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You’re the Expert—Does God Exist?

Your have been assigned the job of evaluating the attempts of mortals to prove the existence of
God. And many attempts there have been. Three in particular have caught your attention: they
are known as the cosmological argument, the teleological argument, and the ontological
argument.

Cosmological Argument (St. Thomas Aquinas)
No effect can cause itself, but requires another cause. If there were no first cause, there
would be an infinite sequence of preceding causes. Clearly there cannot be an infinite
sequence of causes, therefore there is a first cause, and this is God.

Teleological Argument (St. Thomas Aquinas)
All things in the world act towards an end. They could not do this without there being an
intelligence that directs them. This intelligence is God.

Ontological Argument (St. Anselm)
God is a being than which none greater can be thought. A being thought of as existing is
greater than one thought of as not existing. Therefore, one cannot think of God as not
existing, so God must exist.

Are these arguments valid?



Introduction

Logic is the underpinning of all reasoned argument. The ancient Greeks recognized its role
in mathematics and philosophy, and studied it extensively. Aristotle, in his Organon, wrote the
first systematic treatise on logic. His work had a heavy influence on philosophy, science and
religion through the Middle Ages.

But Aristotle’s logic was expressed in ordinary language, so was subject to the ambiguities
of ordinary language. Philosophers came to want to express logic more formally and
symbolically, more like the way that mathematics is written (Leibniz, in the 17th century, was
probably the first to envision and call for such a formalism). It was with the publication in 1847
of G. Boole’s The Mathematical Analysis of Logic and A. DeMorgan’s Formal Logic that
symbolic logic came into being, and logic became recognized as part of mathematics. This also
marked the recognition that mathematics is not just about numbers (arithmetic) and shapes
(geometry), but encompasses any subject that can be expressed symbolically with precise rules
of manipulation of those symbols. It is symbolic logic that we shall study in this chapter.

Since Boole and DeMorgan, logic and mathematics have been inextricably intertwined.
Logic is part of mathematics, but at the same time it is the language of mathematics. In the late
19th and early 20th century it was believed that all of mathematics could be reduced to symbolic
logic and made purely formal. This belief, though still held in modified form today, was shaken
by K. Gödel in the 1930’s, when he showed that there would always remain truths that could
not be derived in any such formal system. (See some of the footnotes in this chapter.)

The study of symbolic logic is usually broken into several parts. The first and most
fundamental is the propositional calculus. Built on top of this is the predicate calculus,
which is the language of mathematics. We shall study the propositional calculus in the first six
sections of this chapter and look at the predicate calculus briefly in the last two.
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L.1 Statements and Logical Operators

In this chapter we shall study propositional calculus, which, contrary to what the name
suggests, has nothing to do with the subject usually called “calculus.” Actually, the term
“calculus” is a generic name for any area of mathematics that concerns itself with calculating.
For example, arithmetic could be called the calculus of numbers. Propositional calculus is the
calculus of propositions. A proposition, or statement, is any declarative sentence which is
either true (T) or false (F). We refer to T or F as the truth value of the statement.

Example 1 Propositions

Which of the following are statements? What are their truth values?
(a) 2 + 2 = 4
(b) 1 = 0
(c) It will rain tomorrow.
(d) If I am Buddha, then I am not Buddha.
(e) Solve the following equation for x.
(f) The number 5.
(g) This statement is false.
(h) This statement is true.

Solution
(a) The sentence “2 + 2 = 4” is a statement, since it can be either true or false.1 Since it
happens to be a true statement, its truth value is T.

(b) The sentence “1 = 0” is also a statement, but its truth value is F.

(c) “It will rain tomorrow” is a statement. To determine its truth value we shall have to wait for
tomorrow.

(d) We shall see later that the statement “If I am Buddha, then I am not Buddha” really
amounts to the simpler statement “I am not Buddha.” As long as the speaker is not Buddha,
this is a true statement.

(e) “Solve the following equation for x” is not a statement, as it cannot be assigned any truth
value whatsoever. It is an imperative, or command, rather than a declarative sentence.

(f) “The number 5” is not a statement, since it is not even a complete sentence.

(g) “This statement is false” gets us into a bind: If it were true, then, since it is declaring itself
to be false, it must be false. On the other hand, if it were false, then its declaring itself false is a
lie, so it is true! In other words, if it is true, then it is false, and if it is false, then it is true, and we

                                                
1 If you doubt that “2 + 2 = 4” is a sentence to begin with, read it aloud: “Two plus two equals four,” is a perfectly
respectable English sentence.



L.1. Statements and Logical Operators 5

go around in circles. We get out of this bind by refusing to call it a statement. An equivalent
pseudo-statement is: “I am lying,” so this sentence is known as the liar's paradox.

(h) “This statement is true” may seem like a statement, but there is no way that its truth value
can be determined. It makes just as much sense to say that the sentence is true as to say that it is
false. We thus refuse to call it a statement.

The last two sentences in the preceding example are called self-referential sentences, since
they refer to themselves. Self-referential sentences are henceforth disqualified from
statementhood, so this is the last time you will see them in this chapter.1

We shall use the letters p, q, r, s and so on to stand for propositions. Thus, for example,
we might decide that p should stand for the proposition “the moon is round.” We shall write

p: “the moon is round”

to express this. We read:

p is the statement “the moon is round.”

We can form new propositions from old ones in several different ways. For example,
starting with p: “I am an Anchovian,” we can form the negation of p: “It is not the case that I
am an Anchovian” or simply “I am not an Anchovian.”  We denote the negation of p by ~p,
read “not p.” We mean by this that, if p is true, then ~p is false, and vice-versa. We can show
the meaning of ~p in a truth table:

p     ~p

T       F
F       T

On the left are the two possible truth values of p and on the right are the corresponding truth
values of ~p. The symbol ~ is our first example of a logical operator.

Example 2 Negation

Find the negations of the following propositions.
(a) p: “2 + 2 = 4”
(b) q: “1 = 0”
(c) r: “Diamonds are a pearl’s best friend.”
(d) s: “All the politicians in this town are crooks.”

                                                
1 Self-referential sentences are not simply an idle indulgence; the famous logician Kurt Gödel used a mathematical
formulation of the Liar's Paradox to draw very profound conclusions about the power of mathematics. For more on
self-referential sentences, see Metamagical Themas: Questing for the Essence of Mind and Pattern by Douglas R.
Hofstadter (Bantam Books, New York 1986)
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Solution
(a) ~p: “It is not the case that 2 + 2 = 4,” or, more simply, ~p: “2 + 2 ≠ 4.”

(b) ~q: “1 ≠"0”

(c) ~r: “Diamonds are not a pearl’s best friend.”

(d) ~s: “Not all the politicians in this town are crooks.”

Before we go on… Notice that ~p is false, because p is true. However, ~q is true, because q is
false. A statement of the form ~q can very well be true; it is a common mistake to think it must
be false.

To say that diamonds are not a pearl’s best friend is not to say that diamonds are a pearl’s
worst enemy. The negation is not the polar opposite, but whatever would deny the truth of the
original statement. Similarly, saying that not all politicians are crooks is not the same as saying
that no politicians are crooks, but is the same as saying that some politicians are not crooks.
Negations of statements involving the quantifiers “all” or “some” are tricky. We’ll study
quantifiers in more depth when we discuss the predicate calculus.

Here is another way we can form a new proposition from old ones. Starting with p: “I am
clever,” and q: “You are strong,” we can form the statement “I am clever and you are strong.”
We denote this new statement by p…q, read “p and q.” In order for p…q to be true, both p and
q must be true. Thus, for example, if I am indeed clever, but you are not strong, then p…q is
false. The symbol … is another logical operator. The statement p…q is called the conjunction
of p and q.

Conjunction
The conjunction of p and q is the statement p…q, which we read “p  and q .” Its truth value is
defined by the following truth table.

p    q   p…q

T     T     T
T     F     F
F     T     F
F     F     F

In the p and q columns are listed all four possible combinations of truth values for p and q,
and in the p…q column we find the corresponding truth value for p…q. For example, reading
across the third row tells us that, if p is false and q is true, then p…q is false. In fact, the only
way we can get a T in the p…q column is if both p and q are true, as the table shows.

Example 3  Conjunction

If p: “This galaxy will ultimately disappear into a black hole” and q: “2 + 2 = 4,” what is
p…q?
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Solution p…q: “This galaxy will ultimately disappear into a black hole and 2 + 2 = 4,” or the
more astonishing statement: “Not only will this galaxy ultimately disappear into a black hole,
but 2 + 2 = 4!”

Before we go on… q is true, so if p is true then the whole statement p…q will be true. On the
other hand, if p is false, then the whole statement p…q will be false.

Example 4

With p and q as in Example 3, what does the statement p…(~q) say?

Solution p…(~q) says: “This galaxy will ultimately disappear into a black hole and 2 + 2 ≠
4,” or “Contrary to your hopes, this galaxy is doomed to disappear into a black hole; moreover,
two plus two is decidedly not equal to four!”

Before we go on… Since ~q is false, the whole statement p…(~q) is false (regardless of
whether p is true or not).

Example 5

If p is the statement “This chapter is interesting“ and q is the statement “Logic is an
interesting subject,” then express the statement “This chapter is not interesting even though
logic is an interesting subject” in logical form.

Solution The first clause is the negation of p, so is ~p. The second clause is simply q. The
phrase “even though” is another way of saying that both clauses are true, and so the whole
statement is (~p)…q.

Example 6

Let p: “This chapter is interesting,” q: “This whole book is interesting” and r: “Life is
interesting.” Express the statement “Not only is this chapter interesting, but this whole book is
interesting, and life is interesting, too” in logical form.

Solution The statement is asserting that all three statements p, q and r are true. (Note that
“but” is simply an emphatic form of “and.”) Now we can combine all three in two steps:
First, we can combine p and q to get p…q, meaning “This chapter is interesting and this book is
interesting.” We can then conjoin this with r to get: (p…q)…r. This says: “This chapter is
interesting, this book is interesting and life is interesting.” On the other hand, we could equally
well have done it the other way around: conjoining q and r gives “This book is interesting and
life is interesting.” We then conjoin p to get p…(q…r), which again says: “This chapter is
interesting, this book is interesting and life is interesting.” We shall soon see that (p…q)…r is
logically the same as p…(q…r), a fact called the associative law for conjunction. Thus both
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answers (p…q)…r and p…(q…r) are equally valid. This is like saying that (1 + 2) + 3 is the
same as 1 + (2 + 3). As with addition, we often drop the parentheses and write p…q…r.

As we’ve just seen, there are many ways of expressing a conjunction in English. For
example, if p: “Waner drives a fast car” and q: “Costenoble drives a slow car,” the following
are all ways of saying p…q.

Waner drives a fast car and Costenoble drives a slow car.
Waner drives a fast car but Costenoble drives a slow car.
Waner drives a fast car yet Costenoble drives a slow car.
Although Waner drives a fast car, Costenoble drives a slow car.
Waner drives a fast car even though Costenoble drives a slow car.
While Waner drives a fast car, Costenoble drives a slow car.

Any sentence that says that two things are both true is a conjunction. Symbolic logic strips
away any elements of surprise or judgment that are expressed in an English sentence.

Here is a third logical operator. Starting once again with p: “I am clever,” and q: “You are
strong,” we can form the statement “I am clever or you are strong,” which we write
symbolically as pæq, read “p or q .” Now in English the word “or” has several possible
meanings, so we have to agree on which one we want here. Mathematicians have settled on the
inclusive or: pæq means p is true or q is true or both are true1. With p and q as above, pæq
stands for “I am clever or you are strong, or both.” We shall sometimes include the phrase “or
both” for emphasis, but if we leave it off we still interpret “or” as inclusive.

Disjunction
The disjunction of p and q is the statement pæq, which we read “p  or q .” Its truth value is
defined by the following truth table.

p    q   pæq

T     T     T
T     F     T
F     T     T
F     F     F

This is the inclusive or, so pæq is true when p is true or q is true or both are true.

Notice that the only way for pæq to be false is for both p and q to be false. For this reason
we can say that pæq also means “p and q are not both false.” We’ll say more about this in the
next section.

Example 7 Disjunction

 Let p: “the butler did it” and let q: “the cook did it.” What does pæq say?

                                                
1 There is also the exclusive or: “p or q but not both.” This can be expressed as (pæq)…~(p…q). Do you see why?
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Solution pæq: “either the butler or the cook did it.”

Before we go on… Remember that this does not exclude the possibility that the butler and cook
both did it—or that they were in fact the same person! The only way that pæq could be false is
if neither the butler nor the cook did it.

Example 8

Let p: “the butler did it,” let q: “the cook did it,” and let r: “the lawyer did it.” What does
(pæq)…(~r) say?

Solution (pæq)…(~r) says “either the butler or the cook did it, but not the lawyer.”

Example 9

Let p: “55 is divisible by 5,” q: “676 is divisible by 11” and r: “55 is divisible by 11.”
Express the following statements in symbolic form:
(a) “Either 55 is not divisible by 11 or 676 is not divisible by 11.”
(b) “Either 55 is divisible by either 5 or 11, or 676 is divisible by 11.”

Solution
(a) This is the disjunction of the negations of p and q, so is (~p)æ(~q).
(b) This is the disjunction of all three statements, so is (pæq)ær, or, equivalently, pæ(qær). We
often drop the parentheses and write pæqær.

Before we go on… (a) is true because ~q is true. (b) is true because p is true. Notice that r is
also true. If at least one of p, q, or r is true, the whole statement pæqær will be true.

We end this section with a little terminology: A compound statement is a statement
formed from simpler statements via the use of logical operators. Examples are ~p, (~p)…(qær)
and p…(~p). A statement that cannot be expressed as a compound statement is called an atomic
statement1. For example, “I am clever” is an atomic statement. In a compound statement such
as (~p)…(qær), we refer to p, q and r as the variables of the statement. Thus, for example, ~p is
a compound statement in the single variable p.

L.1 Exercises
Which of Exercises 1–14 are statements? Comment on the truth values of all the statements you
encounter. If a sentence fails to be a statement, explain why.

1. All swans are white.

2. The fat cat sat on the mat.
                                                
1 “Atomic” comes from the Greek for “not divisible.” Atoms were originally thought to be the indivisible
components of matter, but the march of science proved that wrong. The name stuck, though.
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3.  Look in thy glass and tell whose face thou viewest.1

4.  My glass shall not persuade me I am old.2

5. Father Nikolsky penned his dying confession to Patriarch Arsen III Charnoyevich of Peç in
the pitch dark, somewhere in Poland, using a mixture of gunpowder and saliva, and a quick
Cyrillic hand, while the innkeeper's wife scolded and cursed him through the bolted door.3

6. 1,000,000,000 is the largest number.

7. There is no largest number.

8. There may or may not be a largest number.

9. Intelligent life abounds in the universe.

10. This definitely is a statement.

11. He, she or it is lying.

12. This is exercise number 12.

13. This sentence no verb.4

14. “potato” is spelled p-o-t-a-t-o-e.

Let p: “Our mayor is trustworthy,”  q: “Our mayor is a good speller,” and r = “Our mayor
is a patriot.” Express each of the statements in Exercises 15–20 in logical form:

15. Although our mayor is not trustworthy, he is a good speller.

16. Either our mayor is trustworthy, or he is a good speller.

17. Our mayor is a trustworthy patriot who spells well.

18. While our mayor is both trustworthy and patriotic, he is not a good speller.

19. It may or may not be the case that our mayor is trustworthy.

20. Either our mayor is not trustworthy or not a patriot, yet he is an excellent speller.
                                                
1 William Shakespeare
2 Ibid.
3 from Dictionary of the Khazars by Milorad Pavic (Vintage Press).
4 From Metamagical Themas: Questing for the Essence of Mind and Pattern by Douglas R. Hofstadter (Bantam
Books, New York 1986)
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Let p: “Willis is a good teacher,” q: “Carla is a good teacher,” r: “Willis’ students hate
math,” s: “Carla’s students hate math.” Express the statements in Exercises 21–30 in words.

21. p…(~r) 22.... (~p)…(~q)

23.... pæ(r…(~q)) 24.... (ræ(~p))…q

25.... qæ(~q) 26.... ((~p)…(~s))æq

27.... r…(~r) 28.... (~s)æ(~r)

29.... ~(qæs) 30. ~(p…r)

Assume that it is true that “Polly sings well,” it is false that “Quentin writes well,” and it is
true that “Rita is good at math.” Determine the truth of each of the statements in Exercises 31–
40.

31. Polly sings well and Quentin writes well.

32. Polly sings well or Quentin writes well.

33. Polly sings poorly and Quentin writes well.

34. Polly sings poorly or Quentin writes poorly.

35. Either Polly sings well and Quentin writes poorly, or Rita is good at math.

36. Either Polly sings well and Quentin writes poorly, or Rita is not good at math.

37. Either Polly sings well or Quentin writes well, or Rita is good at math.

38. Either Polly sings well and Quentin writes well, or Polly sings well and Rita is good at
math.

39. Polly sings well, and either Quentin writes well or Rita is good at math.

40. Polly sings poorly, or Quentin writes poorly and Rita is good at math.

Communication and Reasoning Exercises

41. The statement that either p or q is true, but not both is called the exclusive disjunction of p
and q, which we write as p · q. Give a formula for p · q in terms of the logical operators ~,  …
and æ.
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42. The statement that either p and q are both true, or neither is true, is called the
biconditional of p and q, and write it as p↔q. Give a formula for p↔q in terms of the logical
operators ~,  … and æ.

43. Referring to Exercise 41, give an example of an everyday usage of exclusive disjunction.

44. Referring to Exercise 42, give an example of an everyday usage of exclusive conjunction.

45. Give an example of a self-referential question that is its own answer.1

46. Comment on the following pair of sentences:
The next statement is false.
The preceding statement is true.

                                                
1 Such a question was posed by Douglas Hofstadter in  Metamagical Themas: Questing for the Essence of Mind and
Pattern (Bantam Books, New York 1986)
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L.2 Logical Equivalence, Tautologies, and Contradictions   

We suggested in the preceding section that certain statements are equivalent. For example,
we claimed that (p…q)…r and p…(q…r) are equivalent—a fact we called the associative law for
conjunction. In this section, we use truth tables to say precisely what we mean by logical
equivalence, and we also study certain statements that are either “self-evident”
(“tautological”), or “evidently false” (“contradictory”).

We start with some more examples of truth tables.

Example 1 Truth Tables

Construct the truth table for ~(p…q).

Solution Whenever we encounter a complex formula like this we work from the inside out, just
as we might do if we had to evaluate an algebraic expression like -(a + b). Thus, we start with
the p and q columns, then construct the p…q column, and finally, the ~(p…q) column.

p    q   p…q   ~(p…q)

T     T      T         F
T     F      F         T
F     T      F         T
F     F      F         T

Notice how we get the ~(p…q) column from the p…q column: we reverse all the truth values.

Example 2

Construct the truth table for pæ(p…q).

Solution Since there are two variables, p and q, we again start with the p and q columns. We
then evaluate p…q, and finally take the disjunction of the result with p.

p    q   p…q   pæ(p…q)

T     T      T          T
T     F      F          T
F     T      F          F
F     F      F          F

How did we get the last column from the others? Since we are “or-ing” p with p…q, we look at
the values in the p and p…q columns and combine these according to the instructions for “or .”
Thus, for example, in the second row we have TæF = T and in the third row we have FæF = F.
(If you look at the second row of the truth table for “or” you will see  T | F | T, and in the last
row you will see F | F | F.)
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Example 3

Construct the truth table for ~(p…q)…(~r).

Solution Here, there are three variables: p, q and r. Thus we start with three initial columns
showing all eight possibilities.

p    q    r

T     T     T  
T     T     F 
T     F     T  
T     F     F  
F     T     T  
F     T     F 
F     F     T  
F     F     F

We now add columns for p…q, ~(p…q) and ~r, and finally  ~(p…q)…(~r), according to the
instructions for these logical operators. Here is how the table would grow as we construct it.

p    q    r    p…q

T     T     T      T  
T     T     F      T
T     F     T      F
T     F     F      F
F     T     T      F    
F     T     F      F
F     F     T      F
F     F     F      F

p    q    r    p…q   ~(p…q)    ~r

T     T     T      T          F             F 
T     T     F      T          F             T
T     F     T      F          T             F
T     F     F      F          T             T
F     T     T      F          T             F
F     T     F      F          T             T
F     F     T      F          T             F
F     F     F      F          T             T

and finally,

p    q    r    p…q   ~(p…q)    ~r    ~(p…q)…(~r)

T     T     T      T          F             F             F 
T     T     F      T          F             T             F
T     F     T      F          T             F             F
T     F     F      F          T             T             T
F     T     T      F          T             F             F
F     T     F      F          T             T             T
F     F     T      F          T             F             F
F     F     F      F          T             T             T

We say that two statements are logically equivalent if, for all possible truth values of the
variables involved, the two statements always have the same truth values. If s and t are
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equivalent, we write s ° t. This is not another logical statement. It is simply the claim that the
two statements s and t are logically equivalent. Here are some examples.

Example 4 Logical Equivalence

Show that p ° ~(~p). This is called double negation.

Solution To demonstrate the logical equivalence of these two statements, we construct a truth
table with columns for both p and ~(~p).

p     ~p   ~(~p)

T       F        T
F       T        F

same

The p column gives the two possible truth values for p, while the ~p column gives the
corresponding values for its negation. We get the values in the ~(~p) column from those in the
~p column by reversing the truth values: if ~p is false, then its negation, ~(~p), must be true, and
vice-versa. Since the p and ~(~p) columns now contain the same truth values in all rows (“for
all possible truth values of the variables involved”), they are logically equivalent.

Example 5 Double Negation

Rewrite “It’s not true that I’m not happy” in simpler form.

Solution Let p: “I am happy,” so that the given statement is ~(~p). This is equivalent to p, in
other words, to the statement “I am happy.”

Before we go on… Unlike French (“Ceci n’est pas une pipe”) and colloquial English (“This
ain’t no pipe”), a double negative in logic always means a positive statement.

Example 6 DeMorgan’s Law

Show that ~(p…q) ° (~p)æ(~q). This is one of DeMorgan's Laws.

Solution  We construct a truth table showing both ~(p…q) and (~p)æ(~q).

p    q   p…q   ~(p…q)   ~p    ~q    (~p)æ(~q) 

T     T      T           F         F        F           F   
T     F      F           T         F        T           T
F     T      F           T         T        F           T
F     F      F           T         T        T           T

same
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Since the  ~(p…q) column and (~p)æ(~q) column agree, we conclude that they are equivalent.  

Before we go on… The statement ~(p…q) can be read as “It is not the case that both p and q
are true” or “p and q are not both true.” We have just shown that this is equivalent to “Either
p is false or q is false.”

Example 7 DeMorgan’s Law

Let p: “the President is a Democrat,” and q: “the President is a Republican.” Interpret ~(p…q)
and the equivalent statement given by DeMorgan’s Law.

Solution ~(p…q): “the President is not both a Democrat and a Republican.” This is the same
as saying: “either the President is not a Democrat, or he is not a Republican, or he is neither,”
which is (~p)æ(~q).

Before we go on… This is not the same as “the President is a Republican or a Democrat,”
which would be qæp. The statement ~(p…q) would be true if the President were from a third
party, while qæp would not.

Here are the two equivalences known as DeMorgan’s Laws.

DeMorgan’s Laws
If p and q are statements, then

 ~(p…q) ° (~p)æ(~q)
 ~(pæq) ° (~p)…(~q)

Mechanically speaking, this means that, when we distribute a negation sign, it reverses …
and æ, and the negation applies to both parts.

A compound statement is a tautology if its truth value is always T, regardless of the truth
values of its variables. It is a contradiction if its truth value is always F, regardless of the truth
values of its variables. Notice that these are properties of a single statement, while logical
equivalence relates two statements.

Example 8 Tautologies

Show that the statement pæ(~p) is a tautology.

Solution We look at its truth table.
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p     ~p   pæ(~p)

T       F       T
F       T       T

all T's.

Since there are only Ts in the pæ(~p) column, we conclude that pæ(~p) is a tautology. We can
think of this as saying that the truth value of the statement pæ(~p) is independent of the value of
the “input” variable p.

Before we go on…
“You are sad,” the Knight said in an anxious tone: “let me sing you a song to comfort

you. . . Everybody that hears me sing it—either it brings the tears into their eyes, or else—”
“Or else what?” said Alice, for the Knight had made a sudden pause.
“Or else it doesn’t, you know.1”

Example 9

Show that (pæq)æ[(~p)…(~q)] is a tautology.

Solution Its truth table is the following.

p

T
T
F
F

q

T
F
T
F

~p

F
F
T
T

~q

F
T
F
T

pæq

T
T
T
F

(~p)…(~q)

F
F
F
T

(pæq)æ[(~p)…(~q)]

T
T
T
T

Again, since the last column contains only Ts, the statement is a tautology.

When a statement is a tautology, we also say that the statement is tautological. In common
usage this sometimes means simply that the statement is convincing. In logic it means
something stronger: that the statement is always true, under all circumstances. In contrast, a
contradiction, or contradictory statement, is never true, under any circumstances.

Example 10 Contradictions

Show that the statement (pæq)…[(~p)…(~q)] is a contradiction.

Solution Its truth table is the following.

                                                
1 From Through the Looking-Glass, by Lewis Carroll. Lewis Carroll was the pen name of the Rev. Charles
Lutwidge Dodgson (1832–1898), a logician who taught at Christ Church College, Oxford.
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p

T
T
F
F

q

T
F
T
F

~p

F
F
T
T

~q

F
T
F
T

pæq

T
T
T
F

(~p)…(~q)

F
F
F
T

(pæq)…[(~p)…(~q)]

F
F
F
F

Since the last column contains only Fs, we conclude that (pæq)…[(~p)…(~q)] is a contradiction.

Before we go on… In common usage we sometimes say that two statements are contradictory.
By this we mean that their conjunction is a contradiction: they cannot both be true. For example,
the statements pæq and (~p)…(~q) are contradictory, since we’ve just shown that their
conjunction is a contradiction. In other words, no matter what the truth values of p and q, it is
never true that both pæq and (~p)…(~q) are true at the same time. (Can you see why this is so
from the meaning of pæq?)

Most statements are neither tautologies nor contradictions. The first three examples in this
section were of statements that were sometimes true and sometimes false.

Here is a list of some important logical equivalences, most of which we have already
encountered. (The verifications of some of these appear as exercises.) We shall add to this list
as we go along.

Important Logical Equivalences: First List
~(~p) ° p the Double Negative Law
p…q ° q…p the Commutative Law for conjunction.
pæq ° qæp the Commutative Law for disjunction.
(p…q)…r ° p…(q…r) the Associative Law for conjunction.
(pæq)ær ° pæ(qær) the Associative Law for disjunction.
~(pæq) ° (~p)…(~q) DeMorgan's Laws
~(p…q) ° (~p)æ(~q)
p…(qær) ° (p…q)æ(p…r) the Distributive Laws
pæ(q…r) ° (pæq)…(pær)
p…p ° p Absorption Laws
pæp ° p

Note that these logical equivalences apply to any statements. The ps, qs and rs can stand for
atomic statements or compound statements.

Example 11 Simplifying

Simplify the statement ~([p…(~q)]…r).

Solution By “simplify” we mean “find a simpler equivalent statement.” We can analyze this
statement from the outside in. It is first of all a negation, but further it is the negation ~(A…B),
where A is (p…(~q)) and B is r. To see that the statement has this structure, look for the
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“principal connective,” the last connective (“and” or “or”) you would evaluate in forming the
truth table. Now one of DeMorgan’s Laws is

~(A…B) ° (~A)æ(~B).

Applying this equivalence gives

~([p…(~q)]…r) ° (~[p…(~q)])æ(~r).

We can apply DeMorgan's Law again, this time to the statement ~(p…(~q)). Doing so gives

~[p…(~q)] ° (~p)æ~(~q) ° (~p)æq.

Notice that we’ve also used the Double Negative law. Putting these equivalences together gives

~([p…(~q)]…r) ° (~[p…(~q)])æ(~r) ° ((~p)æq)æ(~r),

which we can write as

(~p)æqæ(~r),

since the Associative Law tells us that it does not matter which two expressions we “or” first.

Example 12

Consider: “You will get an A if either you are clever and the sun shines, or you are clever and it
rains.” Rephrase the condition more simply.

Solution The condition is “you are clever and the sun shines, or you are clever and it rains.”
Let’s analyze this symbolically: Let p: “you are clever,” q: “the sun shines,” and r: “it rains.”
The condition is then (p…q)æ(p…r). We can “factor out” the p using one of the distributive
laws in reverse, getting

(p…q)æ(p…r)  °  p…(qær).

We are taking advantage of the fact that the logical equivalences we listed can be read from right
to left as well as from left to right. Putting p…(qær) back into English, we can rephrase the
sentence as “You will get an A if you are clever and either the sun shines or it rains.”

L.2 Exercises

Construct the truth tables for expressions in Exercises 1–10.

1. p…(~q) 2.... pæ(~q)
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3. ~(~p)æp 4.... p…(~p)

5.... (~p)…(~q) 6.... (~p)æ(~q)

7.... (p…q)…r 8.... p…(q…r)

9.... p…(qær) 10.... (p…q)æ(p…r)

Use truth tables to verify the logical equivalences given in Exercises 11–20.

11.... p…p ° p

12.... pæp ° p

13.... pæq ° qæp. . . the Commutative Law for disjunction.

14.... p…q ° q…p. . . the Commutative Law for conjunction.

15. ~(pæq) ° (~p)…(~q)

16.... ~(p…(~q)) ° (~p)æq

17....    (p…q)…r ° p…(q…r) . . . the Associative Law for conjunction.

18....    (pæq)ær ° pæ(qær). . . the Associative Law for disjunction.

19....    pæ(q…(~q)) ° p

20.... p…(~p) ° q…(~q)

Use truth tables to check whether each statement in Exercises 21–26 is a tautology,
contradiction, or neither.

21....    p…(~p) 22....    p…p

23....    p…~(pæq) 24....    pæ~(pæq)

25....    pæ~(p…q) 26.... qæ~(p…(~p))

Apply the stated logical equivalence to each of the statements in Exercises 27–34.

27. pæ(~p); the Commutative law 28. p…(~q); the Commutative law

29.  ~(p…(~q)); DeMorgan's Law 30.  ~(qæ(~q)); DeMorgan's Law

31....     pæ~(p…q); DeMorgan's Law 32. qæ~(p…(~p)); DeMorgan's Law
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33....    pæ((~p)…q); the Distributive Law 34. (~q)…((~p)æq); the Distributive Law.

Use logical equivalences to rewrite each of the sentences in Exercises 35–42. If possible, rewrite
more simply.

35. It is not true that both I am Julius Caesar and you are a fool.

36. It is not true that either I am Julius Caesar or you are a fool.

37. Either it’s raining and I have forgotten my umbrella, or it’s raining and I have forgotten my
hat.

38. I forgot my hat or my umbrella, and I forgot my hat or my glasses.

39. My computer crashes when it has been on a long time, and when it’s not the case that either
the air is dry or the moon is not full.

40. The study determined that the market crashed because interest rates rose, or because it was
not the case that both earnings rose and the moon was not full.

41.... The warning light will come on if the pressure drops while the temperature is high, or if the
pressure drops while not both the emergency override and the manual controls are activated.

42. The alarm will sound if the door is opened and the override button is not pushed while the
alarm is activated, or if there is motion and it is not the case that either the override button is
pushed or the alarm is not activated.

Communication and Reasoning Exercises

43. If two propositions are logically equivalent, what can be said about their truth tables?

44. If a proposition is neither a tautology nor a contradiction, what can be said about its truth
table?

45. Can an atomic statement be a tautology or a contradiction? Explain.

46. Can a statement with a single variable p be a tautology or a contradiction? Explain.

47. If A and B are two (possibly compound statements) such that AæB is a contradiction, what
can you say about A and B?

48. If A and B are two (possibly compound statements) such that A…B is a tautology, what can
you say about A and B?
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49. Your friend thinks that all tautologies are logically equivalent to one another. Is he correct?
Explain.

50. Another friend thinks that, if two statements are logically equivalent to each other, then they
must either be tautologies or contradictions. Is she correct? Explain.
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L.3 The Conditional and the Biconditional   

Consider the following statement: “If you earn an A in logic, then I’ll buy you a new car.”
It seems to be made up out of two simpler statements,

p: “you earn an A in logic,” and
q: “I will buy you a new car.”

The original statement says: if p is true, then q is true, or, more simply, if p, then q. We can
also phrase this as p implies q, and we write the statement symbolically as p’q.

Now let us suppose for the sake of argument that the original statement: “If you earn an A
in logic, then I’ll buy you a new car,” is true. This does not mean that you will earn an A in
logic. All it says is that if you do so, then I will buy you that car. Thinking of this as a promise,
the only way that it can be broken is if you do earn an A and I do not buy you a new car. With
this in mind we define the logical statement p’q as follows.

Conditional
The conditional p’q, which we read “if p, then q” or “p  implies q,” is defined by the
following truth table.

p    q   p’q

T     T       T
T     F       F
F     T       T
F     F       T

The arrow “’ ” is the conditional operator, and in p’q the statement p is called the
antecedent, or hypothesis, and q is called the consequent, or conclusion.

Note
(1) The only way that p’q can be false is if p is true and q is false—this is the case of the
“broken promise.”
(2) If you look at the truth table again, you see that we say that “p’q” is true when p is false,
no matter what the truth value of q. Think again about the promise—if you don’t get that A,
then whether or not I buy you a new car, I have not broken my promise. However, this part of
the truth table seems strange if you think of “if p then q” as saying that p causes q. The
problem is that there are really many ways in which the English phrase “if . . . then . . .” is
used. Mathematicians have simply agreed that the meaning given by the truth table above is the
most useful for mathematics, and so that is the meaning we shall always use. Shortly we’ll list
some other English phrases that we interpret as conditional statements.

Here are some examples that will help to explain each line in the truth table.
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Example 1 True Implies True

Is the following statement true or false? “If 1 + 1 = 2 then the sun rises in the east.”

Solution
Yes, since both “1 + 1 = 2” and “the sun rises in the east” are true, and the first line in the
truth table of the conditional yields a true statement. In general,

If p and q are both true, then p’q is true.

Before we go on… Notice that the statements p and q need not have anything to do with one
another. We are not saying that the sun rises in the east because 1 + 1 = 2, simply that the
whole statement is logically true.

Example 2 True Can’t Imply False

Is the following statement true or false? “When it rains, I need to water my lawn.”

Solution
No. We can rephrase this statement as “If it rains then I need to water my lawn,” which is
clearly false: if it truly does rain, then it is clearly false that I need to water my lawn. The second
line of the truth table for the conditional yields a false statement. In general,

If p is true and q is false, then p’q is false.

Before we go on… Notice that we interpreted “When p, q” as “If p then q.”

Example 3 False Implies Anything

Is the following statement true or false? “If the moon is made of green cheese, then I am a
professor of mathematics.”

Solution
True. While the first part of the statement is false, the second part could be true or false,
depending on the speaker. But, the third and fourth lines of the truth table for the conditional
both yield true statements. In general,

If p is false, then p’q is true, no matter whether q is true or not.

Before we go on… “If I had a million dollars I’d be on Easy Street.” “Yeah, and if my
grandmother had wheels she’d be a bus.” The point of the retort is that anything follows from
a false hypothesis.
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Example 4 The “Switcheroo” Law

Show that p’q ° (~p)æq.

Solution
We show the equivalence using a truth table.

p    q   p’q   ~p    (~p)æq

T     T       T
T     F       F
F     T       T
F     F       T

F         T
F         F
T         T
T         T

same

Before we go on… In other words, p’q is true if either p is false or q is true. By
DeMorgan’s Law these statements are also equivalent to ~(p…(~q)). The only way the
conditional can be false is the case of the broken promise: when p is true and q is false.

For lack of a better name, we shall call the equivalence p’q ° (~p)æq the “Switcheroo”
law.1

The fact that we can convert implication to disjunction should surprise you. In fact, behind
this is a very powerful technique. It is not too hard (using truth tables) to convert any logical
statement into a disjunction of conjunctions of atoms or their negations. This is called
disjunctive normal form, and is essential in the design of the logical circuitry making up digital
computers.

We have already seen how colorful language can be. Not surprisingly, it turns out that there
are a great variety of different ways of saying that p implies q. Here are some of the most
common:

Some Phrasings of the Conditional
We interpret each of the following as equivalent to the conditional p’q.

If p then q. p implies q.
q follows from p. Not p unless q.
q if p. p only if q.
Whenever p, q. q whenever p.
p is sufficient for q. q is necessary for p.
p is a sufficient condition for q. q is a necessary condition for p.

Notice the difference between “if” and “only if.” We say that “p only if q” means p’q
since, assuming that p’q is true, p can be true only if q is also. In other words, the only line of
the truth table that has p’q true and p true also has q true. The phrasing “p  is a sufficient

                                                
1 This name was used by Douglas R. Hofstadter in his book Gödel, Escher, Bach: An Eternal Golden Braid (Basic
Books 1979).
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condition for q” says that it suffices to know that p is true to be able to conclude that q is true.
For example, it is sufficient that you get an A in logic for me to buy you a new car. Other things
might induce me to buy you the car, but an A in logic would suffice. The phrasing “q  is
necessary for p” says that, for p to be true q must be true (just as we said for “p only if q”).

Example 5 Rephrasing a Conditional

Rephrase the sentence “If it’s Tuesday, this must be Belgium.”

Solution
Here are various ways of rephrasing the sentence:

“Its being Tuesday implies that this is Belgium.”
“This is Belgium if it’s Tuesday.”
“It’s Tuesday only if this is Belgium.”
“It can't be Tuesday unless this is Belgium.”
“Its being Tuesday is sufficient for this to be Belgium.”
“That this is Belgium is a necessary condition for its being Tuesday.”

In the exercises for §2, we saw that the commutative law holds for both conjunction and
disjunction: p…q ° q…p, and pæq ° qæp.

Question Does the commutative law hold for the conditional. In other words, is p’q
equivalent to q’p?

Answer No, as we can see in the following truth table.

p    q   p’q   q’p

T     T       T
T     F       F
F     T       T
F     F       T

T
T
F
T

not the same

Converse
The statement q’p is called the converse of the statement p’q. A conditional and its
converse are not equivalent.

The fact that a conditional can easily be confused with its converse is often used in
advertising. For example, the slogan “Drink Boors, the official beverage of the US Olympic
Team” suggests that all US Olympic athletes drink Boors (i.e., if you are a US Olympic athlete,
then you drink Boors). What it is trying to insinuate at the same time is the converse: that all
drinkers of Boors become US Olympic athletes (if you drink Boors then you are a US
Olympic athlete, or: it is sufficient to drink Boors to become a US Olympic athlete).
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Although the conditional p’q is not the same as its converse, it is the same as its so-called
contrapositive, (~q)’(~p). While this could easily be shown with a truth table (which you
will be asked to do in an exercise) we can show this equivalence by using the equivalences we
already know:

  p’q ° (~p)æq (Switcheroo)
° qæ(~p) (Commutativity of æ)
°  ~(~q)æ(~p) (Double Negative)
° (~q)’(~p) (Switcheroo)1

Contrapositive
The statement (~q)’(~p) is called the contrapositive of the statement p’q. A conditional
and its contrapositive are equivalent.

Example 6 Converse and Contrapositive

Give the converse and contrapositive of the statement “If you earn an A in logic, then I’ll buy
you a new car.”

Solution
As we noted earlier, this statement has the form p’q where p is the statement “you earn an
A” and q is the statement “I’ll buy you a new car.” The converse is q’p. In words, this is
“If I buy you a new car then you earned an A in logic.”

The contrapositive is (~q)’(~p). In words, this is “If I don’t buy you a new car, then you
didn’t earn an A in logic.”

Before we go on… Assuming that the original statement is true, notice that the converse is not
necessarily true. There is nothing in the original promise that prevents me from buying you a
new car anyway if you do not earn the A. On the other hand, the contrapositive is true. If I don’t
buy you a new car, it must be that you didn’t earn an A, otherwise I would be breaking my
promise.

It sometimes happens that we do want both a conditional and its converse to be true. The
conjunction of a conditional and its converse is called a biconditional.

                                                
1 Note that the Switcheroo law applies to any pair of statements, and says that ~AæB ° A’B, no matter what A and
B are. In the last step, we had A = (~q) and B = (~p).
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Biconditional
The biconditional, written p↔q, is defined to be the statement (p’q)…(q’p). Its truth table
is the following.

p    q   p”’q

T     T          T
T     F          F
F     T          F
F     F          T

Looking at the truth table, we can see that p↔q is true when p and q have the same truth
values and it is false when they have different truth values. Here are some common phrasings of
the biconditional.

Phrasings of the Biconditional
We interpret each of the following as equivalent to p↔q.

p if and only if q.
p is necessary and sufficient for q.
p is equivalent to q.

For the phrasing “p if and only if q,” remember that “p  if q” means q’p while “p  only
if q” means p’q. For the phrasing “p is equivalent to q,” the statements A and B are logically
equivalent if and only if the statement A↔B is a tautology (why?). We’ll return to that in the
next section. Notice that p↔q is logically equivalent to q↔p (you are asked to show this as an
exercise), so we can reverse p and q in the phrasings above.

Example 7 Rephrasing a Biconditional

Rephrase the statement “I teach math if and only if I am paid a large sum of money.”

Solution
Here are some possible rephrasings:

I am paid a large sum of money if and only if I teach math.
My teaching math is necessary and sufficient for me to be paid a large sum of money.
For me to teach math it is necessary and sufficient that I be paid a large sum of money.

Before we go on… Another possibility is: “I will not be paid a large sum of money if and only
if I do not teach math.” Why is this equivalent to the others?

L.3 Exercises

Find the truth value of each of the statements in Exercises 1–28.

1. “If 1=1, then 2=2.”
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2. “If 1=1, then 2=3.”

3. “If 1=0, then 1=1.”

4. “If 1≠0, then 2≠2.”

5. “If 1=1 and 1=2, then 1=2.”

6. “If 1=3 or 1=2 then 1=1.”

7. “If everything I say is false, then everything I say is true.”

8. “If everything I say is false, then 1=2.”

9. “A sufficient condition for 1 to equal 2 is 1=3.”

10. “1=0 is a sufficient condition for 1 to equal 2.”

11. “1=0 is a necessary condition for 1 to equal 2.”

12. “1=1 is a necessary condition for 1 to equal 2.”

13. “1=2 is a necessary condition for 1 to be unequal to 2.”

14. “1≠2 is a necessary condition for 1 to be unequal to 3.”

15. “If I pay homage to the great Den, then the sun will rise in the east.”

16. “If I fail to pay homage to the great Den, then the sun will still rise in the east.”

17. “In order for the sun to rise in the east, it is necessary that it sets in the west.”

18. “In order for the sun to rise in the east, it is sufficient that it sets in the west.”

19. “The sun rises in the west only if it sets in the west.”

20. “The sun rises in the east only if it sets in the east.”

21. “The Milky Way Galaxy will fall into a great black hole if everything I say is false.”

22. “The Milky Way Galaxy will not fall into a great black hole only if 1=1.”

23. “1=2 is a necessary and sufficient condition for 1 to be unequal to 2.”

24. “1≠2 is a necessary and sufficient condition for 1 to be unequal to 3.”
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25. “The sun will rise in the east if and only if it sets in the west.”

26. “The sun will rise in the east if and only if it does not set in the west.”

27. “In order for the sun to rise in the west, it is necessary and sufficient that it sets in the
east.”

28. “In order for the sun to rise in the east, it is necessary and sufficient that it sets in the
west.”

Construct the truth table for each of the statements in Exercises 29–40, and indicate which (if
any) are tautologies or contradictions.

29. p’(qæp) 30.... (pæq)’~p

31.... (p…q)’~p 32.... (p’~p)’~p

33.... (p’~p)’p 34.... p…(p’~p)

35. (p…~p)’q 36.... ~((p…~p)’q)

37.... p↔(pæq) 38.... (p…q)↔~p

39.... (p…~p)↔(q…~q) 40.... (pæ~p)↔(qæ~q)

Use truth tables to demonstrate the equivalences in Exercises 41–46.

41. p’q ° (~q)’(~p) 42....    ~(p’q) ° p…(~q)

43.... p’q ° (~p)æq 44.... (p’~p) ° ~p

45.... (p↔~p) ° (q↔~q) 46.... (p↔~q) ° (q↔~p)

Give the contrapositive and converse of each of the statements in Exercises 47–54, phrasing
your answers in words.

47.... “If I think, then I am.”

48. “If I do not think, then I do not exist.”

49. “If I do not think, then I am Buddha.”

50. “If I am Buddha, then I think.”

51. “These birds are of a feather only if they flock together.”
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52. “These birds flock together only if they are of a feather.”

53. “In order to worship Den, it is necessary to sacrifice beasts of burden.”

54. “In order to read the Tarot, it is necessary to consult the Oracle.”

Express each of the statements in Exercises 55–60 in equivalent disjunctive form.

55. “I am if I think.”

56. “I think if I am.”

57. “Symphony orchestras will cease to exist without government subsidy.”

58. “The education system will collapse without continued taxpayer support.”

59. “Research in the pure sciences will continue if our society wishes it.”

60. “Nuclear physicists would be out of work if their accomplishments were measured purely
by the generation of profit.”

Translate the statements in Exercises 61–70 into compound statements utilizing either the
conditional or the biconditional, and using p  for the statement "I am Julius Caesar" and q for
the statement "You are Brutus"

61. “If I am Julius Caesar then you are not Brutus.”

62. “It is not the case that if I am Julius Caesar then you are Brutus.”

63. “I am Julius Caesar only if you are not Brutus.”

64. “You are Brutus only if I am not Julius Caesar.”

65. “I am Julius Caesar if and only if you are not Brutus.”

66. “You are not Brutus if and only if I am not Julius Caesar.”

67. “Either you are Brutus, or I am Julius Caesar.”

68. “Either I am not Julius Caesar, or you are Brutus.”

69. “In order for you to be Brutus, it is necessary and sufficient that I am not Julius Caesar.”

70. “In order for you to not be Brutus, it is necessary and sufficient that I am not Julius
Caesar.”
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Communication and Reasoning Exercises

71. Give an example of an instance where p’q means that q causes p.

72. Complete the following. If p’q, then its converse, ___ , is the statement that ___ and (is/is
not) logically equivalent to p’q.

73. Complete the following sentence. If both p’q and its ____ are true, then the biconditional,
___ , is ____ .

74. If B is a tautology, why is A’B also a tautology, regardless of A?

75. If A is a contradiction, why is A’B a tautology, regardless of B?

76. If A is a tautology and B is a contradiction, what can you say about A’B?

77. If A and B are both contradictions, what can you say about A↔B?

78. Give an instance of a biconditional p↔q where neither p nor q causes the other.
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L.4 Tautological Implications and Tautological
Equivalences   

In this section we enlarge our list of “standard” tautologies by adding ones involving the
conditional and the biconditional. From now on, we use small letters like p and q to denote
atomic statements only, and uppercase letters like A and B to denote statements of all types,
compound or atomic.

We first look at some tautological implications, tautologies of the form A’B. You
should check the truth table of each of the statements we give to see that they are, indeed,
tautologies.

Modus Ponens or Direct Reasoning

[(p’q)…p]’q

In words: If an implication and its premise are both true, then so is its conclusion.

For example, if p: “I love math” and q: “I will pass this course,” then we have the
following tautology:

If my loving math implies that I will pass this course, and if I do love math, then I
will pass this course.

We can write a statement like this in argument form1 as follows:

If I love math, then I will pass this course.
I love math.

Therefore, I will pass this course.

In symbol form again, we write the following.

p’q
p

∴   q

What appears above the line in an argument is what is “given;” what appears below is the
conclusion we can draw.

Modus ponens is the most direct form of everyday reasoning, hence its alternate name
“direct reasoning.” When we know that p implies q and we know that p is true, we can
conclude that q is also true. This is sometimes known as affirming the hypothesis. You
should not confuse this with a fallacious argument like: ”If I were an Olympic athlete then I
would drink Boors. I do drink Boors, therefore I am an Olympic athlete.” (Do you see why

                                                
1 We shall define arguments precisely in Section 6, but we shall start using them informally now.
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this is nonsense? See the preceding section.) This is known as the fallacy of affirming the
consequent. There is, however, a correct argument in which we deny the consequent:

Modus Tollens or Indirect Reasoning

[(p’q)…(~q)]’(~p)

In words: If an implication is true but its conclusion is false, then its premise is false.

In argument form, this is:

p’q
~q

∴   ~p

For example:

If I love math, then I will pass this course.
I will not pass this course.

Therefore, I must not love math.

This argument is not quite so direct as before; it contains a little twist: “If I loved math I
would pass this course. However, I will not pass this course. Therefore, it must be that I don’t
love math (else I would pass this course).” Hence the name “indirect reasoning.”

Note that, again, there is a similar, but fallacious argument to avoid: “If I were an Olympic
athlete then I would drink Boors. However, I am not an Olympic athlete. Therefore, I won’t
drink Boors.” This is a mistake Boors certainly hopes you do not make!

Simplification

(p…q)’p
and

(p…q)’q

In words, the first says: If both p and q are true, then, in particular, p is true.

Quick Example
If the sky is blue and the moon is round, then (in particular) the sky is blue.
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Addition

p’(pæq)
and

q’(pæq)

In words, the first says: If p is true, then we know that either p or q is true.

Quick Example
If the sky is blue, then either the sky is blue of some ducks are kangaroos.

Note that it doesn’t matter in this example whether q is true or not. As long as we know that
p is true then pæq must also be true.

Warning The following are not tautologies:
(pæq)’p
p’(p…q)

In the exercise set you will be asked to check that these are, indeed, not tautologies.

Disjunctive Syllogism or One-or-the-Other

[(pæq)…(~p)]’q
and

[(pæq)…(~q)]’p

In words: If either p or q is true, and one is known to be false, then the other must be true.

Quick Example
If either the cook or the butler did it, but we know that the cook didn’t do it, then the butler did
it.

Transitivity

[(p’q)…(q’r)]’(p”r)

In words: If q is implied by p and r is implied by q, then r is implied by p.

Quick Example
When it rains the ground gets muddy and when the ground is muddy my shoes get dirty. So,
when it rains my shoes get dirty.

We sometimes think of transitivity as a “chain rule,” allowing us to chain arrows together.
In other words, follow the arrows: An arrow from p to q and an arrow from q to r give us an
arrow all the way from p to r.
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Also important are the tautological equivalences, tautologies of the form A↔B. Recall
that the statement A↔B is true exactly when A and B have the same truth value. When A and B
are compound statements, this must be true for all truth values of the atomic statements used in
A and B. This means that A and B are logically equivalent statements.

Logical Equivalence and Tautological Equivalence
To say that A ° B is the same as saying that A↔B is a tautology.

So, every logical equivalence we already know gives us a tautological equivalence. Here is an
example. We give lots more in the table at the end of the section.

Double Negation

p↔ ~(~p)

Since the biconditional can be read either way, we get two argument forms from each
tautological equivalence. In this case, they are:

p

∴   ~(~p)
and

~(~p)

∴   p

We conclude this section with a list of useful tautologies.
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A. Tautological Implications

Symbolic Form Argument Form Name
[(p’q)…p]’q p’q

p
______

∴   q

Modus Ponens
(Direct Reasoning)

[(p’q)…~q]’~p p’q
~q
______

∴   ~p

Modus Tollens
(Indirect Reasoning)

(p…q)’p
(p…q)’q

p…q p…q
_ _ _ _ _ _ _ _

∴   p ∴   q

Simplification

p’(pæq)  p
_______

∴   pæq

Addition

[(pæq)…(~p)]’q
[(pæq)…(~q)]’p

pæq pæq
~p ~q
_ _ _ _ _ _ _ _

∴   q ∴   p

Disjunctive Syllogism
(One-or-the-Other)

[(p’q)…(q’r)]’(p’r) p’q
q’r
_______

∴   p’r

Transitivity

B. Tautological Equivalences
Symbolic Form Argument Forms Name

p↔~(~p) p ~(~p)
_______ _______

∴   ~(~p) ∴   p

Double Negative

p…q↔q…p
pæq↔qæp

p…q pæq
_______ _______

∴   q…p ∴   qæp

Commutative Laws

(p…q)…r↔p…(q…r)

(pæq)ær↔pæ(qær)

(p…q)…r p…(q…r)
_________ ____________

∴  p…(q…r) ∴  (p…q)…r

(pæq)ær pæ(qær)
_________ ____________

∴  pæ(qær) ∴  (pæq)ær

Associative Laws

~(pæq)↔(~p)…(~q)

~(p…q)↔(~p)æ(~q)

~(pæq) (~p)…(~q)
___________ ____________

∴  (~p)…(~q) ∴   ~(pæq)

~(p…q)          (~p)æ(~q)
_________       ____________

∴   (~p)æ(~q)   ∴   ~(p…q)

DeMorgan's Laws
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p…(qær)↔(p…q)æ(p…r)

pæ(q…r)↔(pæq)…(pær)

p…(qær) (p…q)æ(p…r)
___________ ____________

∴ (p…q)æ(p…r) ∴ p…(qær)

pæ(q…r) (pæq)…(pær)
_______________ ____________

∴ (pæq)…(pær) ∴ pæ(q…r)

Distributive Laws

p…p↔p

pæp↔p

p…p p
_________ _________

∴   p ∴  p…p

pæp p
_________ _________

∴   p ∴  pæp

Idempotent Laws

(p’q)↔(~pæq) p’q ~pæq
_______ _______

∴   ~pæq ∴   p’q

Switcheroo

(p’q)↔(~q’~p) p’q ~q’~p
_______ _______

∴   ~q’~p ∴   p’q

Contrapositive

(p↔q)↔((p’q)…(q’p)) p↔q (p→q)…(q→p)
______________ ____________

∴ (p→q)…(q→p) ∴   p↔q

Meaning of ↔
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L.4 Exercises

Use truth tables to check the tautologies in Exercises 1–10 (these refer to the lists at the end of
the section).

1. Modus Tollens 2. Simplification: p…q’p

3. Addition 4. Disjunctive Syllogism: [(pæq)…(~p)]’q

5. Transitivity 6. Double Negative

7. Commutative Law: (p…q)↔(q…p) 8. Commutative Law: (pæq)↔(qæp)

9.... Switcheroo 10. Contrapositive.

Show that the statements in Exercises 11–16 are not tautologies by giving examples of
statements p and q for which these implications are false.

11. (pæq)’p 12.... p’(p…q)

13. (p’q)’(q’p) 14.... ~(p…q)’[(~p)…(~q)]

15. (p’q)’(~p’~q) 16....    ((p’q)…(p’r))’(q’r)

Write each of the statements in Exercises 17–32 in symbolic form, and then decide whether it is
a tautology or not.

17. If I am hungry and thirsty, then I am hungry.

18. If I am hungry or thirsty, then I am hungry.

19. If it’s not true that roses are red and violets are blue, then roses are not red and violets are
not blue.

20. If roses are not red or violets are not blue, then it’s not true that roses are red and violets are
blue.

21. For me to bring my umbrella it’s necessary that it rain. Therefore if it does not rain I will
not bring my umbrella.

22. For me to bring my umbrella it’s sufficient that it rain. Therefore if it does not rain I will not
bring my umbrella.

23. For me to bring my umbrella it’s necessary and sufficient that it rain. Therefore if it does
not rain I will not bring my umbrella.
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24. For me to bring my umbrella it’s necessary and sufficient that it rain. Therefore if I do not
bring my umbrella it will not rain.

25. For me to pass math it is sufficient that I have a good teacher. Therefore, I will either have a
good teacher or I will not pass math.

26. For me to pass math it is necessary that I have a good teacher. Therefore, I will either have a
good teacher or I will not pass math.

27. I am either tired or hungry, but I am not tired, so I must be hungry.

28. I am either smart or athletic, and I am athletic, so I must not be smart.

29. To get good grades it is necessary to study, and if you get good grades you will get a good
job. Therefore, it is sufficient to study to get a good job.

30. To get good grades it is sufficient to study, and to get a good job it is necessary to get good
grades. Therefore, if you study you will get a good job.

31. To get good grades it is necessary to study, but John did not get good grades. Therefore
John did not study.

32. To get good grades it is necessary and sufficient to study, but Jill did not study. Therefore
Jill will not get good grades.

Communication and Reasoning Exercises

33. How would you convert a tautology of the form AæB into a tautological implication?

34. How would you convert a tautology of the form (A’B)…(C’D) into two tautological
implications?

35. Complete the following sentence. A tautological equivalence can be expressed as ___
tautological implications.

36. Complete the following sentence. If A’(B’C) is a tautological implication, then, given
___ and ___, we can always deduce ___ .
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L.5 Rules of Inference   

In the preceding section, we introduced the “argument form” of a tautological implication.
For example, we wrote Modus Ponens in the following way:

p’q
p

∴   q

We think of the statements above the line, the premises, as statements given to us as true, and
the statement below the line, the conclusion, as a statement that must then also be true.

Our convention has been that small letters like p stand for atomic statements. But, there is
no reason to restrict Modus Ponens to such statements. For example, we would like to be able
to make the following argument:

If roses are red and violets are blue, then sugar is sweet and so are you.
Roses are red and violets are blue.
Therefore, sugar is sweet and so are you.

In symbols, this is

(p…q)’(r…s)
p…q

∴   r…s

So, we really should write Modus Ponens in the following more general and hence usable form:

A’B
A

∴   B

where, as our convention has it, A and B can be any statements, atomic or compound.
In this form, Modus Ponens is our first rule of inference. We shall use rules of inference

to assemble lists of true statements, called proofs. A proof is a way of showing how a
conclusion follows from a collection of premises. Modus Ponens, in particular, allows us to say
that, if A’B and A both appear as statements in a proof, then we are justified in adding B as
another statement in the proof. (We shall say more about proofs in the next section.)
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Example 1 Applying Modus Ponens

Apply Modus Ponens to statements 1 and 3 in the following list.

1. (pæq)’(r…~s)
2. ~r’s
3. pæq

Solution
All three statements in this list are compound statements. We can rewrite them in the following
way.

1. A’B
2. C
3. A

Recall that Modus Ponens tells us that, if the two statements A’B and A appear in a list, we
can write down B as well. Applying Modus Ponens, then, to lines 1 and 3 (line 2 doesn’t get
involved here), we can lengthen our list to get the following.

1. (pæq)’(r…~s) Premise
2. ~r’s Premise
3. pæq Premise
4. r…~s 1, 3 Modus Ponens

On the right we have recorded the justification for each line. Lines 1, 2, and 3 were given to us
as premises, but we got line 4 by applying Modus Ponens to lines 1 and 3.

Before we go on... The above list of four statements consitutes a proof that Statement 4 follows
from the premises 1–3, and we refer to it as a proof of the argument

 (pæq)’(r…~s) Premise
~r’s Premise
pæq Premise
_______________
∴   r…~s Conclusion

In general, a rule of inference is an instruction for obtaining new true statements from a list
of statements we already know or assume to be true. If you were studying logic as a
mathematics or philosophy major, you might use the smallest collection of rules of inference
you could get away with. We’ll be more generous and give you more tools to work with. For
example, any of the tautologies listed in the preceding section gives us a rule of inference.
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Rule of Inference T1

Any tautology that appears in the lists at the end of the preceding section may be used as a rule
of inference.

Example 2 Applying Modus Tollens

Apply Modus Tollens to the following premises.

1. (pæq)’(r…~s)
2. ~(r…~s)
3. (pæq)’p

Solution
The given list can be written like this:

1. A’B
2. ~B
3. A’C

As a rule of inference, Modus Tollens has the following form.

A’B
~B

∴   ~A

This matches the first two premises, so we can apply Modus Tollens to get the following.

1. (pæq)’(r…~s) Premise
2. ~(r…~s) Premise
3. (pæq)’p Premise
4. ~(pæq) 1, 2 Modus Tollens

Before we go on… We used A’C to represent the third premise when thinking about how to
use Modus Tollens. It didn’t really matter how we represented it; we could just as easily have
written D. Since we're not using this statement at all, it doesn't matter how we represent it. On
the other hand, we needed to write the first two statements as A’B and ~B in order to see that
we could apply Modus Tollens to them. Part of learning to apply the rules of inference is
learning how to analyze the structure of statements at the right level of detail.

Recall that a tautology is a statement that is always true. As such, we should be allowed to
add it to a list of true statements. This give us our next rule of inference.
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Rule of Inference T2

Any tautology that appears in the lists at the end of the preceding section may be added as a
new line in a proof.

Example 3 Using T2

Justify each step in the following.

1. p’~(~p)
2. ~(~p)’p
3. p’p

Solution
Each of the first two steps is an application of rule of inference T2. Recall that p↔~(~p) is a
tautology, called Double Negation. We permit ourselves to break a tautological equivalence into
its two tautological implications and write down either one. In this case, we wrote down both.
The third step is an application of rule of inference T1, using Transitivity. Thus, we can write
our justifications like this:

1. p’~(~p) Double Negative
2. ~(~p)’p Double Negative
3. p’p 1, 2 Transitivity

Before we go on… What we have just written down is a proof of the following argument, in
which there are no premises:

∴   p’p

Rules T1 and T2 are the two we shall use most often. The next two are used less often, but
are sometimes necessary.

Rule of Inference S (Substitution)

We can replace any part of a compound statement with a tautologically equivalent statement.

As with T2, we rely on our list at the end of the preceding section to decide what statements
are tautologically equivalent. Notice that Rule S is the same as the mathematical rule of
substitution: in any equation, if part of an expression is equal to something else, then we can
replace it by that something else.

Example 4 Substitution

Justify the third and fourth steps in the following proof.
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1. (~(~p))’q Premise
2. p Premise
3. p’q
4. q

Solution
The third line resembles the first except that ~(~p) has been replaced by p. But, that replacement
can be justified by the substitution rule because the Double Negation tautology tells us that p is
tautologically equivalent to ~(~p). To get the fourth line we simply apply Modus Ponens to the
second and third lines. Thus, we can fill in the following justifications.

1. (~(~p))’q Premise
2. p Premise
3. p’q 1, Substitution
4. q 2, 3 Modus Ponens

Rule of Inference C (Conjunction)

If A and B are any two lines in a proof, then we can add the line A…B to the proof.

This is just the obvious fact that, if we already know A and B to be true, then we know that
A…B is true.

Question Are we done yet?

Answer Not quite. Recall that we will generally be given premises that we are to assume true.
We get to write them down as steps in our proof as well, so we may as well record one last rule
of inference.

Rule of Inference P (Premise)

We can write down a premise as a line in a proof.

Of course, we cannot make up premises as we go along, they will be given to us at the start.
It is traditional, but not necessary, to write down all of the premises as the first lines of a proof.
On the other hand, some people like to write them down only as they are needed.

In the following rather tricky proof, we start with two premises, and shall manage to use
every single rule of inference except for T2:
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Example 5 The Rules of Inference

Fill in the justifications in the following proof.

1. a’q Premise
2. b’q Premise
3. ~aæq
4. ~bæq
5. (~aæq)…(~bæq)
6. (~a…~b)æq
7. ~(aæb)æq
8. (aæb)’q

Solution
Here are the justifications, with the type of rule of inference noted after each:

1. a’q Premise (P)
2. b’q Premise (P)
3. ~aæq 1, Switcheroo (T1)
4. ~bæq 2, Switcheroo (T1)
5. (~aæq)…(~bæq)  3, 4 Conjunction (C)
6. (~a…~b)æq 5, Distributive Law1 (T1)
7. ~(aæb)æq 6, DeMorgan (S)
8. (aæb)’q 7, Switcheroo (T1)

Before we go on… This proves shows the validity of the following argument:

a’q
b’q

∴   (aæb)’q

In other words, if each of a and b implies q, then if either one is true then so is q. This should
be obvious if you think about it a bit, but its proof is not!

                                                
1 Note that we have used the Distributive law “backwards.” That is, we have used it in the following form (as listed
among our tautological equivalences):

(AæC)…(BæC)
___________
∴  (A…B)æC
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L.5 Exercises

In each of Exercises 1–34, supply the missing statement or reason, as the case may be. (To
make life simpler, we shall allow you to write ~(~p) as just p whenever it occurs. This saves an
extra step in practice.)

Statement Reason Statement Reason
1. 1. p’~q Premise 2. 1. ~p’q Premise

2. p Premise 2. ~p Premise
3. - - - - 1,2 Modus Ponens 3. - - - - 1,2 Modus Ponens

3. 1. (~pæq)’~(q…r) Premise 4. 1. (~p…q)’(q…~r) Premise
2. ~pæq Premise 2. ~p…q Premise
3. - - - - 1,2 Modus Ponens 3. - - - - 1,2 Modus Ponens

5. 1. (~pæq)’~(q…r) Premise 6. 1. (~p…q)’(q…~r) Premise
2. q…r Premise 2.~(q…~r) Premise
3. - - - - 1,2 Modus Tollens 3. - - - - 1,2 Modus Tollens

7. 1. ~(~pæq) Premise 8. 1. ~(p…~q) Premise
2.  - - - - 1, DeMorgan 2. - - - - 1, DeMorgan

9. 1. (p…r)’~q Premise 10. 1. (~p…q)’(q…~r) Premise
2. ~q’r Premise 2. (q…~r)’s Premise
3. - - - - 1,2 Transitive Law 3. - - - - 1,2 Transitive Law

11. 1. (p…r)’~q Premise 12. 1. (~p…q)’(q…~r) Premise
2. ~q’r Premise 2. (q…~r)’s Premise
3. ~r Premise 3. ~s Premise
4. - - - - 1,2 Transitive Law 4. - - - - 1,2 Transitive Law
5. - - - - 3,4 Modus Tollens 5. - - - - 3,4 Modus Tollens

13. 1. (p’q)ær Premise 14. 1. ~(p…q)æs Premise
2. ~r Premise 2. ~s Premise
3. - - - - 1,2 Disjunctive 3. - - - - 1,2 Disjunctive

       Syllogism        Syllogism

15. 1. p’(r…q) Premise 16. 1. (pæq)’r Premise
2. ~r Premise 2. ~r Premise
3. - - - - 2, Addition of ~q 3. - - - - 1,2 Modus Tollens
4. - - - - 3, DeMorgan 4. - - - - 3, DeMorgan
5. - - - - 1,4 Modus Tollens 5. - - - - Simplification1  

                                                
1 Use simplification in the following form:

A…B
____
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17. 1. (p…q)’r Premise 18. 1. p’r Premise
2. q Premise 2. p Premise
3. p Premise 3. s Premise
4. - - - - 3,2 Rule C 4. - - - - 1,2 Modus Ponens
5. - - - - 1,4 Modus Ponens 5. - - - - 3,4 Rule C

19. 1. ~(~pæq)’p…~q - - - - 20. 1. [(~p’q)…~q]’p - - - -

21. 1. p’~(q…r) Premise 22. 1. (s…t)’(q…~r) Premise
2. q…r Premise 2. (s…t) Premise
3. ~p - - - - 3. q…~r - - - -

23. 1. ~pæ(r’s) Premise 24. 1. ~p’q Premise
2.  p’(r’s) - - - - 2. ~pæ~q - - - -

25. 1. ~[p’~(q…r)] Premise 26. 1. (~p…~q)’p Premise
2. ~[~pæ~(q…r)] - - - - 2. ~(~p…~q)æp - - - -
3. p…(q…r) - - - - 3. (pæq)æp - - - -

27. 1.(pæq)’(r…s) Premise 28. 1. (pæq)æ~r Premise
2. p Premise 2. ~p…~q Premise
3. pæq - - - - 3. ~(pæq) - - - -
4. r…s - - - - 4. ~r - - - -
5. r - - - - 5. ~ræs - - - -

29. 1. p’~q Premise 30. 1. (pæq)’(ræ~s) Premise
2. ~q’~r Premise 2. ~r…s Premise
3. (r’~p)’t Premise 3. ~(ræ~s) - - - -
4. p’~r - - - - 4. ~(pæq) - - - -
5. r’~p - - - - 5. ~p…~q - - - -
6. t - - - - 6. ~p - - - -

                                                                                                                                                            
∴  B
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31.* 1. p…~p Premise 32. 1. ~p Premise
2. p - - - - 2.  p Premise
3. ~p - - - - 3. ~pæ~p - - - -
4. ~pæq - - - - 4. p’~p - - - -
5. p’q - - - - 5. pæp - - - -
6. q - - - - 6. ~p’p - - - -

33. 1. p’~(~p) - - - - 34. 1. ~pæp Premise
2. p’p - - - - 2. t Premise
3. ~pæp - - - - 3. tæ~p - - - -
4. (~pæp)æ~q - - - - 4. ~pæt - - - -
5. ~pæ(pæ~q) - - - - 5. (~pæp)…(~pæt) - - - -
6. ~pæ(~qæp) - - - - 6. ~pæ(p…t) - - - -
7. p’(~qæp) - - - -
8. p’(q’p) - - - -

Convert each of Exercises 35–40 into a symbolic proof, and supply the justifications for each
step.

35. For me to carry my umbrella it is necessary that it rain. When it rains I always wear my hat.
Today I did not wear my hat. Therefore, it must not be raining, and so I am not carrying my
umbrella.

36. For me to take my umbrella it is sufficient that it rain. For me to wear my hat it is necessary
that it rain. I am wearing my hat today. Therefore, it must be raining, and so I must have taken
my umbrella.

37. You cannot be both happy and rich. Therefore, you are either not happy, or not rich. Now
you do appear to be happy. Therefore, you must not be rich.

38. If I were smart or good-looking, I would be happy and rich. But I am not rich. So it’s true
that either I’m not happy or I’m not rich. In other words, I am not both happy and rich.
Therefore I am not smart or good-looking. In other words I am not smart and neither am I
good-looking. In particular, I am not smart.

39. If interest rates fall, then the stock market will rise. If interest rates do not fall, then housing
starts and consumer spending will fall. Now, consumer spending is not falling. So, it’s true that
housing starts are not falling or consumer spending is not falling, that is, it is false that housing

                                                
* This is a proof that, if we assume the contradiction p…(~p) true, then q follows, no matter what q is. In argument
form:

p…(~p)
____
∴  q

In other words, if you permit a contradiction in an argument, then everything is true! This proof is discussed again in

the next section.
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starts and consumer spending are both falling. This means that interest rates are falling, so the
stock market will rise.

40. If interest rates or the bond market fall, then the stock market will rise. If interest rates do
not fall, then housing starts will fall. Housing starts are rising, so interest rates must be falling.
Therefore, it is true that interest rates or the bond market are falling, and so the stock market will
rise.

Communication and Reasoning Exercises

41. Complete the following sentence. The Modus Tollens rule of inference says that, if both
___ and ___ appear on a list of statements known to be true, then we can add ___ .

42. Complete the following sentence. The Modus Ponens rule of inference says that, if both
___ and ___ appear on a list of statements known to be true, then we can add ___ .

43. Modify Example 5 to produce a proof that uses every type of inference rule we have
discussed. (Try replacing q by b and referring to Example 3.)

44. Explain why the following is not a reasonable candidate for a new rule of inference:
A

∴  A…B
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L.6 Arguments and Proofs   

Let us now make precise the notions of argument and proof. In Example 5 in the preceding
section we saw the following argument.

a’q
b’q

∴   (aæb)’q

Precisely, an argument is a list of statements called premises followed by a statement called
the conclusion. (We allow the list of premises to be empty, as in Example 3 in the preceding
section.) We say that an argument is valid if the conjunction of its premises implies its
conclusion. In other words, validity means that if all the premises are true, then so is the
conclusion. Validity of an argument does not guarantee the truth of its premises, so does not
guarantee the truth of its conclusion. It only guarantees that the conclusion will be true if the
premises are.

Arguments and Validity

An argument is a list of statements called premises followed by a statement called the
conclusion.

P1

P2

…
Pn

_____
∴   C

If, as above, the premises are P1 through Pn and the conclusion is C, then the argument is said to
be valid if the statement

(P1…P2… . . . …Pn) ’ C

is a tautology.

Question To show the validity of an argument like

a’q
b’q

∴   (aæb)’q

what we need to do is check that the statement [(a’q)…(b’q)]’[(aæb)’q] is a tautology.
So to show that an argument is valid we need to construct a truth table, right?
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Answer Well, that would work, but there are a couple of problems. First, the truth table can get
quite large. The truth table for [(a’q)…(b’q)]’[(aæb)’q] has eight rows and nine
columns. It gets worse quickly, since each extra variable doubles the number of rows.

Second, checking the validity of an argument mechanically by constructing a truth table is
almost completely unenlightening; it gives you no good idea why an argument is valid. We’ll
concentrate on an alternative way of showing that an argument is valid, called a proof, that is far
more interesting and tells you much more about what is going on in the argument.

Lastly, while truth tables suffice to check the validity of statements in the propositional
calculus, they do not work for the predicate calculus we will begin to discuss in the following
section. Hence, they do not work for real mathematical arguments. One of our ulterior motives
is to show you what mathematicians really do: They create proofs.

Question OK, so what is a proof?

Answer Informally, a proof is a way of convincing you that the conclusion follows from the
premises, or that the conclusion must be true if the premises are. Formally, a proof is a list of
statements, usually beginning with the premises, in which each statement that is not a premise
must be true if the statements preceding it are true. In particular, the truth of the last statement,
the conclusion, must follow from the truth of the first statements, the premises. How do we
know that each statement follows from the preceding ones? We cite a rule of inference that
guarantees that it is so.

Proofs

A proof of an argument is a list of statements, each of which is obtained from the preceding
statements using one of the rules of inference T1, T2, S, C, or P. The last statement in the proof
must be the conclusion of the argument.

As an example, we have the following proof of the argument given above, which we
considered in the preceding section:

1. a’q Premise
2. b’q Premise
3. ~aæq 1, Switcheroo
4. ~bæq 2, Switcheroo
5. (~aæq)…(~bæq)  3, 4 Conjunction
6. (~a…~b)æq 5, Distributive Law
7. ~(aæb)æq 6, DeMorgan
8. (aæb)’q 7, Switcheroo
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It is reassuring, but not at all obvious, that every valid argument in the propositional calculus
has a proof1. Equally reassuring is the fact that no invalid argument has a proof. The only way
to learn to find proofs is by looking at lots of examples and doing lots of practice. In the
following examples we’ll try to give you some tips as we go along.

Example 1 Modus Ponens

Proof the following valid argument (which we saw at the beginning of the preceding section).

(p…q)’(r…s)
p…q
___________
∴   r…s

Solution
As we mentioned earlier, part of finding a proof is recognizing the form of what you have to
work with. In this case, the argument we are given has the following form.

A’B
A

∴  B

But this is nothing more than Modus Ponens. Thus, we get the following one-step proof.

1. (p…q)’(r…s) Premise
2. p…q Premise
3. r…s 1, 2 Modus Ponens

Before we go on… Here is a case in which a proof is much shorter than a truth table. Since
there are four variables, the truth table would have 16 rows. Also, the proof shows you that the
argument is just an elaborate version of Modus Ponens.

Modus Ponens and Modus Tollens are, perhaps, the most commonly used rules of
inference. You should get used to looking for places you can apply them.

                                                
1 This does not apply to the predicate calculus, and in particular it does not apply to the arguments used in real
mathematics. The logician Kurt Gödel shook the mathematical world in 1931 when he showed that there are valid
mathematical arguments that have no proofs! This result is known as Gôdel’s Incompleteness Theorem.
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Example 2 Modus Tollens

Prove the following valid argument.

p…q
r’(~p)
_______
∴  ~r

Solution
Looking at the second premise and the conclusion, it looks like we should use Modus Tollens.
However, to do that we would need to know that p is true, since Modus Tollens tells us that p
and r’(~p) together give us ~r. How do we get p by itself? Since we are given p…q, we can
use Simplification. Thus, we get the following proof.

1. p…q Premise
2. r’(~p) Premise
3. p 1, Simplification
4. ~r 2, 3 Modus Tollens

Before we go on… Notice that, when thinking about how to do the proof, we worked
backwards from what we wanted. This is an enormously useful technique. Sometimes you need
to work forward from what you are given and also backwards from what you want, until the two
meet in the middle.

Rule C plays an important role in the next proof.

Example 3 Rule C Invoked

Prove the following valid argument.

p’a
p’b
p
________
∴  a…b

Solution We can get both a and b individually using Modus Ponens. To get their conjunction,
all we need do is invoke Rule C.
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1. p’a Premise
2. p’b Premise
3. p Premise
4. a 1, 3 Modus Ponens
5. b 2, 3 Modus Ponens
6. a…b 4, 5 Rule C

Example 4 Strategy

Prove the following valid argument

p’(qær)
p
~r
_________
∴   q

Solution
Let us think of a strategy for finding a proof. We first examine what we need.
1. We need q. The only place q appears in the premises is in the first, as part of the consequent,
qær. We can pull out the consequent using the first two premises and Modus Ponens.
2. To get q alone from qær we need to exclude r. But the third premise says that r is false, so
we can use Disjunctive Syllogism to complete the proof.

Thus, we get the following proof.

1. p’(qær) Premise
2. p Premise
3. ~r Premise
4. qær 1, 2 Modus Ponens
5. q 3, 4 Disjunctive Syllogism

Before we go on… Again, notice the back-and-forth thought process. We started to work
backwards from q. We noticed that, working forwards, we could get qær. Working backwards
from q again, we noticed that Disjunctive Syllogism would make the ends meet.

Example 5 More Strategy

Prove the following valid argument

(pær)’(s…t)
p
_________
∴   t
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Solution Here is a strategy:
1. We need t. This occurs in the consequent of the first premise. We could get this by Modus
Ponens if we knew that pær were true.
2. All we know is that p is true from the second premise. But the Addition rule will give us pær.
3. Combining (1) and (2) will give us the consequent s…t. To get t on its own, we can then use
simplification:

1. (pær)’(s…t) Premise
2. p Premise
3. pær 2, Addition
4. s…t 1, 3 Modus Ponens
5. t 4, Simplification

Example 6 Working Backwards

Prove the following valid argument.

a’(b…c)
~b
________
∴   ~a

Solution
1. We need ~a, which occurs as the negation of the antecedent in the first premise. We could
get this using Modus Tollens, if we knew that b…c was false.
2. Thus, we have a new goal: Show ~(b…c). What we have is ~b. We can make these look closer
by applying DeMorgan’s Law to rewrite ~(b…c) as (~b)æ(~c).
3. Now we recognize that we can use Addition to get (~b)æ(~c) from ~b.

This gives us the following proof.

1. a’(b…c) Premise
2. ~b Premise
3. ~bæ~c 2, Addition
4. ~(b…c) 3, DeMorgan
5. ~a 1, 4 Modus Tollens

Before we go on… This time we worked almost entirely backwards. However, we must write
the proof forwards. This is a common complaint when students first start to do proofs in
symbolic logic or in mathematics. The proof does not follow the train of thought that went into
finding it. Often, the thought process is exactly the reverse of what the proof suggests.

Another point to keep in mind is that there are often many different proofs of a given valid
argument. Here is another proof of the argument above:
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1. a’(b…c) Premise
2. ~b Premise
3. ~(b…c)’(~a) 1, Contrapositive
4. ~bæ~c 2, Addition
5. ~(b…c) 4, DeMorgan
6. ~a 3, 5 Modus Ponens

Constructing a proof is a little like playing a game of chess. You need to pick the right moves,
out of all that are possible, to get you to your goal.

Example 7 Working Forwards

Prove the following valid argument.

s’r
(pæq)’(~r)
(~s)’(~q’r)
p
_____________
∴   q

Solution
1. We need to end up with q alone. Now, q appears in both the second and third premises, and it
is not clear at this point which to focus on. Perhaps we should look at what we have and see
what we can get working forwards.
2. The last premise, p, is the simplest and so should be the easiest to do something with. It looks
like we should be able to combine it with the second using Modus Ponens. In fact, we can use
Addition to get pæq from p and then use Modus Ponens to get ~r from the second premise.
3. Now we can combine ~r with the first premise to get ~s by Modus Tollens.
4. Things are moving along nicely. We can combine ~s with the third premise to get ~q’r,
using Modus Ponens.
5. Remembering that we still have ~r, we can use Modus Tollens now to get q, which is what we
wanted!

This gives us the following proof.

1. s’r Premise
2. (pæq)’~r Premise
3. ~s’(~q’r) Premise
4. p Premise
5. pæq 4, Addition
6. ~r 4, 2 Modus Ponens
7. ~s 1, 6 Modus Tollens
8. ~q’r 3, 7 Modus Ponens
9. q 6, 8 Modus Tollens
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As the preceding example shows, not all proofs are easy to find. Sometimes you have to
fiddle a bit to get one. If the line of argument you’re trying doesn’t pan out, experiment with
something else. Here are some things to try that often help:

1. Replace an implication with its contrapositive.
2. Use DeMorgan’s Law to rewrite a negation of a conjunction or disjunction.
3. Use any of the other tautological equivalences to rewrite a statement.
4. Take a coffee break to clear your head.

Above all, be persistent. After you take that coffee break, get back to work!

The next argument basically asserts that if we permit a single contradiction in an argument,
then anything is possible. (A proof appeared in the exercise set at the end of the last section, but
it is interesting enough to warrant further inspection.)

Example 8 Slippery Argument

Prove and comment on the argument

p…(~p)
_____

∴   q

Solution Notice that the premise p…(~p) is a contradiction. If you write out the truth table for
[p…(~p)]’q, you can see why this is a valid argument. But let us try to come up with a proof.
1. The easiest way to begin is to use simplification to “break up” the statement p…(~p) into the
two separate statements p and ~p.
2. Notice that q does not occur anywhere among the premises. One way we can get it out of thin
air is to use Addition, so let's try adding it to p to get pæq.
3. Now the statement ~p that we got from (1) tells us that p is false, so that this, combined with
pæq, gives us q, by Disjunctive Syllogism.

1. p…(~p) Premise
2. p 1, Simplification
3. ~p 1, Simplification
4. pæq 2, Addition
5. q 3, 4 Disjunctive Syllogism

Before we go on...Notice that this proof is one step shorter than the one you saw in the
exercises. This illustrates again the fact that there may be several different proofs of the same
argument. The simplest proof (which often means the shortest one) is considered the most
elegant.

We were also asked to comment on the argument. Look at  the premise: it is making the
contradictory claim that both p and ~p are true. What the argument says is that, once you allow
a contradiction into an argument, anything is true. Notice that the conclusion, q, has nothing to
do with the premise.

In general, a false antecedent implies any consequent, true or not. Here is an example which
illustrates how to make this claim precise: “If 0 = 1, then I am the King of England” is a true
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statement no matter who says it. To write this as an argument, let us take p to be the statement
“0 = 1” and q to be the statement “I am the King of England.” Then our statement is
equivalent to the argument

p
____

∴   q

But that's not all! As mathematicians, we happen to know that the statement p is false, so that ~p
is a true statement. Thus we are really arguing that

p
~p
____

∴   q

By Rule C, this is really the same as

p…(~p)
______

∴   q

which we know is valid.*

Example 9 An Invalid Argument

Show that the following argument is not valid.

p’q
q
_____
∴   p

Solution
Proofs can only be used to show that an argument is valid. If you try to prove this argument,
you’ll get nowhere. It looks sort of like Modus Ponens, except that it’s backwards. It looks sort
of like Modus Tollens, but the negations are missing. It just looks wrong, and it is.

To show that an argument is invalid we need to find a counterexample. This is an
assignment of truth values to the variables that makes the premises true but the conclusion false,
thus showing that the conclusion does not follow from the premises.

                                                
* When mathematician and philosopher Bertrand Russell claimed to a colleague that, from a false statement he could
prove anything, he was challenged as follows:
“Prove that, if 0 = 1, then you are the King of England.”
To this he replied, “Simple. If 0 = 1, then, adding 1 to each side, 1 = 2. Since the King and I are two, it follows that
the King and I are one, and I am the King of England!”
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In this case, for the conclusion to be false we need p to be F. For the premises to be true we
certainly need q to be T. All we need to do is check that both premises are then true: The first
premise is p’q, which is true when p is F and q is T. This is our counterexample.

A counterexample is more vivid if we illustrate it with concrete statements. For p, which
must be F, let us take the statement “0 = 1.” For q, which must be T, let us take the statement
“The earth is round.” Our argument then has the following, patently ridiculous, form:

If 0 = 1, then the earth is round. True
The earth is round. True
Therefore, 0 = 1. False.

Before we go on… This particular argument is a common fallacy know as the fallacy of
affirming the consequent. It is also know as the fallacy of the converse since it seems to
come from a confusion of p’q with its converse q’p. (If the first premise were q’p, then
the argument would be an example of the valid Modus Ponens.)

Example 10 Valid or Invalid?

Decide whether the following arguments are valid or not. If an argument is valid, give a proof; if
it is not, give a counterexample:

(a) Every irreversible chemical reaction dissipates heat. Therefore, if a chemical reaction is
reversible, it dissipates no heat.
(b) The moon is made of blue cheese. If the moon is made of blue cheese, it must be
gorgonzola. Therefore, the moon is made of gorgonzola.

Solution
(a) To analyze any argument given in words we first translate it into symbolic form. The first
sentence discusses two aspects of a chemical reaction, whether it is irreversible and whether is
dissipates heat. Let p: “this chemical reaction is irreversible” and q: “this chemical reaction
dissipates heat.” Then the first statement is p’q. The conclusion is the implication
(~p)’(~q). Therefore, the argument is, in symbolic form, the following.

p’q

∴   (~p)’(~q)

This argument may remind us of the Contrapositive rule. However, the conclusion is
backwards, since the contrapositive of p’q is (~q)’(~p). This suggests that the argument is
invalid, so let us try to find a counterexample.

Our counterexample should make the premise true but the conclusion false. The only way
to make an implication false is for the antecedent to be true and the consequent false, so we
must have ~p true and ~q false. In other words, p should be false and q true. Fortunately, this
makes the premise true, so we have found our counterexample. In terms of the meanings we
assigned to p and q, a counterexample would be given by a chemical reaction that was reversible
but dissipated heat.
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If we want to express the counterexample in a more immediately understandable way, we
could let p: “this creature is a horse” and q: “this creature is a mammal.” A counterexample
would then be given by any creature who was not a horse but was a mammal, say a dog.

(b) Let us take p: "The moon is made of blue cheese." q: "The moon is made of gorgonzola."
Then the argument takes the following form.

p’q
p
_____
∴   q

We see that this is just an application of modus ponens, so the argument is valid (even though
the conclusion is false!)

Before we go on… In (a), the conclusion of the original argument is in fact true: Reversible
chemical reactions dissipate no heat. However, the argument used to arrive at this conclusion
was invalid. In part (b), a premise and the conclusion are false (one of the premises happens to
be true. Do you see which one?) and yet the argument used to arrive at the false conclusion is
valid. This points up the difference between truth and validity. The validity of an argument
depends solely on its form. Validity assures you that if the premises happen to be true for some
interpretation of the variables then the conclusion will also be true. Validity tells you nothing
about whether the premises are true, nor does it tell you what happens when a premise is false.
Likewise, if an argument is invalid it does not necessarily mean that the conclusion is false, just
that its truth does not follow from the truth of the premises.

The following example is reminiscent of the kind of question that often appears in aptitude
test such as the LSAT.

Example 11 Logical Reasoning

Decide whether the following argument is valid or not. If it is, give a proof; if it is not, give a
counterexample:

When Alexis attends math class, her friends Guppy and Desmorelda also attend. Since
Desmorelda is in love with Luke, Luke’s attendance at class is a sufficient condition for her
to attend as well. On the other hand, for Desmorelda to attend class it is necessary that
Alexis also be there (as she needs someone to talk to during the boring portions of the
class). Therefore, Luke won’t attend class unless Guppy also attends.

Solution
The only way to make heads or tails out of all this is to translate into symbols. To make life
easier, let us choose the first letter of a person’s name to symbolize their attendance at math
class. Thus, a: “Alexis attends math class,” and so on. Our argument now has the following
form.
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a’(g…d)
l’d
d’a

∴   l’g

Let us try to prove this. Looking at the premises we can see the following string of implications:

l’d’a’(g…d).

Thus, the Transitivity rule will give us l’(g…d) pretty easily. It does appear that l implies g, so
the argument is valid. To get from l’(g…d) to l’g we would like to use Simplification, but
we can’t do it directly. The way around this is to use Switcheroo, a useful tool for manipulating
implications. Here’s the proof:

1. a’(g…d) Premise
2. l’d Premise
3. d’a Premise
4. l’a 2, 3 Transitivity
5. l’(g…d) 1, 4 Transitivity
6. ~læ(g…d) 5, Switcheroo
7. (~læg)…(~læd) 6, Distributive Law
8. (~læg) 7, Simplification
9. l’g 8, Switcheroo

L.6 Exercises

Prove each of the valid arguments in Exercises 1–22.

1. (pær)’~q 2.... ~~~~p’(q’s)
pær ~p
__________ __________
∴   ~q ∴   q’s

3.... ~p’(r’~t) 4. (~pær)’~q
~(r’~t) q
__________ __________
∴   p ∴   ~(~pær)

5.... ~~~~p’(q…r) 6.... p’(r…s)
~p…s ~r
__________ __________
∴   r ∴   ~p

7.... p’q 8.... p’(q…r)
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~(qær) r’s
_______ p

∴  ~p  ________

∴ s

9.... (pær)’ q    10....  (pæq)’r         
s ’ p ~r
s t ’ q
________ _____        
∴  q ∴ ~t

11.... (pæ~q)’r 12.... (p…~q)’r
s’(t…u) s’p
s…p q’~u
________ u…s

∴ r…u _______

∴ r

13.... (p’q)’r 14.... (p’q)’(p’r)
~(qær) q…p
________ _____________
∴  p ∴  r

15.... p’(q’r) 16.... p’(q’r)
q ~r
__________ _________
∴  p’r ∴  p’(~q)

17.... - 18....  -
______________ _____________
∴  (p…q)’(pæq) ∴  p’~(q…~p)

19. - 20. - 
__________ ___________            
∴  ~(p…~p) ∴  (p…~p)’q

21.... - 22. -
__________ ______________
∴  (p’~p)’~p ∴  ~p’(p’~p)

Give counterexamples to each of the fallacies in Exercises 23–26 by finding truth values for the
variables making the premises true and the conclusion false.

23. p’q 24.... p’q
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~p p’r
_____ _______
∴ ~q ∴ q’r

25.... (p…q)’r 26.... (p…q)’r
p ~r
________ _________
∴  r ∴  ~p

Decide whether each of the arguments in Exercises 27–30 is a valid argument. If it is valid, give
a proof. If it is invalid, give a counterexample. In any case, supply verbal statements that make
all the premises true. If the argument is invalid make sure that they also make the conclusion
false.

27. p’(qær) 28.... p’(q…r)
~q ~q
_____ _____
∴  ~p ∴  ~p

29.... p’r 30.... ~(p…q)
~q’~r p
_______ ______
∴  p’q ∴  q

In Exercises 31–44, convert each argument into symbolic form and then decide whether or not it
is valid. If invalid, give a counterexample by supplying truth values for the various atomic
statements.

31. If I were a cow, then I would eat grass. However, I am not a cow, so I don't eat grass.

32. If we were meant to fly, we would have wings. Since we do indeed fly, and since we would
not fly unless we were meant to fly, it follows that we have wings.

33. If factories in the west pollute the air, then acid rain will lead to damage in the east. Indeed,
acid rain is leading to considerable damage in the east, so the factories in the west must be
polluting the air.

34. If factories in the west pollute the air, then acid rain will lead to damage in the east. The
factories in the west do not pollute the air, so acid rain will not be a problem in the east.

35. If interest rates go down, inflation will rise. If interest rates go down, the stock market will
also rise. Therefore, if inflation rises so will the stock market.

36. If interest rates go down, inflation will rise. If inflation rises, so will the bond market.
Therefore, if interest rates go down, the bond market will rise.
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37. If mortgage rates go down, or prices fall, then housing starts will rise. Mortgage rates are
falling, therefore housing starts will rise.

38. If mortgage rates go down or prices fall, then housing starts will rise. Prices are rising,
therefore housing starts will not rise.

39. When it rains on the great plains of the Nile, Sagittarius is in the shadow of Jupiter, and as
you know, it always rains if Mercury is ascending. On the other hand, Sagittarius falls in
Jupiter's shadow only when either the moon is full or Mercury is ascending. I have noticed a
disturbing pattern to the weather predictions of Desmorelda, so-called “Mistress of the
Zodiac.” It seems that she always predicts that it will rain on the plains of the Nile when
Sagittarius ventures into the Shadow of Jupiter and the moon is full. Should I replace her as
royal meteorologist?

40. My stereo system is faulty: there is no sound coming out of the left speaker. Switching the
speaker leads will not bring sound to the left speaker if and only if the left speaker is faulty. If
switching the speaker leads causes the right speaker to fail, then there is a fault with either the
amplifier or the CD player. Switching the leads from the CD player has no effect if and only if
there is no problem with the CD player. I discovered the following: switching the leads to the
speakers resulted in both channels failing, and switching the leads from the CD player reversed
the problem from the left to the right speaker. Therefore replacing the CD player and the left
speaker will solve the problem.

41. You are chairing an important committee at the UN, and are faced with the following
predicament. Upper Volta refuses to sign your new peace accord unless both Costa Rica and
Bosnia sign as well. Since Bosnia has a lucrative trade agreement with Iraq, Iraq's signing the
peace accord is a sufficient condition for Bosnia to sign the accord. On the other hand, Bosnia,
fearful of Upper Volta's recent military buildup, refuses to sign the accord unless Upper Volta
also signs. You conclude that Iraq won't sign unless Costa Rica also signs.

42. Continuation of Exercise 41 Just as you are about to arrange details for the signing
ceremony, Bosnia's representative informs your office that due to a recent scandal involving
highly placed Costa Rican officials, the Bosnians refuse to sign any accord with Costa Rica. In
retaliation, the Costa Rican government announces a hard-line position: they will not sign the
accord unless Iraq also signs. After thinking things over, you come to the depressing
conclusion that it will be impossible to have anyone sign the accord. [To make your analysis
less time consuming, you may assume the following tautology (which we proved earlier):
(p’~p)’~p. You may also feel free to quote the result of Exercise 42.]

43. If  no violets are red and some roses are blue,
Then nobody loves you; that is certainly true.
But Lucille does love you,
And Susan and Joy.
Yet some roses are deep blue
Or you're just a boy.
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You assure me you're grown up
And that I believe;
The brew in your cup
Is so strong, I perceive.
Now this surely implies
Violets red as your eyes.   

44. (In Memory of Dr. Seuss)
If you glue, then Wu glues
And Golly glues too.
If Golly glues, Molly glues
And Solly, you too!
But Holly, not Solly glues
With green gooey glue.
Thus Dolly or Holly glues
But not you nor Wu!

Communication and Reasoning Exercises

45. Can anything be proved without any premises being given? Explain.

46. Your friend James claims that every argument can be proved in more than one way. Is he
correct? Explain.

47. Your friend Jane claims to have come up with a proof of the following argument

p

∴   q

Comment on her claim.

48. Your other friend Janet claims that the simplification rule can be deduced from the addition
rule, and is therefore not necessary. Comment on her claim.
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L.7 Predicate Calculus  

One of the most famous arguments in logic goes as follows.

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

There is really no good way to express this argument using propositional calculus. The problem
is, how do we express symbolically the statement “All men are mortal?” And how do we do so
in such a way that we can relate it to the statement “Socrates is a man?” We need to go beyond
the propositional calculus to the predicate calculus, which allows us to manipulate statements
about all or some things.

We begin by rewording “All men are mortal” in something closer to a statement of
propositional calculus:

“For all x, if x is a man then x is mortal.”

The sentence “x  is a man” is not a statement in the sense we’ve discussed so far, since it
involve an unknown thing x and we can’t assign a truth value without knowing what x we’re
talking about. This sentence can be broken down into its subject, x, and a predicate, “is a
man.” We say that the sentence is a statement form, since it becomes a statement once we fill
in x. Here is how we shall write it symbolically: The subject is already represented by the
symbol x, called a term here, and we use the symbol P for the predicate “is a man.” We then
write Px for the statement form. (It is traditional to write the predicate before the term; this is
related to the convention of writing function names before variables in other parts of
mathematics.)

Similarly, if we use Q to represent the predicate “is mortal” then Qx stands for “x  is
mortal.” We can then write the statement “If x is a man then x is mortal” as Px’Qx.

To write our whole statement, “For all x, if x is a man then x is mortal” symbolically, we
need symbols for “For all x.” We use the symbol “ ∀ ” to stand for the words “for all” or
“for every.” Thus, we can write our complete statement as

∀ x[Px’Qx].

The symbol “ ∀ ” is called a quantifier because it describes the number of things we are
talking about: all of them1. Specifically, it is the universal quantifier because it makes a claim
that something happens universally.

                                                
1 There were arguments in the late 19th century as to the “existential import” of the quantifier ∀ . The question was,
if you say “all men are mortals,” are you at the same time saying that there are in fact some men? Eventually it was
decided that the most useful choice would be to say that, no, you are making no such claim. For example, the
statement “all moon men are green” would actually be considered a true statement, since there is no example of a
moon man who is not green to serve as a counterexample. We say then that the statement is vacuously true. This
is related to the meaning of implication: If “M” = “is a moon man” and “G” = “is green,” then our statement is
∀ x[Mx’Gx]. Since, for every x, Mx is false, the statement Mx’Gx is always true. Thus, ∀ x[Mx’Gx] is a true
statement.
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Question What are those square brackets doing around Px’Qx?

Answer They define what is called the scope of the quantifier ∀ x. That is, they surround what it
is we are claiming is true for all x.

Example 1 A Syllogism

Express the argument above, about Socrates, in symbolic form.

Solution
We’ve done most of the work. The statement “Socrates is mortal” uses the predicate P to
make a statement about a particular man, Socrates. Let us use the letter s to stand for Socrates.
(We shall always use small letters for terms and big letters for predicates.) Then Ps is the
statement “Socrates is a man.” Similarly, Qs is the statement “Socrates is mortal.” The
argument now looks like this:

∀ x[Px’Qx]
Ps

∴   Qs

Before we go on… This is an example of a classical form of argument known as a syllogism.
Roughly, a syllogism is an argument in the predicate calculus with two premises sharing a
common term (in this case, the predicate P, “is a man”). In the following section we shall see
how to prove that such an argument is valid.

Mathematics is expressed in the language of the predicate calculus. Here’s an example of a
mathematical statement expressed symbolically.

Example 2 A Mathematical Statement

Write the following statement symbolically: “If a number is greater than 1 then it is greater than
0 .”

Solution
Since this is a statement meant to be true of every number, we need to rephrase it to make the
universal quantifier obvious: “For all x, if x is a number and x is greater than 1, then x is greater
than 0.” Let us write N for the predicate “is a number” and use the standard notation “>“ for
“is greater than.” Our statement is then:

∀ x[(Nx…(x>1))’(x>0)].

Notice that we put the phrases “x>1” and “x>0” in parentheses to make the meaning clearer.
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Before we go on… Mathematicians being as lazy as they are, they often don’t bother to specify
that x is a number, regarding it as understood if they write something like x>1. So, a
mathematician might write

∀ x[(x>1)’(x>0)].

In fact, we’re being a little sloppy even in our original solution. We can run into logical
paradoxes if we allow ourselves to let x range over “everything” possible. We should, instead,
agree beforehand what universe of things the quantifier “∀ x” really refers to. In this example,
we might agree that the universe is the set of all real numbers. There is no need to allow x to
also refer to, say, an elephant.

Example 3 Another Mathematical Statement

Now write the following statement symbolically: “Given any two numbers, the square of their
sum is never negative.”

Solution
Again, we are making a statement about all numbers, in fact, about all pairs of numbers. We can
rephrase the statement as follows: “For all x and all y, if x and y are numbers then the square of
their sum is not negative.” Since “the square of their sum” is (x+y)2, our statement can be
written like this:

∀ x[∀ y[(Nx…Ny)’~{(x+y)2<0}]].

Rather than write ∀ x[∀ y[ . . . ]] we often write

∀ x,y[(Nx…Ny)’~{(x+y)2<0}].

If we prefer not to have the negation, we could write

∀ x,y[(Nx…Ny)’{(x+y)2≥0}].

Once more, we could be lazy and write

∀ x,y[(x+y)2≥0].

There are times when, rather than claim that something is true about all things, we only want
to claim that it is true about at least one thing. For example, we might want to make the claim
that “some politicians are honest,” but we would probably not want to claim this universally. A
way that mathematicians often phrase this is “there exists a politician who is honest.” Our
abbreviation for “there exists” is “ ∃ ”, which is called the existential quantifier because it
claims the existence of something. If we use P for the predicate “is a politician” and H for the
predicate “is honest,” we can write “some politicians are honest” as
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∃ x[Px…Hx].

Example 4 Mixing Quantifiers

Write the following statement symbolically: “Every person is better off than someone else.”

Solution
Let’s rephrase this statement to get closer to our logical symbolism: “For every person x, there
is a person y such that x is better off than y.” Now we can see two quantifiers, a universal one
and an existential one. We also need some predicates, including P for “is a person,” and one
more predicate B(x,y) to stand for “x is better off than y.” This is a new kind of predicate,
taking two terms. Since it relates its two terms, such a 2-place predicate is often called a
relation.

Now we can write our statement symbolically, using lots of brackets to make the meaning
clear:

∀ x[Px’(∃ y[Py…B(x,y)])].

Many mathematical definitions are made in terms of quantifiers. An interesting example is
the notion of “divisible by.” To say that a number x is divisible by 2, for example, is to say that
x is 2 times some integer, or that there exists some integer n such that x = 2n. Generalizing a bit
and writing symbolically, we can make the following definition.

Divisible By

If x and y are integers, we say that xxxx is divisible by yyyy if

∃ n[In…(x=yn)].

Here, I is the predicate “is an integer.”

Note: If we agree to restrict our variable to the universe of integers, we don’t have to use the
predicate I and we get the following simpler version:

∃ n[x = yn].

Example 5 Divisibility

Write the following statement symbolically: “If a number is divisible by 6 then it is divisible by
3 and by 2.”

Solution
To simplify the notation, let us agree that our universe is the set of integers and all variables are
therefore integers.
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First notice that our statement is a universal one about integers: “For every integer n, if n is
divisible by 6 then it is divisible by 3 and by 2.” Now, when we want to write “n is divisible by
6” we have to watch out for the fact that we’ve already used the variable n and can’t reuse it as
in the definition of “divisible by” above. What we do is pick another letter, say m, and write
∃ m[n = 6m] for “n  is divisible by 6.” In general, the variable being quantified (the one
immediately to the right of the quantifier) is a dummy variable; its name does not matter, as
long as the same name is used consistently throughout the statement.

Doing the same with divisibility by 3 and 2, we can write our statement as follows:

∀ n[(∃ m[n = 6m])’(∃ m[n = 3m])…(∃ m[n = 2m])].

Before we go on… We used m as the dummy variable in all three parts of this statement, but it
stands for different numbers in each case. If we wanted to emphasize that the three numbers are
different, we could use three different letters, like this:

∀ n[(∃ m[n = 6m])’(∃ i[n = 3i])…(∃ j[n = 2j])].

This leads to an interesting question: For a given n, how are i and j related to m? Pondering this
question leads to the mathematical proof of the statement.

In this last example we’ve started to see how mathematics can be translated into symbolic
form. It was the hope of mathematicians at the end of the nineteenth century that all of
mathematics could be made purely formal and symbolic in this way. The most serious attempt
to do this was in Whitehead and Russell’s Principia Mathematica (1910), which translated a
large part of mathematics into symbolic language. The hope then was that there could be
developed a purely formal procedure for checking the truth of mathematical statements and
producing proofs. This project was cut short by Gödel’s incompleteness theorem (1931), which
effectively showed the impossibility of any such procedure. Nonetheless, mathematicians still
feel that anything that they do should be expressible in symbolic logic, and the language that
they actually use in writing down their work is a somewhat less formal version of the predicate
calculus.

L.7 Exercises
Translate each of the sentences in Exercises 1–26 into a statement in the predicate calculus.
(Underlined letters are to be used for the relevant predicates or terms where appropriate.)

1. Every good girl deserves fruit.

2. Good boys deserve fruit always.

3. All cows eat grass.

4. No cows eat grass.

5. Some cows eat grass.
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6. Some birds are fishes.

7. Some cows are not birds and some are.

8. Some cows are birds but no cows are fishes.

9. Although some city drivers are insane, Dorothy is a very sane city driver.

10. Even though all mathematicians are nerds, Waner and Costenoble are not nerds.

11. If one or more lives are lost, then all lives are lost.

12. If every creature evolved from lower forms, then you and I did as well.

13. Some numbers are larger than two; others are not.

14. Every number smaller than 6 is also smaller than 600.

In Exercises 15–26, you can use the convention that the letters i through n represent positive
integers.

15. 12 is divisible by 6.

16. 13 is not divisible by 6.

17. For any positive integer m, if 12 is divisible by m, then so is 24.

18. If 13 is not divisible by m, then neither is 17.

19. 15 is divisible by some positive integer.

20. 15 is divisible by a positive integer other than 15 or 1.

21. 17 is prime (that is, not divisible by any positive integer except itself and 1).

22. 15 is not prime. (See (21).)

23. There is no smallest positive real number. (Use the convention that the letters x through z
represent real numbers.)

24. There is no largest positive integer.

25. If 1 has property P, and if (n+1) has property P whenever n does, then every positive integer
has property P. (This statement is called the Principle of Mathematical Induction.)
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26.  If 2 has property P, and if (n+2) has property P whenever n does, then every even positive
integer has property P.

Translate the statements in Exercises 27–34 into words.

27. ∀ x[Rx’Sx]; R = “is a raindrop,” S = ”makes a splash.”

28.... ∀ y[Cy’My]; C = “is a cowboy,”  M = “is macho.”

29.... ∃ z[Dz…Wz]; D = “is a dog,” W = “whimpers.”

30.... ∃ z[Dz…~Wz]; D = “is a dog,” W = “whimpers.”

31.... ∀ x[Dx’~Wx]; D = “is a dog,” W = “whimpers.”

32. ~∀ x[Dx’Wx]; D = “is a dog,” W = “whimpers.”

33. ∃ z,y[Cz…Cy…Wz…~Wy]; C = “is a cat,” W = “whimpers”

34. ∀ x[Px ’ ∃ y[Py…L(x,y)]], P = “is a person,” L(x,y) = “y is older than x.”

Communication and Reasoning Exercises

35. The claim that every athlete drinks ThirstPro is false. In other words, no athletes drink
ThirstPro, right?

36. Give one advantage that predicate calculus has over propositional calculus.

37. Your friend claims that the quantifiers ∀  and ∃  are insufficient for her purposes; she
requires new quantifiers to express the phrases “for some” and “there does not exist”. How
would you respond?  
38. Consider a new quantifier, “ ∇ ” meaning “for no” (as in “for no x can x be larger than
itself”). Express ∇  in terms of the quantifiers you already have.
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L.8 Arguments and Proofs in the Predicate Calculus  

In Example 1 in the preceding section we discussed the classical syllogism that goes:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

We represent this argument symbolically as follows:

∀ x[Px’Qx]
Ps

∴   Qs

Here, again, P is the predicate “is a man” while Q is the predicate “is mortal.” What we now
need to discuss are the rules of inference that allow us to prove that this and other arguments in
the predicate calculus are valid.

Let’s first consider the statement ∀ x[Px’Qx], or, “For all x, if x is a man then x is
mortal.” From this general statement about men we should be able to specialize to any
particular man, like Socrates. What is true of all things should be true of any one of them. This
gives us the following rule of inference.

Specialization (or Substitution or Dropping a Universal Quantifier)

If s stands for a particular thing, then the following is a tautology for any predicate P:

∀ x[Px]’Ps.

Stated as a rule of inference, this is:

∀ x[Px]
______
∴  Ps

Example 1 Proving a Syllogism

Prove that the argument discussed above is valid.

Solution
The proof is a simple application of Specialization and Modus Ponens.

1. ∀ x[Px’Qx] Premise
2. Ps Premise
3. Ps’Qs 1, Specialization
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4. Qs 2, 3 Modus Ponens

Before we go on… How did we know to specialize to Ps’Qs and not, say to Pc’Qc where
c stands for Costenoble? Either is a legitimate deduction, but the conclusion and one of the
premises of our original argument mention Socrates, not Costenoble, so the specialization to
Socrates is probably more useful.

Here is another argument.

0 < 1.
For any x, if x ≥ 2 then x ≥ 1.
Therefore, there exists a number less than 2.

We can express this argument symbolically as follows (using the convention that our universe
is the set of real numbers).

0 < 1
∀ x[(x≥2) ’ (x≥1)]

∴  ∃ x[x<2]

Here is an informal proof of the argument: Substitute 0 for x in the second premise to get the
statement (0 ≥ 2) ’"(0 ≥ 1). Using the first premise and Modus Tollens we conclude that 0
< 2. But now we have an example of a number less than 2, so certainly we have shown that
there exists such a number, and we can conclude that ∃ x[x<2].

The last step in that informal argument is the next rule of inference we need to write down.

Existential Generalization (or Adding an Existential Quantifier)

If s stands for a particular thing, then the following is a tautology for any predicate P:

Ps’∃ x[Px].

Stated as a rule of inference, this is:

Ps
________
∴  ∃ x[Px]

Example 2 Proving a Generalization

Prove that the argument discussed above is valid.

Solution
We can now turn our informal proof into a formal one.
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1. 0 < 1 Premise
2. ∀ x[(x≥2) ’ (x≥1)] Premise
3. (0≥2) ’"(0≥1) 2, Specialization
4. 0 < 2 1, 3 Modus Tollens
5. ∃ x[x<2] 4, Existential Generalization

The final rules of inference we’ll discuss have to do with negations of quantified statements.
Suppose that you have a universal statement ∀ x[Px], which claims that, for all x, Px is true.
What does it mean to say that its negation ~(∀ x[Px]) is true, instead? If it is not true that Px is
always true, then there must be some example where Px is false. In other words, there must exist
an x for which Px is false. This gives us the following tautology.

Negation of a Universal Quantifier

For any predicate P the following is a tautology:

~(∀ x[Px]) ↔ ∃ x[~Px].

Mechanically, this says that we can pass a negation past “ ∀ ” if we then change the
quantifier to “∃ ”.

Example 3 Negating a Universal Quantifier

What is the negation of “Every swan is white?”

Solution
Let S be the predicate “is a swan” and W be the predicate “is white.” Our statement, before
negation, is ∀ x[Sx’Wx]. After negation it becomes the following.

~∀ x[Sx’Wx] ° ∃ x[~(Sx’Wx)].

We can simplify this further if we use Switcheroo to rewrite the implication inside.

~∀ x[Sx’Wx] ° ∃ x[~(Sx’Wx)]
° ∃ x[~((~Sx)æWx)]
° ∃ x[(Sx)…(~Wx)].

Translating back into words this is: “There exists a swan that is not white.” A moment’s
reflection shows that this is, indeed, the exact negation of the statement that all swans are white.

Before we go on… Note that the negation is not “No swans are white.” To disprove a
universal statement it suffices to produce one counterexample. In this case, it suffices to say
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that there is (at least) one swan that is not white. To say that no swans are white would be to
make a much stronger statement than to say that not all swans are white.

For the existential quantifier we have a very similar rule.

Negation of an Existential Quantifier

For any predicate P the following is a tautology:

~(∃ x[Px]) ↔ ∀ x[~Px].

Example 4 Negating an Existential Quantifier

What is the negation of “There exists a man who is immortal?”

Solution
Let P be the predicate “is a man” and let R be the predicate “is immortal.” We are looking for
the negation of the statement ∃ x[Px…Rx]. The negation is:

~(∃ x[Px…Rx]) ° ∀ x[~(Px…Rx)]
° ∀ x[(~Px)æ(~Rx)]
° ∀ x[Px’(~Rx)].

In words, the negation of “There exists a man who is immortal” is “All men are not immortal”
or, “All men are mortal.”

Before we go on… The reasoning behind the negation of ∃ x[Px] being ∀ x[~Px] is this: If there
is no example of an x for which Px is true, then it must be false for all x. For example, if there is
no man who is immortal, then all men must be mortal.

Here’s an interesting logical equivalence:

∃ x[Qx]  °  ~∀ x[~Qx].

This tells us that existential statements could be rewritten as (the negations of) universal
statements. If we wished, we could do without the existential quantifier entirely. However,
allowing ourselves to use it often produces shorter and more readable logical statements.

Example 5 A Lengthy Proof

Proof that the following argument is valid:

Every student can swim.
Everyone can either swim or surf.
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Betty cannot swim.
Therefore, not everyone who can surf is a student.

Solution
Let S = “is a student,” W = “can swim,” R = “can surf,” and b = Betty. Symbolically, our
argument is this:

∀ x[Sx’Wx]
∀ x[WxæRx]
~Wb

∴  ~∀ x[Rx’Sx]

Consider how we might prove the conclusion. It is always hard to prove a negative, so rewrite it
as ∃ x[~(Rx’Sx)]. We can prove this existential statement by finding an example of someone
for whom ~(Rx’Sx) is true. Again, let us pull the negation further inside the statement:
~(Rx’Sx) is equivalent to Rx…(~Sx). Now, the only person we know anything about
specifically is Betty, so perhaps we can prove that Rb…(~Sb). Working from the beginning, we
have general statements that we should probably specialize to our subject, Betty. Putting these
ideas together we get the following proof.

1. ∀ x[Sx’Wx] Premise
2. ∀ x[WxæRx] Premise
3. ~Wb Premise
4. Sb’Wb 1, Specialization
5. WbæRb 2, Specialization
6. ~Sb 3, 4 Modus Tollens
7. Rb 3, 5 One-or-the-other
8. Rb…(~Sb) 6, 7 Conjunction
9. ~((~Rb)æSb) 8, DeMorgan
10. ~(Rb’Sb) 9, Switcheroo
11. ∃ x[~(Rb’Sb)] 10, Generalization
12. ~∀ x[Rx’Sx] 11, Negation of a quantifier

We have only scratched the surface of the list of rules of inference necessary to do proofs
in the predicate calculus. Although we would very much like to continue this discussion for a
few more sections, we would be straying rather far beyond the scope of this text. Instead, we
recommend for further reading any of the many books on symbolic logic that exist, including:

I. M. Copi, Symbolic Logic, 5th Ed., Prentice Hall, 1979.
J. E. Rubin, Mathematical Logic: Applications and Theory, Holt, Rinehart, and Winston,

1997.
P. Suppes, Introduction to Logic, Dover Publications, 1999.

L.8 Exercises
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Write the negation of each of the statements in Exercises 1–26. (No, your answer may not start
with “~”.)

1. ∀ x[Px’~Qx] 2.... ∀ x[(~Px)’Qx]

3....    ∀ x[~(Px’Qx)] 4.... ∀ x[Px”’Qx]

5....    ∃ x[Px…Qx] 6....    ∃ x]PxæQx]

7....    ∃ x[Px”’Qx] 8....    ∃ x[Px’(QxæRx)]

9....    ∀ x[∃ y[P(x,y)]] 10....    ∀ x[∃ y[Px’Qy]]

11.... ∀ x[Px’∃ y[Q(x,y)]] 12....    ∀ x[Px’∃ y[Qx’Ry]]

13....    ∀ x[∃ y[∀ z[P(x,y,z)]]] 14....    ∀ x[∃ y[∀ z[Px…Qz’Ry]]]

15. All men are mortal.

16. All birds can fly.

17. All pigs with wings can fly.

18. All pigs either have no wings or can fly.

19. Some men are mortal.

20. Some birds can fly.

21. Some pigs can fly.

22. Some pigs have wings and can fly.

23. For every positive number there is a smaller positive number.

24. For every number x there is a number y such that y2 = x.

25. There is a number smaller than every positive number.

26. There is a person older than all other people.

Prove each of the arguments in Exercises 27–42.

27. ∀ x[Px’Qx] 28.... ∀ x[Px’Qx]
~Qb ∀ x[Qx’Rx]
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___________ Pb

∴  ~Pb ___________

∴  Rb

29. ~∃ x[Px…Qx] 30.... ~∃ x[Px’Qx]

Pb ____________

___________ ∴  Pb
∴  ~Qb

31.... ∀ x[Px’~Qx] 32.... ∀ x[Px’(QxæRx)]
~∃ x[(RxæSx)…~Qx] ~∃ x[(QxæRx)…~Sx]
Rb ~Sb
________________ ________________
∴  ~Pb ∴  ~Pb

33....    ∀ x[Px’Qx] 34.... ∀ x[Px’Qx]
Pb ~Qb
___________ ___________
∴  ∃ x[Qx] ∴  ~∀ x[Px]

35.... ~∃ x[Px…Qx] 36.... ~∃ x[Px…~Qx]
Pb ∀ x[Qx’Rx]
__________ Pb

∴  ~∀ x[Qx] ____________

∴  ∃ x[Rx]

37.... All men are mortal. 38. All men are mortal
Bach is immortal. All mortals require food.
∴ Bach was not a man. Aristotle was a man.

∴  Aristotle required food.

39. No pig can fly. 40. No mathematicians are fools.
Spot is a pig. No one, who is not a fool, is an
∴ Spot cannot fly. administrator.

Rita is a mathematician.
∴  Rita is not an administrator.

41.1 No children are patient. 42. Babies are illogical
No impatient person can sit still. Nobody is despised who can manage
Alex is a child. a crocodile.
∴  Alex cannot sit still. Illogical persons are despised.

                                                
1 This and the following exercise, after Lewis Carroll’s Symbolic Logic.
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Andrew is a baby.
∴  Andrew cannot manage a crocodile.

Communication and Reasoning Exercises

43. In view of the tautologies about negation of quantifiers, we could do away with the universal
quantifier completely, right?

44. In view of the tautologies about negation of quantifiers, we could do away with the
existential quantifier completely, right?

45. Comment on the following “generalization rule”:

Px ’∀ x[Px]

46. Comment on the following “specialization rule’:

∃ x[Px] ’ Px

47. Can one switch the order of universal and existential quantifiers? In other words, is
∃ x[∀ y[P(x,y)]] equivalent to ∀ y [∃ x[P(x,y)]]?48. Is ∃ x[∃ y[P(x,y)]] equivalent to ∃ y

[∃ x[P(x,y)]]?   



82 Chapter L Logic

You’re the Expert—Does God Exist?  

Faith
Faith is an island in the setting sun
But proof, yes
Proof is the bottom line for everyone

Paul Simon, Proof, from The Rhythm of the Saints, Warner Bros. Records, 1990

Lord, what fools these mortals be.
William Shakespeare, A Midsummer Night’s Dream

As head of your university's Department of Logic, you have been asked to evaluate several
proofs of the existence of God. And many attempts there have been. Three in particular have
caught your attention: they are known as the cosmological argument, the teleological argument,
and the ontological argument.

The first argument that comes across your desk is the cosmological argument, put forward
by St. Thomas Aquinas (1226–1274), the philosopher who introduced Aristotle’s philosophy
and logic into Christian theology. As its name suggests, this argument is based on a so-called
“cosmological” consideration—that of the origin of the universe. It goes as follows.

No effect can cause itself, but requires another cause. If there were no first cause, there
would be an infinite sequence of preceding causes. Clearly there cannot be an infinite
sequence of causes, therefore there is a first cause, and this is God.

You make the following quick analysis. Let F: “there is a first cause,” and let I: “there is an
infinite sequence of causes.” Then the argument has the overall form

~F ’ I
~I
_______
∴  F

This you quickly recognize as a correct application of Modus Tollens, together with the Double
Negation law. The question then is, are the premises obvious, or do they require further
justification? The first seems reasonable, although it looks like a job for the Department of
Mathematics, so you send it down the hall for their opinion. You also make a note to ask the
theologians whether they really mean to say that God is simply the first cause.

The next argument to cross your desk is another one from Aquinas, known as the
teleological1 argument, which goes like this:

All things in the world act towards an end. They could not do this without there being an
intelligence that directs them. This intelligence is God.

                                                
1 Teleology is the study of evidence of design or purpose in nature.
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Again, you give this a quick analysis. You let A: “all things act towards an end” and you let D:
“there is an intelligent director.” The argument is then

A
~D ’ ~A
_________
∴  D

Again, you recognize a correct application of Modus Tollens. But again you could question the
premises. Do all things really act toward some end? If they do, then must it be the case that
there is an intelligent director? Perhaps this should be passed on to the Department of
Philosophy for further consideration. . .

The third argument you consider is the ontological1 argument, put forward by St. Anselm
(1033–1103), Archbishop of Canterbury. It goes like this.

God is a being than which none greater can be thought. A being thought of as existing
is greater than one thought of as not existing. Therefore, one cannot think of God as not
existing, so God must exist.

Now this is a little more complicated than Aquinas’ arguments. You look at the conclusion first.
This is certainly a logical statement, so we take GE to be the statement “God exists.” Now look
at the next-to-last phrase: “one cannot think of God as not existing.” Let us take GNE to
represent the statement “God can be thought of as not existing.”

Now, in the last sentence is really a hidden premise: “if one cannot think of God as not
existing, then God does exist.” It is actually a debatable point: if one cannot think of some
entity as not existing, does that necessarily imply that it does exist? You decide to give St.
Anselm the benefit of the doubt, and include the premise ~GNE ’ GE.

You now look at the first sentence: “God is a being than which none greater can be
thought.” This is simple enough. In more modern language it says simply that “one cannot
think of a being greater than God.” You let BGG stand for the statement “one can think of a
being greater than God,” and so the first premise will be ~BGG.

The second sentence says “A being thought of as existing is greater than one thought of as
not existing.” In particular, if one can think of a being existing but can think of God as not
existing, than one has thought of a being greater than God. Letting BE stand for the statement
“one can think of a being existing,” this is the premise (BE…GNE)’BGG.

These are the premises you have to work with. After fiddling around with them and getting
nowhere, you realize that an additional premise is being assumed: that one can think of a being
existing: BE.

You now assemble the following version of the argument.

                                                
1 Ontology is the study of the nature of being or existence.
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~BGG
(BE … GNE) ’ BGG
BE
~GNE ’ GE
____________________
∴  GE

You find that this is a valid argument, since it has the following proof.

1. ~BGG Premise
2. (BE …"GNE) ’ BGG Premise
3. BE Premise
4. ~GNE ’ GE Premise
5. ~(BE …"GNE) 1, 2 Modus Tollens
6. ~BE æ ~GNE 5, DeMorgan
7. ~GNE 3, 6 One-or-the-other
8. GE 4, 7 Modus Ponens

So, you conclude that anyone accepting the premises must accept the conclusion, and so be
convinced of the existence of God. But are these premises obviously true, or do they themselves
require justification?

Exercises

1. Analyze the following version of the cosmological argument, due to the philosopher Richard
Taylor:1 Everything has a sufficient reason for its existence—either it was caused by something

                                                
1 See: Richard Taylor, Metaphysics, Prentice-Hall, Inc., 1963.
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else (its existence is contingent) or it must exist by its very nature (its existence is necessary).
Neither the existence of the world, nor anything in it, is necessary, and therefore the existence of
the world was caused by something else. If a thing’s existence was not ultimately caused by
something whose existence is necessary, there would be no sufficient reason for that thing’s
existence. Now the world does in fact exist. Therefore, the existence of the world must
ultimately be caused by something whose existence is necessary. This ultimate cause (which
Taylor calls a necessary being) cannot be the world itself or anything in it, and this is God.

2. Find other arguments for the existence of God and analyze them as logical arguments
(arguments from your own religion, those of your friends, etc.).

3. Find examples of arguments in politics, advertisements, newspapers, etc., and analyze them.
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Answers to Odd-Numbered Exercises

L.1
1.  False statement   3. Not a statement, since it is not a declarative sentence   5. False statement;
Father Nikolsky is a fictitious character, and thus he didn't exist.  7. True statement   9. True (we
hope!) statement   11. Statement whose truth value depends on what he, she, or it has uttered.  
13. Not a statement, since it is self-referential. 15. (~p)…q   17. (p…r)…q   19. pæ(~p)   21."Willis
is a good teacher and his students do not hate math. 23.... Either Willis is a good teacher, or his
students hate math and Carla is not a good teacher.   25....""""Either Carla is a good teacher, or she is
not.  27...."Willis' students both hate and do not hate math.   29...."It is not true that either Carla is a
good teacher or her students hate math.   31. F   33. F   35. T   37. T   39. T  
41. p · q = (pæq)…~(p…q)   43. I shall either buy a new calculus book or a used one.   45. Here is
one possible answer: “What does this question ask?”

L.2
1. ~q

F
T
F
T

p

T
T
F
F

q

T
F
T
F

p…~q

F
T
F
F

3. p

T
F

~p

F
T

~(~p)

T
F

~(~p)æp

T
F

5.... ~q

F
T
F
T

p

T
T
F
F

q

T
F
T
F

~p

F
F
T
T

(~p)…(~q)

F
F
F
T

7.... p

T
T
T
T
F
F
F
F

q

T
T
F
F
T
T
F
F

r

T
F
T
F
T
F
T
F

p…q

T
T
F
F
F
F
F
F

(p…q)…r

T
F
F
F
F
F
F
F

9.... p

T
T
T
T
F
F
F
F

q

T
T
F
F
T
T
F
F

r

T
F
T
F
T
F
T
F

p…(qær)

T
T
T
F
F
F
F
F

qær

T
T
T
F
T
T
T
F

11. p

T
F

p…p

T
F

same
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13. p

T
T
F
F

q

T
F
T
F

pæq

T
T
T
F

qæp

T
T
T
F

same

15. p

T
T
F
F

q

T
F
T
F

same

pæq

T
T
T
F

~(pæq)

F
F
F
T

~p

F
F
T
T

~q

F
T
F
T

(~p)…(~q)

F
F
F
T

17.... p

T
T
T
T
F
F
F
F

q

T
T
F
F
T
T
F
F

r

T
F
T
F
T
F
T
F

p…q

T
T
F
F
F
F
F
F

(p…q)…r

T
F
F
F
F
F
F
F

q…r

T
F
F
F
T
F
F
F

p…(q…r)

T
F
F
F
F
F
F
F

same

19. p

T
T
F
F

q

T
F
T
F

same

~q

F
T
F
T

q…~q

F
F
F
F

pæ(q…~q)

T
T
F
F

21. Contradiction
p

T
F

~p

F
T

p…~p

F
F

23.... Contradiction
p

T
T
F
F

q

T
F
T
F

pæq

T
T
T
F

~(pæq)

F
F
F
T

p…~(pæq)

F
F
F
F

25.... Tautology
p

T
T
F
F

q

T
F
T
F

p…q

T
F
F
F

~(p…q)

F
T
T
T

pæ~(p…q)

T
T
T
T

27. (~p)æp   29. (~p)æ~(~q)   31.... pæ((~p)æ(~q))   33....""""(pæ(~p))…(pæq)   35. Either I am not
Julius Caesar or you are not a fool.   37. It’s raining and I have forgotten either my umbrella or my
hat.   39. My computer crashes when it has been on a long time, the air is not dry, and the moon is
full.   41.... The warning light will come on if the pressure drops and either the temperature is high,
the emergency override is not activated, or the manual controls are not activated.

L.3
1.   T   3. T   5. T   7. F   9. T   11. T  13. F   15. T   17. T   19. T   21. T   23. F   25. T   27. T   
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29. p    q     qæp

T     T          T
T     F          T
F     T          T
F     F          F

     p’(qæp)

T
T
T
T

31. p    q     p…q

T     T          T
T     F          F
F     T          F
F     F          F

      ~p    (p…q)’~p

F
F
T
T

F
T
T
T

33.
T     F
F     T

p   ~p p’(~p) (p’~p)’p

F
T

T
F

35. Tautology

T     T          F
T     F          F
F     T          T
F     F          T

      ~p      p…~p

F
F
F
F

T
T
T
T

(p…~p)’qp    q

37. p    q    

T     T          T
T     F          T
F     T          T
F     F          F

      pæq

T
T
F
T

p”’(pæq)

39. Tautology
p    q    

T     T         F
T     F         F
F     T         T
F     F         T

      ~p      ~q

F
T
F
T

F
F
F
F

p…~p q…~q (p…~p)”’(q…~q)

F
F
F
F

T
T
T
T

41. p    q     p’q

T     T          T
T     F          F
F     T          T
F     F          T

      ~p      ~q     (~q)’(~p)

F
F
T
T

F
T
F
T

T
F
T
T

same

43. p    q     p’q

T     T          T
T     F          F
F     T          T
F     F          T

      ~p      (~p)æq 

F
F
T
T

T
F
T
T

same

45. p    q    

T     T         F
T     F         F
F     T         T
F     F         T

      ~p      ~q

F
T
F
T

F
F
F
F

p”’~p

F
F
F
F

q”’~q

same

47.... Contrapositive: “If I do not exist, then I do not think.” Converse: “If I am, then I think.”  
49. Contrapositive: “If I am not Buddha, then I think.” Converse: “If I am Buddha, then I do not
think.”   51. Contrapositive: “These birds do not flock together only if they are not of a feather.”
Converse: “These birds flock together only if they are of a feather.”   53."Contrapositive: “ In
order not to sacrifice beasts of burden, it is necessary not to worship Den.”  Converse: “In order
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to sacrifice beasts of burden, it is necessary to worship Den.”   55. “Either I am, or I do not
think.”   57. “Either symphony orchestras are subsidized by the government, or they will cease to
exist.”   59. “Either our society wishes research in the pure sciences to cease, or it will continue.”  
61. p’~q   63. p’~q   65. p↔~q   67. ~q’p   69. q↔~p

L.4
1. p

T
T
F
F

q

T
F
T
F

p’q

  T
  F
  T
  T

~q

 F
 T
 F
 T

[(p’q)…~q]’~p

           T
           T
           T
           T

3. p

T
T
F
F

q

T
F
T
F

  p’(pæq)

           T
           T
           T
           T

pæq

  T
  T
  T
  F

5. p

T
T
T
T
F
F
F
F

q

T
T
F
F
T
T
F
F

r

T
F
T
F
T
F
T
F

p’q

  T
  T
  F
  F
  T
  T
  T
  T

q’r

  T
  F
  T
  T
  T
  F
  T
  T

(p’q)…(q’r)

           T
           F
           F
           F
           T
           F
           T
           T

[(p’q)…(q’r)]’(p’r)

                   T
                   T
                   T
                   T
                   T
                   T
                   T
                   T

p’r

  T
  F
  T
  F
  T
  T
  T
  T

7. p

T
T
F
F

q

T
F
T
F

p…q

  T
  F
  F
  F

q…p

  T
  F
  F
  F

(p…q)”’(q…p)

           T
           T
           T
           T

9. p

T
T
F
F

q

T
F
T
F

(p’q)”’[(~p)æq)]

           T
           T
           T
           T

p’q

  T
  F
  T
  T

~q

 F
 T
 F
 T

(~p)æq

    T
    F
    T
    T

11. p = “Some cows are chickens”;  q = “Some chickens lay eggs.” Then pæq is true, whereas
p is false. Thus, (pæq)’q is false.   13. p = “All swans are white”; q = “Some swans are
white.” Then p’q is true (since the statement p is false; not all swans are in fact white). On the
other hand, q’p says that if some swans are white, then all swans are white. But some swans are
white, so q is true; whereas p is false. Thus, q’p is false. Therefore, (p’q)’(q’p) is false.  
15. Use the same example as in Exercise 13.   17. (h…t)’h; tautology   19. ~(r…v)’((~r)…(~v));
not a tautology   21. (u’r)’(~r’~u); tautology   23. (u↔r)’(~r’~u); tautology  
25. (g’p)’(gæ~p); not a tautology   27. ((tæh)…~t)’h; tautology  
29. ((g’s)…(g’j))’(s’j); not a tautology   31. ((g’s)…~g)’~s ; not a tautology
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L.5
1. ~q   3. ~(q…r)   5. ~(~pæq)   7. p…~q   9. (p…r)’r   11. 4. (p…r)’r;  5. ~(p…r)  
13. p’q   15. 3. (~r)æ(~q);  4. ~(r…q);  5. ~p   17. 4. p…q;  5. r   19. DeMorgan   21. 1,2
Modus Tollens   23. 1, Switcheroo   25. 1, Switcheroo;  2, DeMorgan   27. 2, Addition; 1,3 Modus
Ponens;  4, Simplification   29. 1,2 Transitive Law;  4, Contrapositive;  3,5 Modus Ponens  
31. 1, Simplification;  1, Simplification; 3, Addition, 4, Switcheroo;  2,5 Modus Ponens   33."Double
Negative;  Double Negative (S); 2, Switcheroo; 3, Addition; 4, Associative Law;  5, Commutative
Law; 6, Switcheroo;  7, Switcheroo   
35. 1. u’r Premise
   2. r’h Premise
 3. ~h Premise
  4. ~r 2,3 Modus Tollens

5. ~u 1,4 Modus Tollens

37. 1. ~(h…r) Premise
   2. ~hæ~r 1, DeMorgan
   3. h Premise
   4. ~r 2,3 Disjunctive Syllogism

39. 1. i’s Premise
2. ~i’(h…c) Premise

   3. ~c Premise
  4. ~hæ~c 3, Addition

5. ~(h…c) 4, DeMorgan
6. i 2,5 Modus Tollens

   7. s 1,6 Modus Ponens

L.6
1111.... 1. (pær)’~q Premise

2. pær Premise
3. ~q 1, 2 Modus Ponens

3333 .... 1. ~p’(r’~t) Premise
2. ~(r’~t) Premise
3. p 1, 2 modus tollens

5555 .... 1. ~p’(q…r) Premise
2. ~p…s Premise
3. ~p 2, simplification
4. q…r 1, 3 modus ponens
5. r 4, simplification

7777 .... 1. p’q Premise
2. ~(qær) Premise
3. ~q…~r 2, DeMorgan
4. ~q 3, simplification
5. ~p 1, 4 modus tollens

9999 .... 1. (pær)’ q Premise
2. s’p Premise
3. s Premise
4. p 2, 3 modus ponens
5. pær 4, addition
6. q 1, 5 modus ponens

11111111.... 1. (pæ~q)’ r Premise
2. s’(t…u) Premise
3. s…p Premise
4. s 3, simplification
5. t…u 2, 4 modus ponens
6. u 5, simplification
7. p 3, simplification
8. pæ~q 7, addition
9. r 1, 8 modus ponens
10. r…u 6, 9 rule C

13. 1. (p’q)’ r Premise 15. 1. p’(q’r) Premise
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2. ~(qær) Premise
3. ~q…~r 2, DeMorgan
4. ~r 3, simplification
5. ~(p’q) 1, 4 modus tollens
6. ~(~pæq) 5, switcheroo
7. p…~q 6, DeMorgan
8. p 7, simplification

2. q Premise
3. ~pæ(q’r) 1, switcheroo
4. ~pæ(~qær) 3, switcheroo
5. ~pæ(ræ~q) 4, commutativit y
6. (~pær)æ~q 5, associativity
7. ~pær 2,6 disjunctive syllogism
8. p’r 7, switcheroo

17. 1. (p…q)’p simplification
2. p’(pæq) addition
3. (p…q)’(pæq) 1, 2 transitivity

19. 1. p’~(~p) double negative
2. p’p double negative
3. ~pæp 2, switcheroo
4. ~(p…~p) 3, DeMorgan

21. 1. p’~(~p) double negative
2. p’p double negative
3. ~pæp 2, switcheroo
4. pæ~p 3, commutative law
5. (pæ~p)…(pæ~p)  4, rule C
6. (p…p)æ~p 5, distributive law
7. ~(~pæ~p)æ~p 6, DeMorgan
8. ~(p’~p)æ~p 7, switcheroo
9. (p’~p)’p 8, switcheroo

23.  p false, q true   25...."p true, q false, r false  27. Invalid. For a counterexample, we can take p =
“1 = 1”; q = “The moon is made of green cheese”, and r = “2+2 = 4.”
29. Valid. 1. p’r Premise

2. ~q’~r Premise
3. r’q 2, contrapositive
4. p’q 1,3 transitive law

31. Invalid. This is the same argument as the one in (23). Note that, although the reasoning is
incorrect, the conclusion is true. I don't eat grass.
33. Invalid:

p’d Let p be false and d true.
d
_____
∴  p

35. Invalid:
d’r Let d be false, r true, and s false.
d’s
_____
∴  r’s

37. Valid:
(mæp)’h
m
_________
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∴  h
Proof:

1. (mæp)’h Premise
2. m Premise
3. mæp 2, addition
4. h 1,4 modus ponens

39. Replace her; her prediction is invalid. Using r = “it rains on the Nile,” s = “Sagittarius falls
in Jupiter's shadow,” m = “Mercury is ascending,” f = “The moon is full,” the argument
becomes:

r’s
m’r
s’(fæm)
________
∴  (s…f)’r

Intuitively, the argument seems invalid because, according to the premises, to be assured of r we
need to have m, whereas all s guarantees is f or m. To get a counterexample, we try to make the
conclusion false, which means s and f must be true, but r must be false. What about m? Since
m’r is one of the premises and r is false, so must m be false for m’r to be true. Thus we have:
s and f true; r and m false. Let us take: s = “1+1 = 2,” f = “the moon is round,” r = “the moon
is square,” and m = “the moon is a balloon.” Then the argument becomes:

If the moon is square, then 1+1 = 2 - true
If the moon is a balloon, then it is square - true
If 1+1 = 2, then the moon is either round or a balloon - true
_______________________________________________
∴  If 1 + 1 = 2 and the moon is round, then the moon is square - false

41. A correct deduction; if we use the first letter in a country's name to represent the statement that it
signs the accord, then the argument is:

u’(c…b)
i’b
b’u
__________
∴   i’c

To prove it, first obtain i’(c…b) using transitivity, then use switcheroo and simplification to obtain
~iæc, and finally, use switcheroo.
43. Valid: Let v = “some violets are red,” b = “some roses are blue,” l = “somebody loves
you,” and g = “you’re grown up.”

(~v…b)’~l
l
bæ(~g)
g
__________
∴  v

Proof:
1. (~v…b)’~l Premise
2. l Premise
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3. bæ(~g) Premise
4. g Premise
5. ~(~v…b) 1, 2 modus tollens
6. væ~b 5, DeMorgan
7. b 3,4 disjunctive syllogism
8. v 6,7 disjunctive syllogism

45. Yes; rule of Inference T2 permits us to add any tautology in our list of tautologies in Section
L.4 as a premise. Thus, we can start with no premises and add tautologies from our list.   47. The
argument is invalid, and so there is not proof.

L.7
1. ∀ x[Gx’Dx]   3. ∀ x[Cx’Ex]   5. ∃ x[Cx…Ex]   7. ∃ x[Cx…~Bx] … ∃ x[Cx…Bx], or ∃ x,y
[Cx…Cy…Bx…~By]   9. ∃ x[Cx…Ix] … (Cd… ~Id)   11. ∃ x[Lx…Sx] ’ ∀ x[Lx’Sx]  
13. ∃ x[Nx…(x>2)] … ∃ x[Nx…(x≤2)], or ∃ x,y[Nx…Ny…(x>2)…(y≤2)]   15. ∃ n[12 = 6n]  
17. ∀ m[∃ n[12 = mn] ’ ∃ n[24 = mn]]   19. ∃ m[∃ n[15 = mn]], or ∃ m,n[15 = mn]  
21. ~∃ m,n[(m≠1)…(m≠17)…(17 = mn)], or  ∀ n,m[(17 = mn) ’ (m=1)æ(m=17)]  
23. ∀ x[(x>0) ’ ∃ y[(y>0)…(y<x)]]   25. {P1 … ∀ n[Pn’P(n+1)]} ’ ∀ n[Pn]   27. Every
raindrop makes a splash.   29...."Some dogs whimper.   31...."No dogs whimper.   33. Some cats
whimper and some cats won't.   35. Wrong; saying that not all athletes drink ThirstPro amounts to
saying that some athletes do not drink it.   37. “For some” can be expressed as ∃   and “there does
not exist” as ~∃ . Hence no new quantifiers are necessary.

L.8
1. ∃ x[Px…Qx]  3....""""∃ x[Px’Qx]   5....""""∀ x[Px’~Qx]   7....""""∀ x[~(Px”’Qx)]   9....""""∃ x[∀ y[~P(x,y)]]  
11.... ∃ x[Px…∀ y[~Q(x,y)]]   13....""""∃ x[∀ y[∃ z[~P(x,y,z)]]]  15. Some men are immortal.  
17. Some pigs with wings cannot fly.   19. All men are immortal.   21. No pigs can fly.   23. There
is a positive number for which there is no smaller.   25. For every number there is a positive number
that is no larger.
27. 1. ∀ x[Px’Qx] Premise

2. ~Qb Premise
3. Pb’Qb 1, Specialization
4. ~Pb 2,3 Modus Tollens

29. 1. ~∃ x[Px…Qx] Premise
2. Pb Premise
3. ∀ x[~(Px…Qx)] 1, Negation
4. ∀ x[(~Px)æ(~Qx)] 3, DeMorgan
5. (~Pb)æ(~Qb) 4, Specialization
6. ~Qb 2, 5 Disjunctive 

Syllogism

31. 1. ∀ x[Px’~Qx] Premise
2. ~∃ x[(RxæSx)…~Qx] Premise
3. Rb Premise
4. ∀ x[~((RxæSx)…~Qx)] 2, Negation
5. ∀ x[~(RxæSx)æQx)] 4, DeMorgan
6. ~(RbæSb)æQb 5, Specialization
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7. RbæSb 3, Addition
8. Qb 6,7 Disjunctive Syllogism
9. Pb’~Qb 1, Specialization
10. Pb 8,9 Modus Ponens

33. 1. ∀ x[Px’Qx] Premise
2. Pb Premise
3. Pb’Qb 1, Specialization
4. Qb 2,3 Modus Ponens
5. ∃ x[Qx] 4, Generalization

35. 1. ~∃ x[Px…Qx] Premise
2. Pb Premise
3. ∀ x[~(Px…Qx)] 1, Negation
4. ~(Pb…Qb) 3, Specialization
5. (~Pb)æ(~Qb) 4, DeMorgan
6. ~Qb 2,5 Disjunctive

Syllogism
7. ∃ x[~Qx] 6, Generalization
8. ~∀ x[Qx] 7, Negation

37. 1. ∀ x[Mx’Rx] Premise
2. ~Rb Premise
3. Mb’Rb 1, Specialization
4. ~Mb 2,3 Modus Tollens

39. 1. ~∃ x[Px…Fx] Premise
2. Ps Premise
3. ∀ x[~(Px…Fx)] 1, Negation
4. ~(Ps…Fs) 3, Specialization
5. ~Psæ~Fs 4, DeMorgan
6. ~Fs 2,5 Disjunctive

Syllogism

41. 1. ~∃ x[Cx…Px] Premise
2. ~∃ x[~Px…Sx] Premise
3. Ca Premise
4. ∀ x[~(Cx…Px)] 1, Negation
5. ~(Ca…Pa) 4, Specialization
6. ~Caæ~Pa 5, DeMorgan
7. ~Pa 3,6 Disjunctive Syllogism
8. ∀ x[~(~Px…Sx)] 2, Negation
9. ~(~Pa…Sa) 8, Specialization
10. Paæ~Sa 9, DeMorgan
11. ~Sa 7,10 Disjunctive  Syllogism

43. Right: one can replace ∀ x[Px] by ~∃ x[~Px].    45. It is invalid; for instance, the fact that 3 is a
positive number does ot permit us to conclude that all numbers are positive.   47. No; For let P(x,y)
stand for x > y. Then the statement on the right is “For all (numbers) y there exists a (number) x
with x > y”—a true statement about numbers, whereas the statement on the left is “There is a
(number) x which is bigger than every number y”— a false statement.


