sigl, sig2[, n_interp_steps 1)

crosscorr(sigl=sigl, sig2=sig2[, n_interp steps=n_interp_steps])

Arguments

sigl The first signal.

sig2 The second signal.

n_interp_steps Number of steps for interpolating waveforms.

November 2017 115 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

crosses

Returns the X values where a signal crosses the threshold Y value.

Syntax

crosses(sigl, dir[, nl[, thresh]|[, start][, xtol[, ytol[, accuracyll1111])

crosses(sig=sig [, dir=dir] [, n=n] [, thresh=thresh] [, start=start] [,

xtol=xtol] [, ytol=ytol] [, accuracy=accuracy])

Arguments

sig The signal.

dir The direction of the crossing event. ' rise directs the function to
look for crossings where the Y value is increasing, ' fall for
crossings where the Y value is decreasing, and ' cross for
crossings in either direction.
Valid values: 'cross, 'rise, ' fall
Default: " cross

n The occurrence of the crossing. If n=1, the function returns the
first crossing and all subsequent crossings. If n=3, the function
returns the third crossing and all subsequent crossings. The
value of n can be negative numbers: if n=-2, only the last two
crossings are returned.
Default: 1

thresh The threshold to be crossed.
Default: 0

start The time at which the function is enabled.
Default: 0

xtol The relative tolerance in percentage value in the X direction.
Default: 1

ytol The relative tolerance in percentage value in the Y direction.
Default: 1

accuracy Specifies whether the function should use interpolation, or use
iteration controlled by the absolute tolerances to calculate the

November 2017 116 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Example

export real crossesOut][]

returns

crossesOut
crossesOut
crossesOut

crossesOut

[0]
[1]
[2]
[3]
crossesOut[4]
crossesOut [5]
crossesOut[6]
crossesOut [7]

[8]

crossesOut

le-05
2e-05
3e-05
4e-05
5e-05
6e-05
7e-05
8e-05
9e-05

value. ' interp directs the function to use interpolation, and
"exact directs the function to consider the xtol and yval values.
Data types: name for scalar

Valid values: ' interp, ’'exact

Default: "exact

= crosses(sig=V(out), dir='rise, thresh=0.0)

November 2017
© 2003-2018

40.0 60.0 80.0 100
tirne (us)

117 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

The output waveform looks as shown below:

100

40.04

a0.04

70.0+

60.0

50.04

Y0 fs)

40.04

30.0+

20.04

10.04

0.0+

-10.0 T T T T T T T T

November 2017 118 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

d2r (degrees-to-radians)

Converts a waveform from degrees to radians.

Syntax

d2r(arg)

d2r (arg=arg)

Arguments

arg The scalar or signal.

Example
export real myd2r = d2r(180)

November 2017 119 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

db

Converts a signal to db where db=20*log(x). This function usually applies to voltage or current
signals in volts or amperes.

Syntax
db(arg)

db(arg=arg)

Arguments
arg The scalar or signal.

Example
export real dcgain = db(V(out) / V(in)) @1MHz

The above example assumes that out and in are signals from an ac dataset.

November 2017 120 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

db10

Converts a signal to db where db=10*log(x). This function usually applies to power signals in
watts.

Syntax

dbl0(arg)

dbl0(arg=arg)

Arguments

arg The scalar or signal.

Example
export real mydbl0= dbl0(vO:pwr)

November 2017 121 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

dbm

Converts a signal to dom where dbm=10*log(x)+30. This function usually applies to power
signals in milliwatts (mW).

Syntax

dbm(arg)

dbm(arg=arg)

Arguments

arg The scalar or signal.

Example
export real mydbm= dbom (vO:pwr)

November 2017 122 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

deltax

Returns the difference in the abscissas of two cross events.

Syntax
deltax(sigll[, sig2 [, dirl[, nl[, threshl|[, startl[, dir2[, n2[, thresh2],
start2], xtoll, ytoll, accuracyl]l]]]111111])
deltax(sigl=sigl, sig2=sig2 [, dirl=dirl] [, nl=nl] [, threshl=threshl] [,
startl=startl] [, dir2=dir2] [, n2=n2] [, thresh2=thresh2] [,
start2=start2] [, xtol=xtol][, ytol=ytol][, accuracy=accuracy])
Arguments
sigl The signal whose cross event begins the measurement interval.
sig2 The signal whose cross event ends the measurement interval.
dirl The direction of the cross at the beginning of the measurement
interval. ' rise directs the function to look for crossings where
the Y value is increasing, ' fall for crossings where the Y value
is decreasing, and ‘' cross for crossings in either direction.
Valid values : 'cross 'rise, 'fall
Default: "cross
nl The occurrence of the crossing for the beginning of the
measurement interval. The first crossing is n=1, the second
crossing is n=2, and so on.
Default: 1
threshl The Y value whose crossing begins the measurement interval.
Default: 0
startl The time at which the function is enabled.
Default: 0
dir2 The direction of the cross at the end of the measurement interval.
'rise directs the function to look for crossings where the Y
value is increasing, ' fall for crossings where the Y value is
decreasing, and ‘' cross for crossings in either direction.
Valid values: 'cross, 'rise, ' fall
Default: ' cross
November 2017 123 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

n2

thresh?2

start?2

absstart?2

xtol

yvtol

accuracy

November 2017
© 2003-2018

The occurrence of the crossing for the end of the measurement
interval. The first crossing is n=1, the second crossing is n=2,
and so on.

Default: 1

The Y value whose crossing ends the measurement interval.
Default: 0

The offset from start1 where the function begins looking for the
cross that ends the delay measurement.
Default: 0

The absolute offset from the beginning of the signal where the
function begins looking for the cross that ends the delay
measurement.

Default: 0

The relative tolerance in percentage value in the X direction.
Default: 1

The relative tolerance in percentage value in the Y direction.
Default: 1

Specifies whether the function should use interpolation, or use
iteration controlled by the absolute tolerances to calculate the
value. ' interp directs the function to use interpolation, and
"exact directs the function to consider the xtol and yval values.
Data types: name for scalar

Valid values: ' interp, 'exact

Default: ' exact

124 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example 1

export real deltaxInOut = deltax(sigl=V(in), sig2=V(out), dirl='"fall, \
threshl = 0.5, dir2="fall, thresh2=0.5, startl=10n, start2=10n)

The following diagram illustrates how the result from the above example is determined.

T

thresh1=
thresh2=0.5V T

ford

star1=10ns Start2 deltaxInOut
This delay masks out the

first falling edge of the

signal V(out).

November 2017 125 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example 2

export real delay?2 = deltax(sigl=V(in), sig2=V(out), dirl="fall, \
threshl = 0.5, dir2='"fall, thresh2=0.5, startl=10n, absstart2=10n)

The following diagram illustrates how the result from the above example is determined.

I

thresh1=
thresh2=0.5V T

absstart2= star1=10ns deltaxInOut
This delay masks out the
first falling edge of the
signal V(out).

November 2017 126 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

deltaxes

The deltaxes function is similar to the deltax function. However, it returns the differences in
the abscissas of two cross events in the form of an array.

Note: For syntax and arguments, please see deltax.

November 2017 127 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

deriv

Returns the derivative of a signal.

Syntax

deriv(sig)

deriv(sig=sig)

Arguments

sig The signal.

Examplei

export real out 4n= deriv(V(out))@4n

The derivative is calculated for signal v (out) at t=4ns.

Example 2

export real out dvdt fall=deriv(out)@cross(out, dir='fall, n=1,

thresh=1.5)

The derivative is calculated for signal v (out) at its first crossing pointat 1.5v in the fall

direction.

November 2017 128
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

dutycycle

Calculates the ratio of the time for which the signal remains high to the period of the signal.
You should use this function on periodic signals only.

Syntax
dutycycle(sig, theta, mode)

dutycycle (sig=sig, theta=theta, [mode=’'integrate | ’'percentage |’threshold 1)

Arguments

sig The signal.

theta Percentage that defines the logic high of the signal. A threshold
value is calculated as follows:
yThresh=((Ymax - Ymin) * theta * 0.01) + Ymin
The portion of the signal above yThresh is taken as high.
Default value: 50.0

mode='integrate Ifmodeis setto integrate, theta isignored and the threshold
value is calculated as in the SKILL mode.

mode='percentage Ifmode is setto percentage, theta will be a percentage value.
This is the default value.

mode=’'threshold If mode is setto threshold, the value of theta is taken as the

threshold value.

Note: If mode is not specified, it will automatically be set to percentage.

Example

export real dutycycleOut = dutycycle (sig=V(out), theta=40)

returns
dutycycleOut = 0.25436626860397216

November 2017 129 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

dutycycles

Returns the dutycycle of a nearly-periodic signal as a function of time.

Syntax
dutycycles(sig, theta)

dutycycles (sig=sig, theta=theta)

Arguments

sig The signal.

theta Percentage that defines the logic high of the signal. A threshold
value is calculated as follows:
yThresh=((Ymax - Ymin) * theta * 0.01) + Ymin
The portion of the signal above yThresh is taken as high.
Default value: 50.0

Example 1

In Virtuoso Visualization and Analysis XL,

export real dutycyclesOut = dutycycles (sig=V(out), theta=40)

Example 2

export real dutycycles g[] = dutycycles (sig=V(q), theta=40)

returns

dutycycles gq[0] = 0.3877

dutycycles g[l] = 0.6897

dutycycles g[2] = 0.685696

November 2017 130 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

transforms the following input signal

1.100
1.DDD—If— [—‘ r— [—‘
0.9000

0.8000+

0.7000+

0.6000+

=
= 050001

i

0.4000+

0.3000+

0.2000+

0.1000+

0.0+

-0.1000 T T T T
n.o 10 20 30 40 a0 G0 70 an
time {us)

into the following output signal

0.8+

0.6

¥0 ()

0.4+

0.2

0.0 47.50

November 2017 131 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

exp

Returns the e* value of a signal.

Syntax

exp(arg)

exp(arg=arg)

Arguments

arg The scalar or signal.

Example

export real myexp = exp(2)

returns

myexp = 7.389

November 2017 132 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

falltime

Returns the fall time for a signal measured between percent high and percent low of the
difference between the initial and final values. The measurement is always done with ordinate
(Y-axis) values.

Note: You can use the falltimes function to obtain the fall time for all edges instead of a
single edge that is returned by the falltime function.

Syntax

falltime(sigl, initvall, finalvall[, inittype[, finaltypel, thetall, thetaZ2l,
xtol[, ytoll, accuracyl]llll11])

falltime(sig=sig, initval=initval, finalval=finalval [, inittype=inittype] [,
finaltype=finaltype] [, thetal=thetal] [, theta2=theta2] [, xtol=xtol] [,
ytol=ytol] [, accuracy=accuracy])

Arguments

sig The signal.

initval The Y-axis value (if inittype is ' y) or X-axis value at the specified

X-axis point (if inittype is ' x) that starts the falltime interval.

finalval The Y-axis value (if inittype is ’ y) or X-axis value at the specified
X-axis point (if inittype is ' x) that ends the falltime interval.

inittype When '’ x, the initial value is an X value.
When 'y, the initial value is a Y value.
Valid values: 'x, 'y
Default: 'y

finaltype When ' x, the final value is an X value.
When 'y, the final value is a Y value.
Valid values: 'x, 'y

Default: 'y

thetal The threshold high expressed as a percentage of the difference
between the initial and final values.
Default: 90

November 2017 133 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

thetaZ2

xtol

ytol

accuracy

Example

export real falltimeOut
finalval=19u,

November 2017
© 2003-2018

The threshold low expressed as a percentage of the difference
between the initial and final values.
Default: 10

The relative tolerance in percentage value in the X direction.
Default: 1

The relative tolerance in percentage value in the Y direction.
Default: 1

Specifies whether the function should use interpolation, or use
iteration controlled by the absolute tolerances to calculate the
value. ' interp directs the function to use interpolation, and
"exact directs the function to consider the xtol and yval values.
Data types: name for scalar

Valid values: ' interp, 'exact

Default: " exact

= falltime (arg=V(out), initval=10u, inittype=’'x,
finaltype=’'x, thetal=90, theta2=10)

134 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

The following diagram illustrates how the result from the above example is determined.

5V —»

45V —pf - --

0.5V —»

theta2
A4

initval=10v JfalltirheOutL finalval=19v

November 2017

©2003-2018

135

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

fft

Performs a Fast Fourier Transform on the signal and returns its frequency spectrum.

Syntax
fft(sig, from, to, numPoints, window)

fft(sig=sig, from=from, to=to, numPoints=numPoints, window=window)

Arguments

sig The signal.

from The starting X value.

to The ending X value.

numPoints The number of data points to be used for calculating the fft. If this
number is not a power of 2, it is automatically raised to the next
higher power of 2.

window The algorithm used for calculating the fft. For more information,
see window.
Valid values: ' rectangular, 'bartlett, 'bartletthann,
'blackman, ‘'blackmanharris,’cosine2, 'cosined,
"extcosbell, 'flattop, 'halfcyclesine,
"half3cyclesine, "halfcyclesine3,
'halfécyclesine, 'halfcyclesine6, 'hamming,
"hanning, 'nuttall, 'parzen, 'triangular
Default: ' rectangular

Example

In Virtuoso Visualization and Analysis XL,

fft(sig=(V(out), from=lns, to=200ns, numPoints=512, window='bartlett)

November 2017 136 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

transforms the following input signal

— out

3.75
3804
3,259
3.004
2.754
2.804
2,25
2.00
1.75
1.50
1.25
1.004
0.7504
0.5004
0.2504
0.0
-0.2504

-0.500 T T T
n.o 100 200 300 400 a00
time {ns)

0)

into the following output signal. The left subwindow shows the magnitude part of the spectrum
and the right subwindow shows the phase part.

— fifWiout), Tns 200ns,512) — ftMwTout),1ns, 200n0s, 512)
275 375
= 50 250~
225 325+
2004 300~
275+
1.75+
250~
1.50+
5 5 226
T 1.25+ e
= gzoo—
1.00—
175+
0.750
150
0,500 o
0250 100
]
0.0 I 7504
-0.250 T T T T T T 5000 T T T T T T
00 020 040 OG0 020 10 1.2 1.4 00 020 040 060 0820 1.0 1.2 1.4
X0 (3Hz) X0 (3Hz)
November 2017 137 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

flip

Returns a reversed version of a signal (rotates the signal along the Y-axis).

Syntax
flip(sig)

flip(sig=sig)
Arguments
sig The signal.

Example
export real flipOut = flip(V(out))

transforms the following input signal

YO (V)

time (ns)

November 2017 138
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

into the following output signal.

Y0 ()

X0(x107°)

November 2017 139 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

floor

Rounds a real number down to the closest integer value.

Syntax
floor(arg)

floor(arg=arg)

Arguments

arg The real number.
Example

export real myfloor = floor(1.6)
returns

myfloor =1

November 2017 140
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

fmt

Provides formatting capability to turn MDL datatypes into a string representation.

Syntax
fmt(“format”, varargs)

fmt (format="format”, varargs=varargs)

Arguments

“format"” The percent code format string. In addition to the standard
percent codes in C (%S, %S, %g, %G, %e, %E, %f, %d, %i, %u,
%0, %X, %X), the following percent codes are also available:
%V - the value of the varargs argument.
The following “\” qualifiers (constant escape sequences) are also
supported:
\n - newline
\t - tab
In addition to these, full precision qualifier support exists for all
supported percent codes.

varargs Arguments to the fmt function used to fill in the percent code
values in the format string.

Example

alias measurement printmeas {
input string out="myfile.out"
print fmt ("Header is %s\n", out) to=out
print fmt ("$s\t%s\t\t%s\t%s\tss\tss\n",
"%d", n%fn’ "%o", "%X", "%X", "%u") addto=out
print fmt ("$d\t%sf\t%o\tsx\t%¥X\t%u\n",10,10,10,10,10,10) addto=out

}

run printmeas (out="test.dat")

The simulator writes the following results to the test . dat file:

Header is test.dat

%d St %o $x %X Su
10 10.000000 12 a A 10
November 2017 141 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

freq

Returns an array of frequencies defined by the given threshold crossing and direction for a
signal.

Syntax
freq(sig, thresh, dir)

freq(sig=sig, thresh=thresh, dir=direction)

Arguments
sig The signal.
thresh The threshold Y-axis value to be crossed.
dir The direction of the crossing event.
Valid values: 'rise, ' fall
Example

In Virtuoso Visualization and Analysis XL,

export real freqOut = freq (sig=V(out), thresh=0.5, dir='rise)

returns

freqOut[0] = 5.0001e+04

fregOut[l] = 5e+04

November 2017 142 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

the following input signal

1.100

1.000—,——|—,——‘.——|—,——‘
0.90004
0.60007
0.70004
0.60004

= 0.5000

hi

0.4000+

0.3000+

0.2000+

0.1000+

o L UL LU LU

-0.1000
0.0 25.0 50.0 5.0 100 125 150 175 200
tirne (us)

is converted to the following output signal

50,57

50.04

4854

T T T T
200 40.0 g0.0 a0.0 100 120 140 160 180
X0 (us

November 2017 143 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

freq_jitter
Returns a waveform representing the deviation from the average frequency.
Syntax

freq_jitter (sig, thresh, dir, binsize)

freq_jitter (sig=sig, thresh=thresh, dir=direction, binsize=binsize)

Arguments

sig The signal.

thresh The threshold Y-axis value to be crossed.

dir The direction of the crossing event.
Valid values: 'rise, ' fall

binsize Integer used to calculate the average frequency of the signal.
If binsize=0, all frequencies are used to calculate the average.
If binsize=n, the last v frequencies are used to calculate the
average.
Default value=0

Example

In Virtuoso Visualization and Analysis XL,

export real freq jitterOut = freq jitter (sig=V(out), thresh=0.5, dir='rise,
binsize=4)

November 2017 144 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

the following input signal

1.100

1.0004
0.9000+ f (r_

0.8000

0.7000
0.6000
= 05000

0.4000

0.3000+

0.2000+

0.1000+ Kh___
0.0+

-0.1000: T T T T

T
o.0 280 50.0 a0 100 125 140 175
tirme (us)

is converted to the following output signal

35
304
25
204
144
104
4.0
0.0
-5.09
104
159
EhE
_754
2304
-359
404
45
504

-85 T T T T T T

20.0 40.0 60.0 80.0 100 120 140 160

0 {kHz)

November 2017 145 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

gainBwProd

Returns the product of DC gain and upper cutoff frequency for a low-pass type filter or
amplifier.

Syntax
gainBwProd (sig)

gainBwProd (sig=sig)

Arguments

sig The signal. It can represent the magnitude of the gain or a
frequency response.

Example

export real gainBwProdOut = gainBwProd (sig=mag(out))

returns
gainBwProdOut = 1804641.158689868

November 2017 146 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

gainmargin
Computes the gain margin of the loop gain of an amplifier.

The gain margin is calculated as the magnitude (in dB) of the gain at f0. The frequency f0 is
the smallest frequency in which the phase of the gain provided is -180 degrees. For stability,
the gain margin must be positive.

Syntax
gainmargin(Sig)

gainmargin(sig=sig)

Arguments

sig The loop gain of interest over a sufficiently large frequency
range.

Example

export real gainmar=gainmargin (vout)

November 2017 147 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

getinfo
Returns information related to the simulator, such as version, subversion, and command

information.

Syntax
getinfo(type)

getinfo(type=type)

Arguments

type Type of information to be displayed. Valid values are
'simulator, ‘version, 'subversion, and ' cmd.

Example

string simulator=getinfo (’simulator)
string version=getinfo (’version)
string subversion=getinfo (’subversion)

string cmdline=getinfo (’cmd)

November 2017 148 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

groupdelay

Calculates the rate of change of phase with respect to frequency in a frequency response
measurement.

groupdelay=d (phase) /dw

where w=angular frequency in rad/s=2*PI*f

Syntax
groupdelay (sig)

groupdelay (sig=sig)

Arguments

sig The signal. It should represent frequency response.

Example

In Virtuoso Visualization and Analysis XL,

export real groupdelayOut = groupdelay (sig=out)

the following input signal

1.00

0.9004

0.8004

0.700

0.600

0.5004

Mag ()

0.4004

0.3004

0.200

0.100

0.0+

-0.100 T T T T
100 10! 102 103 104 108 108
freq (Hz)

November 2017 149 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

is converted to the following output signal

groupdelay (sec)
=
1

T T T T T
100 101 102 102 10# 103 105
freg (Hz)

November 2017 150 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

histo

Creates a histogram from a signal.

The histo function is available from the calculator. It is not supported within a Spectre MDL
control file since it returns a scalar and not a waveform.

Syntax
histo(sig, nbins, min, max)

histo(sig=sig, nbins=nbins, min=min, max=max)

Arguments

sig The waveform.

nbins The number of bins to be created.

min The value that specifies the smaller end point of the range of
values included in the histogram.

max The value that specifies the larger end point of the range of
values of values included in the histogram.

Example

histo (V(out),nbins=10, min=-1.0, max=4.0)

November 2017 151 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

creates a display with 10 bins that might look like this when the leftmost bin is empty.

Fia
alaty
gty
E I I I
] [l —
-5.0 —r r - 1 < 1T 1T " 1T -
-1 o 1 2 3 4
BIN (W)
November 2017 152 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
|
Current probe function.
Syntax
I (devname) //equivalent to devname:O0
I (devname:term) //term can be either terminal name or terminal index
I(Instname:term) //term can be either terminal name or terminal index

The I probe function does not support current access by node name, nor does it support
current difference between two devname : term(s). In other words, it is illegal to apply the T
probe to a node or a pair of nodes.

Arguments

devname The N-terminal device instance name.

Instname The N-terminal subcircuit instance name.

term The terminal name or terminal index of a device or a subcircuit .
Examples

I (Rload:1) // Returns the current through terminal Rload:1

I(I0.mpl:d) // Returns the current through device terminal name d

I(I0:vddl) // Returns the current through subcircuit terminal name vddl
November 2017 153 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

ifft

Performs an inverse Fast Fourier Transform on a frequency spectrum and returns the time

domain representation of the spectrum.

Syntax
ifft (sig)
ifft (sig=sig)

Arguments
sig The frequency spectrum.

Example

fft(sig=V(out), from=lns, to=200ns, npoints=512)

results in the graph on the right side.

The signal out Fast fourier transform of the signal out
— out — fidiout),1ns,200ns,512)
37 27
3504
2.50
3.267
3.004 225
215 2.00]
2509
2257 1757
2004 1.504
= 1.75] £
2 1509 § 1.25
1.257 1.004
1.004 0.750
0.7607
0.500] ity
0.2507 1950 }
009 hlllu
m
-0.2504 0 4
-0.500 ; ; : : . : . ‘ ; ; -0.2504 : : . ‘ ‘ .
D0 200 400 600 800 100 130 140 180 180 200 00 0.20 0.40 0.60 0.80 1.0 12 14
time (ns) X0 (GHz)

Now if | perform an i fft on the above expression,

1fft(£ft(sig=V(out), from=1lns, to=200ns, npoints=512))

November 2017 154
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

The result is the same as the original signal (out) — from 1ns to 200ns.

— ifftifitiy (out), Tns, 2000, 5125

i
3404
3.264
3.004
278
2404
2,264
2.004
1.784
1.504
1.2684
1.004
0.7504
0.500-
0.2504
0.04
-0.250

-0.500 T T T T T T T
0.0 25.0 500 a0 100 125 150 174 200

¥

November 2017 155 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

iinteg
Returns the incremental area under the waveform.
Syntax

iinteg(sig)

iinteg(sig=sig)

Arguments

sig The signal.
Example 1

export real iintegOut = iinteg(V(out))

transforms the following input signal

November 2017 156
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

into the following output signal

Each X value on the output trace is equal to the area under the input trace from start till that
particular X-value.

November 2017 157 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

im

Returns the imaginary part of a complex number.

Syntax
im(arg)

im(arg=arg)

Arguments

arg The complex number.

Examples

export real myim = im(cplx(1l,2))

returns

myim = 2

export real im sll = im(s(1,1))

returns
im sl11 = 0.670029

November 2017 158 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

int

Returns the integer portion of a real value.

Syntax
int(arg)

int(arg=arg)

Arguments

arg The real number whose integer portion is to be returned.

Example
int (4.998)

returns the value
4

November 2017 159 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

integ

Returns the area bounded under the curve.

Syntax
integ(sig)

integ(sig=sig)

Arguments

sig The signal.

Example 1

export real integOut = integ(trim(sig=V (sinewave), from=10n, to=50n))

The following diagram illustrates how the result from the above example is determined. The
result is equal to the shaded area in the graph.

integOut

?

10n 50n

November 2017 160 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

In

Returns the natural logarithm of a signal or a number. If no specific point of a signal is

specified, MDL returns value for the last simulation point of the signal.

Syntax
In(arg)

1n(arg=arg)

Arguments

arg The scalar or signal.

Examples
export real mylog = 1In (10)

returns

mylog = 2.3

export real myln = 1n (v(qg))

export real myln ons = 1ln (v(g) @0)

returns

myln = -0.223144
myln ons = -21.9773

November 2017 161
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

log10

Returns the base 10 logarithm of a signal or a number. If no specific point of a signal is
specified, MDL returns value for the last simulation point of the signal.

Syntax
logl0o(arg)
logl0(arg=arg)

Arguments
arg The scalar or signal.

Example
export real myloglO = loglO(10)

returns
mylogl0 = 1

November 2017 162 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

mag

Returns the magnitude of a signal or complex number.

Syntax

mag(arg)

mag (arg=arg)

Arguments

arg The scalar or signal.

Example

export real mymag = mag(cplx(l,2))

returns
mymag = 2.236

November 2017 163
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

max

Returns the maximum value of a signal, maximum value of two real values, or the maximum
value or a signal and a real value

Syntax

max(arg)
max (arg=arg)
Arguments

arg

Example 1

export real maxOutl

Example 2

export real maxOut2

This returns the value of out at 100n or 200n — whichever is greater.

Example 3

The scalar or signal.

max

max

(V(out))

(V(out)@100n,

export real maxg=max (trim(qg, from=0, to=100n))

V (out)@200n

)

This returns the maximum value of out over the range of t=0ns to t=100ns.

Example 4

export real maxOut4

November 2017
© 2003-2018

max (

I(IPl)@ 1.0

, le-15

164

)7

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

min
Returns the minimum value of a signal or the minimum value of two real values.
Syntax

min(arg)

min(arg=arg)

Arguments

arg The scalar or signal.
Example

export real minOutl = min(V(out))
Example 2

export real minOut2 = min (V(out)@100n, V(out)@200n)

This returns the value of out at 100n or 200n — whichever is smaller.

November 2017 165 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

mod

Returns the floating point remainder of the dividend divided by the divisor. The divisor cannot
be zero.

Syntax
mod(dividend, divisor)

mod (dividend=dividend, divisor=divisor)

Arguments

dividend The scalar dividend.
divisor The scalar divisor.
Example

export real mymod = mod(546, 324)

returns
mymod = 222

November 2017 166 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

movingavg

Calculates the moving average for the specified signal.

Syntax
movingavg(sigl[, n])

movingavg(sig=sig[, n=n])

Arguments
sig The signal.
n Number of points specifying the bin size.
Default: 1
November 2017 167 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

overshoot

Returns the overshoot/undershoot of a signal as a percentage of the difference between initial
and final values.

Syntax
overshoot(sigl[, initvall|, finalval|, inittypel, finaltypell]])
overshoot (sig=Sig, initval=initval, finalval=finalval [, inittype=inittypel
[, finaltype=finaltypel)
Arguments
sig The signal.
initval The initial value.
To calculate the undershoot of a signal, the initval should be
higher than finalval.
finalval The final value.
inittype When ' x, the initial value is a time value.
When 'y, the initial value is a current or voltage value.
Valid values: 'x, 'y
Default: 'y
finaltype When 'x, the final value is a time value.
When 'y, the final value is a current or voltage value.
Valid values: "'x, 'y
Default: 'y
November 2017 168 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example
export real overshootOut = overshoot (sig=V(out), initwval=1l, finalval=3,

inittype='y, finaltype='y))

Maximum value —»

Final value ——»}|

Initial value ———»

OvershooutOut is given by the following formula:
MaximumValue - FinalValue

JdvershooutOut = " —

FinalValue - InitialValue
November 2017 169 Product Version 17.1
©2003-2018

All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

period_jitter
Returns a waveform representing the deviation from the average period.
Syntax

period_jitter(sig, thresh, dir, binsize)

period_jitter (sig=sig, thresh=thresh, dir=direction, binsize=binsize)

Arguments

sig The signal.

thresh The threshold Y-axis value defining the period/frequency of the
signal.

dir The direction of the crossing event.
Valid values: 'rise, ' fall
Default value: "'rise

binsize Integer used to calculate the average frequency of the signal.
If binsize=0, all periods are used to calculate the average.
If binsize=N, the last v periods are used to calculate the average.
Default value=0

Example

export real period jitterOut = period jitter (sig=V(out), thresh=0.5, dir='rise,
binsize=4)

November 2017 170 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

ph

Returns the phase of a signal in radians.

Syntax
ph(argl, wrap=<value> 1)

ph(arg=arg, wrap=value)

Arguments

arg The signal.

value Wraps the phase. The phase is wrapped around +/- Pl. Possible
values are yes (default) and no. The value can be scalar.

Example

ph(v(out), wrap='no)

November 2017 171
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

phasemargin

Computes the phase margin of the loop gain of an amplifier. The phase margin is calculated
as the difference between the phase of the gain in degrees at fO and at -180 degrees. The
frequency f0 is the smallest frequency where the gain is 1. For stability, the phase margin
must be positive. The value is returned in degrees.

Syntax
phasemargin(Sig)

phasemargin(sig=sig)

Arguments

sig The loop gain of interest over a sufficiently large frequency
range.

Example

export real phasemar=phasemargin (vout)

November 2017 172 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

pow

Returns the value of base raised to the power of exponent (base®*Ponent),

Syntax
pow(base, exponent)

pow (base=base, exponent=exponent)

Arguments

base The base argument.
exponent The exponent argument.
Example

export real mypow = pow(2,2)

returns
mypow = 4

November 2017 173 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

pp (peak-to-peak)

Returns the difference between the highest and lowest values of a signal.

Syntax

pp(sig)
pp(sig=sig)

Arguments

sig The signal.

Example 1
export real ppOut = pp(V(out))

The following diagram illustrates how the result from the above example is determined.

Highestvalue —pf------ - ------2---------o oo

<«— ppOut

Lowestvalvue —p---------------------------.---.-.---------------n---»---- - -

November 2017 174 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

pzbode

Calculates and plots the transfer function for a circuit from pole zero simulation data. This
function is available only in the MDL mode.

Syntax
pzbode(poles, zeroes, ¢, minfreq, maxfreqg, npoints)

pzbode (poles=poles , zeroes=zeroes , c=c , minfreq=minfreq , maxfreq=maxfreqg
, npoints=npoints)

Arguments

poles The poles.

zeroes The zeroes.

c The transfer gain constant.

minfreq The minimum frequency for the bode plot.

maxfreq The maximum frequency for the bode plot.

npoints The frequency interval for the bode plot, in points per decade.
November 2017 175 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example
The following diagram illustrates how the result with the values poles=POLES<I<R_1>>,

Zeroes=7ZEROES<I<R_1>>, c=I<R_1>\[K\], minfreq=1e-3, maxfreq=1e3, and
npoints=1000 is determined.

Polar Plot Corresponding bode plot

3 POLES((R_2)) © ZEROES(I(R_3}) — liR_&

12

14

dB20

180

210 330

-100;

240 200 F (Hz)

November 2017 176 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

pzfilter

Filters the poles and zeroes according to the specified criteria. The pzfilter function works
only on pole zero simulation data. This function is available only in the MDL mode.

Syntax
pzfilter(poles, zeroes, maxfreq, reldist, absdist, ming)

pzfilter(poles=poles , zeroes=zeroes , maxfreq=maxfreq , reldist=reldist ,
absdist=absdist , ming=ming)

Arguments

poles The poles.

zeroes The zeroes.

maxfreq The frequency up to which the poles and zeroes are plotted.

reldist The relative distance between the pole and zero. Pole-zero pairs
with a relative distance lower than the specified value are not
plotted.

absdist The absolute distance between the pole and zero. Pole-zero
pairs with an absolute distance lower than the specified value are
not plotted.

ming The minimum Q-factor. Pole-zero pairs with a Q-factor less than

the specified value are not cancelled. The equations that define
the Q-factor of a complex pole or zero are described in the
section below.

Note: If you do not specify maxfreq, reldist, absdist, or minq, pzfilter filters out the
poles and zeroes with a frequency higher than 10 GHz (default value of maxfreq).

November 2017 177 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Equations Defining the Q-Factor of a Complex Pole or Zero

Re(X)=0.0 Q=05x ,.;"[J’nr?[J's:']u-"lf:r'«a[J's:’]l]2 +1

Re(X) = 0 UNDEFINED

Re(X)>00 Q= 05 x [Im(X)/Re(X)]* + 1

Filtration Rules

Real poles can be cancelled only by real zeroes. A real pole P is cancelled by a real zero
Z if the following equation is satisfied:

P-Z| < absdist + w x reldisi

Complex poles and zeroes always occur in conjugated pairs. A pair of conjugated poles
can only be canceled by a pair of conjugated zeroes. A pole pair P1=a+jb, P2=a-jb s
cancelled by a zero pair z1=c+3jd, z2=c-3jd, if the following equation is satisfied:

a+d

S X reldis

f 2 2)
P1-Z1| = |P2-22| = J(a-¢) +(b-d) c:absd:snl

Poles in the right-half plane are never cancelled because they show the instability of the
circuit.

Example

The values poles=POLES<I<R_2>>, Zeroes=ZEROES<I<R_2>>, absdist=0.05, and
ming=10000 filters pole-zero pairs with a relative distance of less than 0.05 Hz from the plot

November 2017 178 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

on the left side. In the filtered plot shown on the right side, two pole-zero pairs have been
filtered out.

Original polar Plot Filtered polar plot

»* POLES((R_2)) & ZEROES(R_2) #* POLES(R_Z0 & ZEROES(R_Z)
40 90

12 13

15 15

180

180

240 3nn 240 300

November 2017 179 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

r2d (radians-to-degrees)

Converts a scalar or waveform expressed in radians to degrees.

Syntax
r2d(arg)

r2d(arg=arg)
Arguments
arg The signal.

Example
export real myr2d = r2d(3.14)

returns
myr2d = 179.909

November 2017 180 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

re

Returns the real portion of a complex number.

Syntax
re(arg)

re(arg=arqg)7

Arguments

arg The complex number.

Examples

export real myre = re(cplx(l,2))

returns

myre = 1

export real real sll = re(s(1,1))

returns
real sll1 = 0.682203

November 2017 181
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

real

Creates a real number from an integer number.

Syntax

real(arg)
real (arg=arg)
Arguments

arg The integer.

November 2017 182 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

risetime

Returns the rise time for a signal measured between percent low and percent high of the
difference between the initial and final value.

Note: You can use the risetimes function to obtain the rise time for all edges instead of a
single edge returned by the risetime function.

Syntax

risetime(Sigl, initvall, finalval |

, inittypel, finaltypel, thetall,
theta2|, xtol[, ytol[, accuracy]l]]]

11111)

risetime(sig=sig, initval=initval, finalval=finalval [, inittype=inittype] [,
finaltype=finaltype] [, thetal=thetal] [, theta2=theta2] [, xtol=xtol] [,
ytol=ytol] [, accuracy=accuracy])

Arguments

sig The signal.

initval The X value (if inittype is ' x) or Y value (if inittype is ’y) that

starts the rise time interval. The measurement is always done in
ordinate values.

finalval The X value (if inittype is ' x) or Y value (if inittype is ’ y) that ends
the rise time interval.

inittype When ' x, the initial value is an X value.
When 'y, the initial value is a Y value.
Valid values: 'x, 'y
Default: 'y

finaltype When ' x, the final value is an X value.
When 'y, the final value is a Y value.
Valid values: 'x, 'y

Default: 'y
thetal The percent low.
Default: 10
theta?2 The percent high.
Default: 90
November 2017 183 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
xtol The relative tolerance in percentage value in the X direction.
Default: 1
ytol The relative tolerance in percentage value in the Y direction.
Default: 1
accuracy Specifies whether the function should use interpolation, or use

iteration controlled by the absolute tolerances to calculate the
value. ' interp directs the function to use interpolation, and
"exact directs the function to consider the xtol and yval values.
Data types: name for scalar

Valid values: ' interp, ’'exact

Default: " exact

Example 1

export real risetimeOutl = risetime(sig=V (out)

, initval=19u, finalval=30u,
inittype='x, finaltype=’x, thetal=10, theta2=90)

The following diagram illustrates how the result from the above example is determined.

theta2

¢ theta1

--------------------- s

A
initval=19u —TrisetimeOut1 1— finalval=30u

November 2017 184 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Example 2

export real risetimeOut2 = risetime (

inittype='y, finaltype=

"y, thetal=10,

sig=V (out)
theta2=90

initval=0vV,

finalval=5V,

The following diagram illustrates how the result from the above example is determined.

finalval=5V —»

45V ——p| -

0.5V —»

initval=0V —p L.

V(out)

theta2

risetimeOut2

November 2017
© 2003-2018

185

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

rmshoise

Returns the root mean square noise of a signal. The root mean square is defined as:

rmsnoise=sqgrt{ integral[Sig(t) * Sig(t)] }

Syntax
rmsnoise(sig:param)

rmsnoise(sig=sig:param)

Arguments

sig The signal.

param The parameter that refers to the noise to be provided. Possible
values are out (output noise), in (input noise), F (noise factor),
NF (noise figure) and gain (circuit gain).

Example

export real total noise = rmsnoise (myNoise:out)

SpectreMDL returns the total output referred noise from the pre-defined noise analysis
myNoise.

November 2017 186 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

rms (root-mean-square)

Returns the root mean square of a signal.

Syntax

rms(sig)

rms(sig=sig)

Arguments

sig The signal.

Example

export real rmsOut = rms(V(out))

November 2017 187
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

round

Rounds a number to the closest integer value.

Syntax
round(arg)

round (arg=arg)

Arguments

arg The number.

Example

export real myround = round(1.234)

returns

myround = 1

November 2017 188
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

S

Returns the complex value of Scattering (S) parameter of a network. Only available from sp
analysis results.

Syntax
s (rowindex, colindex)

s (rowIndex=rowIndex, colIndex=colIndex)

Arguments
rowindex The scattering matrix row index.
colindex The scattering matrix column index.

In general, the 2-port network S-parameter definitions are:

s(1,1) input port voltage reflection coefficient
s(1,2) reverse voltage gain

s(2,1) forward voltage gain

s(2,2) output port voltage reflection coefficient

If used with the functions like db, angle, re or im, the real number value is returned:
db(s(1,1)) returns the db of s(1,1)

angle(s(1,1)) returns the phase of s(1,1) in degrees

ph(s(1,1)) returns the phase of s(1,1) in radians

re(s(1,1)) returns the real part of s(1,1)

im(s(1,1)) returns the image part of s(1,1)

November 2017 189 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
Example
export real ft = cross(sig = (db(s(2,1))), dir = ’cross, n=1)
returns
ft = 3.68369e+09
November 2017 190 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

sample

Returns a waveform or an array representing a sample of the signal based on step size or
points per decade.

Syntax
sample(sig, from, to, by, type)

sample(sig=sig, from=from, to=to, by=by, type=type)

Arguments

sig The signal.

from The X-axis value at which the sampling begins.

to The X-axis value at which the sampling stops.

type Specifies whether the sample should be linear or logarithmic.
Valid values: ' 1inear, 'log
Default value: ' 1inear

by If type is ' 1inear, specifies the step size for the sample.
If type is ' Log, specifies the points per decade.

Example 1

export real sampleOut = sample (sig=V(2), from=7.5us, to=18us, by=5us, type=’linear)

November 2017 191 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

transforms the following input signal

1.2

1.04

0.80

0.60+

0.40+

0.204

0.0+

YO

-0.20+

-0.404

-0.60

-0.80

T
0.0 25 5.0 7.5 10 13 15
tirme (us)

into the following output signal

1.2

18

1.0+

0.80

0.60+

0.40+

0.204

0.0+

YO

-0.20+

-0.404

-0.60

-0.80+

T T
70 80 G0 10 11 12 13 14 15
%0 {us)

November 2017
© 2003-2018

192

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example 2
export real v2smpl[] = sample(sig=V(2), from=10n, to=40n, by=0.1ln)

The above example samples signal v (2) into an array as shown below:

v2smpl[0] = 1.08957e-10
v2smpl[1l] = 1.21644e-08
v2smpl[2] = 1.8
v2smpl[3] = 2.39729e-07
v2smpl[4] = 1.8

November 2017 193 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

settlingtime

Calculates the time required by a signal to settle at a final value within a specified limit.

Syntax
settlingtime (sig, initval, finalval, inittype, finaltype, theta)

settlingtime (sig=sig, initval=initval, finalval=finalval, inittype=inittype,
finaltype=finaltype, theta=theta)

Arguments

sig The signal.

initval The starting value for the measurement.

finalval The final value for the measurement.

inittype Specifies whether initval is an X-axis or Y-axis value.
Ifitis 'x, initval is the X-axis value.
Ifitis 'y, initval is the Y-axis value.

finaltype Specifies whether finalval is an X-axis or Y-axis value.
Ifitis 'x, finalval is the X-axis value.
Ifitis 'y, finalval isthe Y-axis value and the signal settles at
finalval until the end.

theta Percentage of (finalval-initval) within which the signal
has to settle.

Example

export real settlingTimeOut = settlingtime(sig=V(out), initval=0, finalval=1.0,

inittype='y, finaltype='x, theta=5)

returns
settlingTimeOut = 3.7185180980334184E-5sec

The following diagram illustrates how the result from the above example is determined.

November 2017 194 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

finalval —p —

<

initval settlingTimeOut

November 2017 195 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

sign
Returns a value that corresponds to the sign of a number.
Syntax

sign(arg)

sign(arg=arg)

Arguments

arg The number whose sign is to be returned. If the number is
greater than zero, the sign function returns 1.0; if the number is
equal to zero, the sign function returns 0.0; if the number is less
than zero, the sign function returns -1.0.

Example

sign(-17.3)

returns
-1.0

November 2017 196 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

sin

Returns the sine of a signal.

Syntax
sin(arg)

sin(arg=arg)

Arguments

arg The signal.

Example

export real mysin = sin(1)

returns
mysin = 0.84

November 2017 197
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

sinh

Returns the hyperbolic sine of a signal.

Syntax
sinh(arg)

sinh(arg=arg)

Arguments

arg The signal.

Example

export real mysinh = sinh(1)

returns
mysinh = 1.18

November 2017 198
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

size

Returns the size of an array or the number of points in a waveform.

Syntax

size(arg, [, from [, to] 1)

size(arg=arg [, from=from] [, to=to])
Arguments

arg The signal or the array.
from The starting abscissa.
to The ending abscissa
Example 1

run tran(step=1e-09, pstep=1e-09, stop=9e-02)
export real signalNum = size(V(R1l), 8.9e-022, 9e-02)

returns
signalNum = 108018

Example 2

export real cro = crosses(sig=(V(R1))-(1/ 2),dir="cross,n=int (1))
export real num = size(cro)

returns

cro[0] = 8.33333e-07

cro[1l] = 4.16583e-06

crol[2] = 1.08334e-05

crol[3] = 1.41666e-05

num = 4

Example 3

export real arr [] = {1.1, 2.2}

export real num = size(arr)

November 2017 199 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
returns
arr[0] = 1.1
arr[1l] = 2.2
num = 2
November 2017 200 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

slewrate

Computes the average rate at which the buffer expression changes from percent low to
percent high of the difference between the initial value and the final value.

Syntax

slewrate(Sig([, initval[, finalval |

, inittypel, finaltypel, thetall,
theta2|, xtol[, ytol[, accuracy]l]]]

11111)

slewrate(sig=sig, initval=initval, finalval=finalval [, inittype=inittypel [,
finaltype=finaltype] [, thetal=thetal] [, theta2=theta2] [, xtol=xtol] [,
ytol=ytol] [, accuracy=accuracy])

Arguments

sig The signal.

initval The X value (if inittype is ' x) or Y value (if inittype is ' y) that

starts the rise time interval.

finalval The Xvalue (if inittype is ' x) or Y value (if inittype is ' v) that ends
the rise time interval.

inittype When ' x, the initial value is an X value
When ' v, the initial value is a Y value.
Valid values: 'x, 'y

Default: 'v
finaltype When '’ x, the final value is an X value.
When v, the final value is a Y value.
Default: 'v
thetal The percent low.
Default: 10
theta?2 The percent high.
Default: 90
xtol The relative tolerance in percentage value in the X direction.
Default: 1
November 2017 201 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
ytol The relative tolerance in percentage value in the Y direction.
Default: 1
accuracy Specifies whether the function should use interpolation, or use

iteration controlled by the absolute tolerances to calculate the
value. ' interp directs the function to use interpolation, and
"exact directs the function to consider the xtol and yval values.
Data types: name for scalar

Valid values: ' interp, ’'exact

Default: " exact

Example
A statement like
export real slewratel = slewrate(V(out), 20ns, 60ns)

produces a result similar to
6.337662406448401E7V/s

November 2017 202 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

slice

Returns the slice of an array.

Syntax
slice(arg, from, to, step)

slice (arg=arg, from= from, to = to, step =step)

Arguments

array A user-defined array, or an array that comes from the built-in
function.

from Array starting subscript.

to Array ending subscript.

step Array step.

Example

real arr[]={1.0,2.0,3.0,4.0,5.0,6.0,7.0}
export real myslicel=slice(arr, from=2,to=5,step=1)

export real myslice2=slice(arr, from=2,to=5,step=2)

returns

myslicel
myslicel

myslicel

I
g w N

(0]
(1]
(2]
[3]

myslicel

N

myslice2[0] =
myslice2[1] =

November 2017 203
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

snr

Calculates the signal to noise ratio from a complex frequency based signal.

Syntax
snr(sig, sig_from, sig to, noise_from, noise_to)

snr(sig=s1g, sig _from=sig from, sig _to=sig to, noise from=noise_from,
noise_to=noise_to)

Arguments

sig The signal.

sig_ from The left window border of the signal. The sig_ from value must
be greater than or equal to noise_from.

sig to The right window border of the signal. The sig_ to value must
be less than or equal to noise_to.

noise_from The left window border of the noise.

noise_to The right window border of the noise.

November 2017 204 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Example

You have the following frequency plot.

— Ml {ouf),01e-3,1024)

3.00
275
2 50
7,259
2.00
1759
1,504
1.254
1.004
0.7504
0.5004
0.2504

Mg ()

0.04 | s

-0.250-

L | ' ! ! L | ! ' L L |
103 104 102
®0 (Hz)

To determine the signal-to-noise ratio, you use the statement
export real snr(fft(V(out),0,1e-3,1024),9e3,11e3,1,500e3)

which, in this case, returns
29.268026738835342dB

November 2017 205
© 2003-2018

108

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

sqrt

Returns the square root of a signal.

Syntax
sgqrt(arg)

sgrt(arg=arg)
Arguments
arg The signal.

Example

export real mysqrt = sgrt(4)

returns
mysqgrt = 2

November 2017 206
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

stathisto

Creates a histogram from a signal.

The stathisto function is available from the calculator. It is not supported within a Spectre MDL
control file since it returns a scalar and not a waveform.

Syntax

stathisto(sig [, nbins] [, min][, max][, innerswpval])

stathisto(sig=sig [, nbins=nbins] [, min=min] [, max=max]

[, innerswpval=inner swpvall])

Arguments

sig The waveform.

nbins The number of bins to be created.

min The value that specifies the smaller end point of the range of
values included in the histogram.

max The value that specifies the larger end point of the range of
values included in the histogram.

innerswpval The inner-most sweep parameter in the dataset. You use this
parameter to slice through parametric waveforms to extract the
data for the histogram.
Default: The first available value of time in the dataset.

Example

Assume that you have the results of running a Monte Carlo analysis on top of a transient
analysis, so that the inner-most swept variable is time. Now, for the particular value of time
specified by the innerswpval argument specification, the stathisto function creates a
histogram by analyzing all the Monte Carlo iterations and extracting from each one the value
of the signal at the specified time.

For example, to create a histogram for the time 100ns, you might use the following statement.
stathisto (I (V10\:p), innerswpval=100e-9)

To create a histogram for the time 650ps, you might use the following statement.

November 2017 207 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

stathisto (I (V10\:p), innerswpval=.65e-9)

November 2017 208 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

stddev

Returns the standard deviation of a signal. Standard deviation is defined as follows:

sqgrt (variance (N))

Syntax
stddev(arg)
stddev (arg=arg)

Arguments

arg The signal.

November 2017 209 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

sum

Returns the sum value of an array.

Syntax
sum(arg)

sum(arg=arg)

Arguments

arg A user-defined array, or an array that comes from the built-in
function.

Example

real arr[] = {1.0, 2.0, 3.0}
export real mysum=sum(arr)
returns

mysum=6.0

November 2017 210 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

system

Returns a string, which is the output of command executed by shell.

Syntax
system (command)

system (command=command)

Arguments

command A user-specified shell command.

Example

string dl=system("date +\"$ySm%dSHIM\"");
print fmt ("%$s", dl) addto="aa.data"

returns

1302130702

Note: The function should only be used at the top-level MDL file, or before the run command
in an alias measurement, and not during analysis.

November 2017 211 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

tan

Returns the tangent of a signal.

Syntax
tan(X)

tan(X=X)

Arguments

X The scalar or signal.

Example

export real mytan = tan(1)

returns
mytan = 1.56

November 2017 212
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

tanh

Returns the hyperbolic tangent of a signal.

Syntax
tanh(arg)

tanh(arg=arg)

Arguments

arg The scalar or signal.

Example

export real mytanh = tanh(1)

returns
mytanh = 0.76

November 2017 213
© 2003-2018

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

trim

Returns the portion of a signal between two points along the abscissa.

Syntax
trim(sig[, from[, tol]l)
trim(sig=sig [, from=from] [, to=to])
Arguments
sig The signal.
Data types: real for scalar
from The starting abscissa.
Data types: real for scalar
to The ending abscissa.
Data types: real for scalar
Example 1

The following example works in an MDL control file.

export real trimOut = max (trim(sig=V (sinewave), from=17n, to=29n

In Virtuoso Visualization and Analysis XL,

trim (sig=V(sinewave), from=17n, to=29n)
November 2017 214
© 2003-2018

))

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

transforms the following input signal

V(sinewave)

from=17n to=29n

into the following output signal

17n 29n
November 2017 215 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

\'}

Returns the voltage of a net.

Syntax

V (node)

V(node, node)

V(Instname: term)

V(Instname:term, Instname:term)

V (devname)

//which outputs voltage value between positive and negative

terminals of a 2-terminal device.

V (node) takes precedence over vV (devname) . It is illegal to apply the v probe function to a
devname and a node, or a pair of devhames. v can be uppercase or lowercase.

Arguments
node

Instname

devname

term

Examples

November 2017
© 2003-2018

The net name with or without the hierarchical path.

The instance name. It can be a N-terminal device instance or a
N-terminal subcircuit instance.

The 2-terminal device name (not including the 2-terminal
subcircuit instance).

The terminal name or terminal index of a device or a subcircuit
instance.

// Returns the voltage between nodes p and n.
// Returns the voltage from terminal Rload:1 to ground.
// Returns the voltage from terminal I0:q to ground.

//Returns the voltage between terminal I0:q and terminal Il:y.

216 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

variance
Returns the statistical variance of a signal. The variance is defined as follows:
1/(N-1) * ((X1 - mean)”2 + (X2-mean)”2 + (XN-mean)"2) ,

where N is the total number of samples.

Syntax
variance(arg)

variance(arg=arg)

Arguments
arg The scalar or signal.
November 2017 217 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
window
Applies the specified window to a signal.
Syntax
window(arg[, window])
fft(arg=arg(, window=window])
Arguments
arg The signal.
window The window to be applied.

Valid values: ' rectangular, 'bartlett, 'bartletthann,
'blackman, ‘blackmanharris,’cosine2, 'cosined,
"extcosbell, 'flattop, 'halfcyclesine,
"half3cyclesine, "halfcyclesine3,
'halfé6cyclesine, 'halfcyclesine6, 'hamming,
"hanning, 'nuttall, 'parzen, 'triangular
Default: ' rectangular

Equations and Examples

This section describes the equations used by each type of window and then shows an
example. In the equations:

N = total number of waveform points

n = current waveform point

Window Equation and Example Where
"rectangular w(n) =1
November 2017 218 Product Version 17.1

©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Window Equation and Example

"bartlett n
w(n) = l—abs(zx N—l)

w(n) = 0

— windowdrimd/ turallfrorm=1uto=20),window=bartiet)

14

1.0

T T T T T T T T T T
nsn 10 11 12 13 1.4 15 16 17 18 18 20
H0 (us)

"bartletthann n
w(n) = 0.62 —0.48 x abs(n— 0.5) +0.38

X cos|2 X’ pix Q—O.S
(2 pix (§-05))
w(n) =0

— windowitrim(/ (viall) frore=1u to=2u) window="barletthann)

1.0+

T T T T T T T T T T
nsn 10 11 12 13 1.4 15 1.8 17 18 18 20
H0 {usg)

November 2017 219
© 2003-2018

Where
0N

otherwise

0N

otherwise

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Window Equation and Example Where

n 0N

"blackman , .. N ,
(n) = 0.42-0.50 % cos(Zx pix N)+0.08>< cos(4>< pix A

w(n) = 0 otherwise

— window(trim¥ {vfall) frorre=1u to=2u), window="blackman)

1.1

1.0
0.90
0.804
0.70
0.60

2 504

g
0.404
0.304
0.20
0.104

0.0

-0.1

T T T T T T T T T T
080 10 11 12z 13 14 15 16 17 & 18 2D
X0 iug)

'blackmanharris 0NN

¥(n) = 0.35875 — 0.48829 x cos(Zx ! pix ﬁ)+o.14128

N
x cos(4><’ ix Q)+—001168>< cos(6>< ! pix Q)

Pix & : pix &
w(n) = 0 otherwise

— windowdrirndy (fall) frorr=1 u to=2u), window="blackmanharris)

14
1.04
0.90+
0.80+
0.70+
0.609
2 504
£
0.409
0.30+
0.20+
0.10+

0.0

-0.1

T T T T T T T T T T
0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0 {us)

November 2017 220 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Window Equation and Example

"cosine2 , .on
v(n) = 0.5-0.5x% cos(zx pix N

w(n) = 0

— windowdtrirndy (fall) frorr=1u to=2u),windows="tosine 2)

11

1.04
0.90+
0.80+
0.70+
0.609

2 504

£
0.409
0.30+
0.20+
0.10+

0.0

-0.1 T T T T T T T T T T
0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0 {us)

"cosined N\
v(n) = (0.5—0.5 X cos(zx " pix KID

w(n) = 0

— windowdtrirn (Y (vfall) frorme=1u to=2u) window='tosined)

141

1.0

0904

-0.10 T T T T T T T T T T
0.50 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20
KO {us)

November 2017 221
© 2003-2018

Where
0N

otherwise

0N

otherwise

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Window Equation and Example

"extcosbell , .o
v(n) = 0.5-0.5x% cos(le pix N

w(n) = 1

— window(trim(v (¢fall),frorre=1 u to=2u) window="extcosbell)

11

10
0.804
0.804
0.704

0.60+

Z 050
2
0.40]
0.304
0.204
0104

0.0

-01

"flattop n

(n) = 1-193x% cos(Zx " pix N

: cos(6>< " pix —’1)+0.322X COS(SX " pix —

i)

N
w(n) =0

— windowdtrirndy (fall) frorr=1u to=2u), windows=Tattop)

It

4.5

40

36

30

257

YO

20

1.6

104

0.50+

0.0

-0

T T T T T T T T T T
nan 1.0 11 12 13 1.4 18 16 17 18 18 20

November 2017
© 2003-2018

222

)+ 1.29 x cos(4>< " pix —)—0.381

Where

abs(n/N - 0.5)
>0.4

otherwise

0N

n
N

otherwise

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Window Equation and Example

"halfcyclesine . (, .. n
w(n) = sm(pix N)

w(n) = 0

— window(trim(V (vfall) frorre1u fo=2u) window="halfcyclesing)

11

1.04

T T T T T T T T T T
0.80 10 11 12 13 14 14 168 1.7 18 19 20
EORUE

'half3cyclesine wem = (sinl” pix 3
and (m = (Sm(P N))

"halfcyclesine3
w(n) = 0

— windowdrirdy (fall) frorr=1 u to=2u), window="halfacyclesine)

11

1.04
0.90+
0.80+
0.70+
0.609

2 504

£
0.409
0.30+
0.20+
0.10+

0.0

-0.1

T T T T T T T T T T
0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0 {us)

November 2017 223
© 2003-2018

Where
0N

otherwise

0N

otherwise

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

Window

"halfé6cyclesine
and
"halfcyclesineb

"hamming

November 2017
© 2003-2018

Equation and Example

w(n) = (sin(' pix %))6
w(n) = 0

— windowdrirndy (fall) frorr=1 u to=2u), window="halfbcyclesine)

11

1.04
0.90+
0.80+
0.70+
0.609

2 504

£
0.409
0.30+
0.20+
0.10+

0.0

-0.1

T T T T T T T T T T
0.0 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0 {us)

N

v(n) = 0.54-0.46 x cos(Zx ! pix %

w(n) = 0

— window(trim(v (¢fall),frorre=1 u to=2u) window="hamming)

T T T T T T T T T T
nan 10 11 12 13 1.4 18 168 1.7 18 18 20
HO(us)

224

Where
0N

otherwise

0N

otherwise

Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Window Equation and Example Where

. (05 <5\
v(n) = 0.5-0.5x cos(2>< ’ pix %

s

"hanning

w(n) = 0 otherwise

— window(trim(v (¢fall),frorr=1u to=2u) window="hanning}

11

10
0.804
0.804
0.704

0.60+

Z 050
2
0.40]
0.304
0.204
0104

0.0

-01

'nuttall 0NN

v(n)= 0.3635819 — 0.4891775 x cos(z x ' pix %) +0.1365995

x cos(4>< ! pix %)—0.0106411 x cos(6>< ! pix %)

w(n) = 0 otherwise

— windowitrirn{ (vfall) frorme=1u to=2u) windows="nuttall}

141

1.0

R T T T T T T T T T T
0.50 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 20
KO {us)

November 2017 225 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference
Window Equation and Example Where
‘parzen exabsax - Daex apslax M1 abs(2*n/N-
n(n) = —xas(xn—)+ xas(xn— 1)59.5
n O otherwise
vn) = 2 X abs(zx —-1
N
— windowdtrirn{y (vfall) frorme1u to=2u) window="parzen)
2.
2.0
1.4
g 1.2
1.0
0.404
0.20 T T T T T T T T T T
0.90 1.0 1.1 1.2 13 1.4 14 16 17 18 19 zn
KO {us)
"triangular Same as bartlett. For more information, see
‘bartlett on page 219.
November 2017 226 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

xval

Returns the vector consisting of the abscissas of the points in the signal.
Syntax

xval(arg)

xval (arg=arg)

Arguments

arg The signal.

Example 1

export real xvalOut = max (xval(V(out)))

Returns the maximum X-axis value for v (out).

V(sinewave)

5

xvalOut

November 2017 227 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example 2

export real xvalMax=xval (max(V(out)))

Returns the X-axis value of the point where Vv (out) is at its maximum voltage value.

November 2017 228 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Y

Returns the complex value of the Admittance (Y) parameter of a network.

Syntax
y(rowindex, colindex)

y (rowIndex=rowIndex, colIndex=colIndex)

Arguments

rowindex The admittance matrix row index. The value can be scalar.
colindex The admittance matrix column index. The value can be scalar.
Example

real mdlvar 13= hprobe("y21(r)", re(y(2,1)))
real mdlvar 14= hprobe("y21(i)", im(y(2,1)))

The output looks like below.

vzl Evy2lin
50

25

=25

rmeasfeal (E-3)

=50

=75

=100

5.0 6.0 7.0 8.0 9.0 10 11 12 13
freq (GHz)

November 2017 229 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

yval

Returns a vector consisting of the ordinates of the points in the signal. This function can also
calculate the ordinate value at a specified abscissa value.

Syntax
yval(arg)

yval (arg=arg)

Arguments

arg The signal.

Example 1

export real yvalOut = max (yval(V(out)))

Returns the maximum Y-axis value for v (out).

17722 1L L | S

V(sinewave)

November 2017 230 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Example 2

export real yvalOutl = yval (V(out)@ 100ns)
returns

3.467928474540306

November 2017 231 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

VA

Returns the complex value of Impedance (Z) parameter of a network.

Syntax
z(rowindex, colindex)

z (rowIndex=rowIndex, colIndex=colIndex)

Arguments

rowindex The impedance matrix row index. The value can be scalar.
colindex The impedance matrix column index. The value can be scalar.
Example

real mdlvar 7= hprobe("z22(r)", re(z(2,2)))

real mdlvar 8= hprobe("z22(i)", im(z(2,2)))

The output looks like below.

=1z EEzlzin
2.0

1.75

1=

1o

measReal O

e

25

5.0 5.0 7.0 8.0 9.0 10 11 12 1=
freg (GHz)

November 2017 232 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

B

SPICE Compatibility for Analyses

MDL supports the SPICE . tran,

1. MDL supports SPICE . tran,

2. Each . tran,

.ac, .dc, and . op analyses as described below.
.ac, .dc, and . op analyses defined in the netlist.

.ac, .dc, or .op is mapped to a Spectre tran, ac, dc, or op analysis.

Multiple SPICE analyses per analysis type are supported as well. Here is a list of Spectre
mapped names:

Spectre Mapped Name

First Run Name Subsequent Run Names

tran2, trang3, ...,trann

frequencySweep ac2, ac3, ..., acn

SPICE Analysis

Type

.TRAN timeSweep
AC

.DC srcSweep
.OP opBegin

dc2, dcg, ..., dcn
op2, op3, ..., opn

Therefore, the following statements are necessary in an MDL control file when running
MDL on a netlist in SPICE format:

run
run

run
run

run
run

run
run

opBegin
op2
srcSweep
dc2

frequencySweep
ac2

timeSweep
tran?2

//
//

//
//

//
//

//
//

runs
runs

runs
runs

runs
runs

runs
runs

first defined .OP analysis
second defined .OP analysis

first defined .DC sweep analysis
second defined .DC sweep analysis

first defined .AC analysis
second defined .AC analysis

first defined .TRAN analysis
second defined .TRAN analysis

3. When running MDL, the SPICE .measure/.probe/.print statements defined in the
netlist are ignored. In other words, the MDL control file supersedes the SPICE
.measure/.probe/.print statements defined in the netlist.

However, if running Spectre but not MDL (for instance, using command line spectre

November 2017
© 2003-2018

233 Product Version 17.1
All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

spice.ckt), the .measure/.probe/.print statements defined in the netlist
supersede the spice .md1 control file.

. The analyses can be parameterized in the MDL control file without modifying the netlist

(see Example 2 on page 234).

Mixed syntax netlists (containing both Spice and Spectre syntax analyses statements)
are also supported in MDL (see Example 3 on page 235).

Multi-level sweeps of .tran/.dc/.ac are not supported in MDL. For example, the following
SPICE .ac statement is not supported.
.ac dec 20 1k 100k SWEEP V1 1 3 2
You can use MDL foreach statement to sweep V1:mag and run AC analysis inside the

alias measurement (see Example 4 on page 235). If you want to do a DC sweep, you
need to sweep V1 :dc and run a DC analysis.

Example 1

For the SPICE analyses below:

*in Netlist

.TRAN 1ns 5us

.TRAN 1ns 10us START=8us

.ac dec 10 1 10M

.ac dec 10 100M 1G

The equivalent MDL statements are:

//in MDL control file

run timeSweep // runs first .tran with stop time of 5us

run tran2 (start=8us) // runs second .tran with stop time of 10us

run frequencySweep // runs first .ac sweeping from 1Hz to 10MHz

run ac? // runs second .ac sweeping from 100MHz to 1GMHz
Example 2

The following example shows how to set a new value for the parameters of built-in analyses
without modifying the netlist:

For the following SPICE analysis:

November 2017 234 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

*in Netlist

.TRAN 1ns 5us

The following statement tells the simulator to run transient analysis with the new stop time
100us:

//----in MDL control file -----

run timeSweep (stop=100u) // set stop time to new value 100us

Example 3
For mixed syntax statements like the following:

*in Netlist

.op
.dc V1 0 1 0.1
simulator lang=spectre

mytran tran stop=lms
The equivalent MDL statements are:

//in MDL control file

run opBegin // runs .op pre-defined in SPICE syntax

run srcSweep // runs .dc pre-defined in SPICE syntax

run mytran // runs tran analysis pre-defined in SPECTRE syntax
Example 4

To implement the following SPICE-like sweeps:
.ac dec 20 1k 100k SWEEP V1 1 3 2

You can use the following statements:

*in Netlist

.ac dec 20 1k 100k

//in MDL control file

November 2017 235 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

alias measurement acmeas {
run fregencySweep
<export variable block>

}

foreach Vl:dc from swp (start=1l, stop=3, step=2) {
run acmeas

}

November 2017 236 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and

Reference

SPICE Compatibility for options
supported by MDL

Support the SPICE option .option co=<number>

Spectre supports the SPICE option " .option co=<number>" as described below.

1. Spectre supports the SPICE option co to control the number of columns in the .print
file by mapping it to the Spectre option colslog.

2. When <number> is defined between (n*15) and ((n+1)*15), then the (n+1) columns with
15 bit per column are printed to the . print file, where n columns is for defined variables
and 1 column is for independent variable such as time for transient, frequency for AC
analysis and swept parameter for DC analysis.

3. The default value is 80, printing 6 column data.

4. The minimum value is 31, printing 2 column data. If it is less than 31, Spectre uses the
default value (80) and prints 6 column data.

5. The co option is not supported in .alter block.

Example 1

.option co=132

Spectre outputs 9 columns on a single line in .print file.

Example 2

Simulator lang=spectre

Optl options colslog=60

Spectre outputs 5columns on a single line in .print file.

November 2017 237 Product Version 17.1
©2003-2018 All Rights Reserved.

Spectre Circuit Simulator Measurement Description Language User Guide and
Reference

Support equal interval output for .print

1. Spectre can print transient results to . print file in equal step (that are defined in . tran
statement) by taking advantage of the spectre option printstep.

2. The value of printstep can be 110, true | false or yes | no. When printstep=1/
true/yes, Spectre prints transient results in equal step as specified in . tran
statement. When printstep=0/false/no (default), Spectre prints transient results in
non-equal solver time.

3. The printstep option is not supported in . alter block.

Example 1
.option printstep=1
.tran 1ns 20ns

.print tran v (1)

Spectre prints transient results in an equal interval of 1ns in .print file.

Example 2

Simulator lang=spectre
Optl options printstep=yes
Simulator lang=spice

.tran 1lu 5m

.print tran v (1)

Spectre prints transient results in an equal interval of 1us in .print file.

November 2017 238 Product Version 17.1
©2003-2018 All Rights Reserved.

	Contents
	Preface
	What MDL Does
	The MDL Flow
	The MDL Language

	Related Documents
	Typographic and Syntax Conventions

	Defining and Using Measurement Aliases
	Defining a Measurement Alias
	Using a Measurement Alias
	Defining Measurement Aliases on the Fly
	Propagating Variables
	Defining a Macro
	Accessing Netlist or Model Parameters
	Accessing Model Names and Types
	Accessing Noise Parameters
	Using Named and Primitive Analyses
	Looping Statements
	foreach Statement
	search Statement
	mvarsearch Statement

	Include Statement
	Evaluating Expressions Selectively
	If/Else Statement
	Ternary Expression Statement

	Specifying the Output File Format
	Autostop
	Monte Carlo
	Supported Spectre Circuit Simulator Analyses
	Supported Spectre Circuit Simulator Formats
	Optimizations and Tips and Tricks
	Data Output Optimizations
	Performance Optimizations
	MDL Reuse
	Common Pitfalls
	Miscellaneous

	Constructing MDL Expressions
	Basic Language Elements and Scope Rules
	White Space
	Comments
	Identifiers
	Scope Rules

	Data Types
	Numbers
	Enumeration Names
	Predefined Constants
	enum
	Net
	Terminal
	Analysis
	Array

	Declarations
	Operators
	Overview of Operators
	Unary Operators
	Binary Operators
	Operator Precedence

	Running MDL in Batch Mode
	spectremdl
	Syntax
	Arguments
	Examples

	Running MDL in Post-processing Mode
	mdl
	Syntax
	Arguments
	Limitations

	Built-In Functions
	abs
	acos
	acosh
	analstop
	angle
	argmax
	argmin
	asin
	asinh
	atan
	atanh
	avg
	avgdev
	bw (bandwidth)
	ceil
	cfft
	clip
	conj
	convolve
	cos
	cosh
	cplx
	cross
	crosscorr
	crosses
	d2r (degrees-to-radians)
	db
	db10
	dbm
	deltax
	deltaxes
	deriv
	dutycycle
	dutycycles
	exp
	falltime
	fft
	flip
	floor
	fmt
	freq
	freq_jitter
	gainBwProd
	gainmargin
	getinfo
	groupdelay
	histo
	I
	ifft
	iinteg
	im
	int
	integ
	ln
	log10
	mag
	max
	min
	mod
	movingavg
	overshoot
	period_jitter
	ph
	phasemargin
	pow
	pp (peak-to-peak)
	pzbode
	pzfilter
	r2d (radians-to-degrees)
	re
	real
	risetime
	rmsnoise
	rms (root-mean-square)
	round
	S
	sample
	settlingtime
	sign
	sin
	sinh
	size
	slewrate
	slice
	snr
	sqrt
	stathisto
	stddev
	sum
	system
	tan
	tanh
	trim
	V
	variance
	window
	xval
	Y
	yval
	Z

	SPICE Compatibility for Analyses
	SPICE Compatibility for options supported by MDL
	Support the SPICE option .option co=<number>
	Support equal interval output for .print

