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You'rethe Expert—Does God Exist?

Y our have been assigned the job of evaluating the attempts of mortals to prove the existence of
God. And many attempts there have been. Three in particular have caught your attention: they
are known as the cosmological argument, the teleologica argument, and the ontological
argument.

Cosmological Argument (St. Thomas Aquinas)
No effect can cause itself, but requires another cause. If there were no first cause, there
would be an infinite sequence of preceding causes. Clearly there cannot be an infinite
sequence of causes, therefore thereis afirst cause, and thisis God.

Teleological Argument (St. Thomas Aquinas)
All things in the world act towards an end. They could not do this without there being an
intelligence that directs them. Thisintelligenceis God.

Ontological Argument (St. Anselm)
God is a being than which none greater can be thought. A being thought of as existing is
greater than one thought of as not existing. Therefore, one cannot think of God as not
existing, so God must exist.

Arethese arguments valid?
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Logic isthe underpinning of all reasoned argument. The ancient Greeks recognized its role
in mathematics and philosophy, and studied it extensively. Aristotle, in his Organon, wrote the
first systematic treatise on logic. His work had a heavy influence on philosophy, science and
religion through the Middle Ages.

But Aristotle’ slogic was expressed in ordinary language, so was subject to the ambiguities
of ordinary language. Philosophers came to want to express logic more formaly and
symbolicaly, more like the way that mathematics is written (Leibniz, in the 17th century, was
probably the first to envision and call for such aformalism). It was with the publication in 1847
of G. Boole’'s The Mathematical Analysis of Logic and A. DeMorgan’s Formal Logic that
symbolic logic cameinto being, and logic became recognized as part of mathematics. This aso
marked the recognition that mathematics is not just about numbers (arithmetic) and shapes
(geometry), but encompasses any subject that can be expressed symbolically with precise rules
of manipulation of those symboals. It is symbolic logic that we shall study in this chapter.

Since Boole and DeMorgan, logic and mathematics have been inextricably intertwined.
Logicispart of mathematics, but at the same time it is the language of mathematics. In the late
19th and early 20th century it was believed that all of mathematics could be reduced to symbolic
logic and made purely formal. This belief, though still held in modified form today, was shaken
by K. Godel in the 1930’'s, when he showed that there would always remain truths that could
not be derived in any such formal system. (See some of the footnotesin this chapter.)

The study of symbolic logic is usualy broken into severa parts. The first and most
fundamentd is the propositional calculus. Built on top of this is the predicate calculus,
which isthe language of mathematics. We shall study the propositiona calculus in the first six
sections of this chapter and ook at the predicate calculus briefly in the last two.
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L.1 Statements and Logical Operators

In this chapter we shall study propositional calculus, which, contrary to what the name
suggests, has nothing to do with the subject usualy cdled “calculus.” Actudly, the term
“calculus’ is ageneric name for any area of mathematics that concerns itself with calculating.
For example, arithmetic could be called the calculus of numbers. Propositional calculus is the
calculus of propositions. A proposition, or statement, is any declarative sentence which is
either true (T) or fase (F). Werefer to T or F asthe truth value of the statement.

Example 1 Propositions

Which of the following are statements? What are their truth values?
(@2+2=4

(k)1 =0

(c) It will rain tomorrow.

(d) If I am Buddha, then | am not Buddha.

(e) Solvethe following equation for x.

() The number 5.

(9) This statement isfalse.

(h) This statement is true.

Solution
(a) Thesentence “2 + 2 = 4”7 is a datement, since it can be ether true or false.l Since it
happens to be atrue statement, itstruth valueisT.

(b) Thesentence“1 = 0” isaso a statement, but its truth valueisF.

(c) “It will rain tomorrow” is a statement. To determine its truth value we shall have to wait for
tomorrow.

(d) We shall see later that the statement “If | am Buddha, then | am not Buddha’ redly
amountsto the smpler statement “I am not Buddha.” As long as the speaker is not Buddha,
thisis atrue statement.

(e) “ Solve the following equation for x” is not a statement, as it cannot be assigned any truth
value whatsoever. It isan imperative, or command, rather than a declarative sentence.

(f) “The number 5” is not a statement, since it is not even a complete sentence.
(9) “This statement isfalse” getsusinto abind: If it were true, then, since it is declaring itself

to befase, it must be false. On the other hand, if it were fase, then its declaring itself faseis a
lie, soitistruel In other words, if itistrue, thenitisfase, andif itisfase thenitistrue, and we

11f you doubt that “2 + 2 = 4” is a sentence to begin with, read it aloud: “ Two plus two equals four,” is a perfectly
respectable English sentence.
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go around in circles. We get out of this bind by refusing to cal it a statement. An equivaent
pseudo-statement is: “1 am lying,” so this sentence is known asthe liar's paradox.

(h) “This statement istrue” may seem like a statement, but there is no way that its truth vaue
can be determined. It makesjust as much sense to say that the sentenceistrue asto say that it is
fase. Wethusrefuseto cal it a statement.

Thelast two sentences in the preceding example are called self-r eferential sentences, since
they refer to themselves. Sdf-referential sentences are henceforth disqualified from
statementhood, so thisisthe last time you will see them in this chapter.1

We shall usethe letters p, ¢, r, s and so on to stand for propositions. Thus, for example,
we might decide that p should stand for the proposition “the moon isround.” We shall write

p: “the moon is round”
to expressthis. We read:
p is the statement “ the moon isround.”

We can form new propositions from old ones in several different ways. For example,
starting with p: “I am an Anchovian,” we can form the negation of p: “It is not the case that |
am an Anchovian” or smply “I am not an Anchovian.” We denote the negation of p by ~p,
read “not p.” We mean by thisthat, if p is true, then ~p is fdse, and vice-versa. We can show
the meaning of ~p in atruth table:

~p
F
T

kb

On the left are the two possible truth values of p and on the right are the corresponding truth
values of ~p. The symbol ~ isour first example of alogical operator.

Example 2 Negation

Find the negations of the following propositions.
@p:“2+2=4

b)g:“1 =0

(c) r: “Diamonds are a pearl’s best friend.”

(d) s: “All the politicians in this town are crooks.”

1 Self-referential sentences are not simply an idle indulgence; the famous logician Kurt Godel used a mathematical
formulation of the Liar's Paradox to draw very profound conclusions about the power of mathematics. For more on
self-referential sentences, see Metamagical Themas. Questing for the Essence of Mind and Pattern by Douglas R.
Hofstadter (Bantam Books, New Y ork 1986)
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Solution
(8) ~p: “Itisnotthecasethat 2 + 2 = 4,” or, moresimply, ~p: “2 + 2 # 4.”

(b) ~g: “1 #0"
() ~r: “Diamonds are not a pearl’s best friend.”
(d) ~s: “Not al the politicians in this town are crooks.”

Beforewe go on... Noticethat ~p isfase, because p is true. However, ~q is true, because ¢g is
fase. A statement of the form ~¢ can very well betrue; it is a common mistake to think it must
befase.

To say that diamonds are not a pearl’ s best friend is not to say that diamonds are a pearl’s
worst enemy. The negation is not the polar opposite, but whatever would deny the truth of the
original statement. Similarly, saying that not al politicians are crooks is not the same as saying
that no politicians are crooks, but is the same as saying that some politicians are not crooks.
Negations of statements involving the quantifiers “all” or “some” are tricky. We'll study
quantifiers in more depth when we discuss the predicate calculus.

Here is another way we can form a new proposition from old ones. Starting with p: “1 am
clever,” and ¢: “You are strong,” we can form the statement “1 am clever and you are strong.”
We denote this new statement by pAg, read “p and ¢.” In order for pAg to be true, both p and
g must be true. Thus, for example, if | am indeed clever, but you are not strong, then pAg is
fase. The symbol A is another logical operator. The statement pAg is called the conjunction
of p and g.

Conjunction
The conjunction of p and ¢ isthe statement pAg, which weread “p and ¢.” Its truth vdue is
defined by the following truth table.

PNq

T[S
M|
mTmH

In the p and ¢ columns are listed all four possible combinations of truth vaues for p and ¢,
and in the pAg column we find the corresponding truth value for pAg. For example, reading
across the third row tells us that, if p is fase and ¢ is true, then pAg is false. In fact, the only
way wecan get aT inthe pAg columnisif both p and g are true, as the table shows.

Example 3 Conjunction

If p: “This gaaxy will ultimately disappear into a black hole” and ¢: “2 + 2 = 4,” what is
PAG?
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Solution pAg: “This galaxy will ultimately disappear into ablack holeand 2 + 2 = 4, or the
more astonishing statement: “Not only will this galaxy ultimately disappear into a black hole,
but2 + 2 = 41”

Beforewegoon... g istrue so if p is true then the whole statement pAg will be true. On the
other hand, if p isfase, then the whole statement pAg will befase.

Example 4

With p and ¢ asin Example 3, what does the statement pA(~q) say?

Solution pA(~q) says. “This galaxy will ultimately disappear into a black holeand 2 + 2 #
4,” or “Contrary to your hopes, this galaxy is doomed to disappear into a black hole; moreover,

two plustwo is decidedly not equal to four!”

Before we go on... Since ~q is fase, the whole statement pA(~q) is fase (regardiess of
whether p istrue or not).

Example 5

If p is the statement “This chapter is interesting® and ¢ is the statement “Logic is an
interesting subject,” then express the statement “This chapter is not interesting even though
logic isan interesting subject” in logical form.

Solution The first clause is the negation of p, so is ~p. The second clause is smply ¢g. The
phrase “even though” is another way of saying that both clauses are true, and so the whole
statement is (~p)Ag.

Example 6

Let p: “This chapter is interesting,” ¢: “This whole book is interesting” and r: “Life is
interesting.” Express the statement “Not only isthis chapter interesting, but this whole book is
interesting, and lifeisinteresting, too” inlogica form.

Solution The statement is asserting that dl three statements p, ¢ and r are true. (Note that
“but” is smply an emphatic form of “and.”) Now we can combine dl three in two steps:
First, we can combine p and ¢ to get pAg, meaning “This chapter isinteresting and this book is
interesting.” We can then conjoin this with r to get: (pAg)Ar. This says. “This chapter is
interesting, this book isinteresting and lifeisinteresting.” On the other hand, we could equaly
well have done it the other way around: conjoining ¢ and r gives “This book is interesting and
life is interesting.” We then conjoin p to get pA(gAr), which again says: “This chapter is
interesting, thisbook is interesting and life is interesting.” We shall soon see that (pAg)Ar is
logically the same as pA(gAr), afact caled the associative law for conjunction. Thus both
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answers (pAg)Ar and pA(gAr) are equaly valid. Thisis like saying that (1 + 2) + 3 is the
sameas1 + (2 + 3). Aswith addition, we often drop the parentheses and write pAgAr.

As we've just seen, there are many ways of expressing a conjunction in English. For
example, if p: “Waner drivesafast car” and ¢: “Costenoble drives a dow car,” the following
areall ways of saying pAg.

Waner drives afast car and Costenoble drivesaslow car.

Waner drives afast car but Costenoble drivesasow car.

Waner drives afast car yet Costenoble drivesadow car.
Although Waner drives afast car, Costenoble drivesadow car.
Waner drives afast car even though Costenoble drivesadow car.
While Waner drives afast car, Costenoble drivesaslow car.

Any sentence that says that two things are both true is a conjunction. Symbolic logic strips
away any elements of surprise or judgment that are expressed in an English sentence.

Hereisathird logical operator. Starting once again with p: “I am clever,” and ¢: “You are
strong,” we can form the statement “I am clever or you are strong,” which we write
symbolically as pvg, read “p or g.” Now in English the word “or” has severd possible
meanings, so we have to agree on which one we want here. Mathematicians have settled on the
inclusive or: pvg meansp is true or ¢ is true or both are truel. With p and ¢ as above, pvg
stands for “I am clever or you are strong, or both.” We shall sometimes include the phrase “or
both” for emphasis, but if we leaveit off we still interpret “or” asinclusive.

Disjunction
The disjunction of p and ¢ is the statement p\q, which weread “p or ¢.” Its truth vaue is
defined by the following truth table.

|pva

q
T
F
T
F

i BRI RS
T———

Thisistheinclusive or, so pvq istrue when p istrue or g istrue or both are true.

Notice that the only way for pvq to befalseisfor both p and ¢ to be fase. For this reason
we can say that p\Vq aso means*“p and ¢ are not both false.” We'll say more about this in the
next section.

Example 7 Digunction

Let p: “the butler did it” and let ¢: “the cook did it.” What does pvq say?

1 Thereis also the exclusive or: “p or g but not both.” This can be expressed as (p\Vq)A~(pAg). Do you see why?
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Solution pvq: “either the butler or the cook did it.”

Before we go on... Remember that this does not exclude the possibility that the butler and cook
both did it—or that they were in fact the same person! The only way that pvg could be fase is
if neither the butler nor the cook did it.

Example 8

Let p: “the butler did it,” let ¢g: “the cook did it,” and let r: “the lawyer did it.” What does
(PVGN(~r) say?

Solution (pVvg)A(~r) says “either the butler or the cook did it, but not the lawyer.”

Example 9

Let p: “55 isdivisbleby 5, ¢: “676 is divisble by 11" and r: “55 is divisble by 11.”
Express the following statementsin symbolic form:

(a) “Either 55 is not divisible by 11 or 676 is not divisible by 11.”

(b) “Either 55 isdivisible by either 5 or 11, or 676 isdivisible by 11.”

Solution

(a) Thisisthe digunction of the negations of p and ¢, SO is (~p)V(~q).

(b) Thisisthe digunction of all three statements, sois (p\Vvq)Vvr, or, equivdently, pv(gvr). We
often drop the parentheses and write p\vg\r.

Beforewe go on... (@) istrue because ~¢ is true. (b) is true because p is true. Notice that r is
alsotrue. If at least one of p, g, or r istrue, the whole statement p\vg\vr will be true.

We end this section with a little terminology: A compound statement is a Statement
formed from simpler statements viathe use of logical operators. Examples are ~p, (~p)A(qVr)
and pA(~p). A statement that cannot be expressed as a compound statement is called an atomic
statement?. For example, “1 am clever” isan atomic statement. In a compound statement such
as (~p)A(gVr), werefer to p, g and r asthe variables of the statement. Thus, for example, ~p is
acompound statement in the single variable p.

L.1 Exercises
Which of Exercises 1-14 are statements? Comment on the truth values of all the statements you
encounter. If a sentence failsto be a statement, explain why.

1. All swans are white.

2. Thefat cat sat on the mat.

1«Atomic” comes from the Greek for “not divisible.” Atoms were originally thought to be the indivisible
components of matter, but the march of science proved that wrong. The name stuck, though.
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3. Look in thy glass and tell whose face thou viewest.1

4. My glass shall not persuade me | am old.2

5. Father Nikolsky penned his dying confession to Patriarch Arsen 111 Charnoyevich of Pec in
the pitch dark, somewhere in Poland, using a mixture of gunpowder and sdiva, and a quick
Cyrillic hand, while the innkeeper's wife scolded and cursed him through the bolted door.3

6. 1,000,000,000 isthe largest number.

7. Thereisno largest number.

8. There may or may not be alargest number.

9. Intelligent life aboundsin the universe.

10. This definitely is a statement.

11. He, sheor it islying.

12. Thisis exercise number 12.

13. This sentence no verb.4

14. “potato” is spelled p-o-t-a-t-o-e.

Let p: “Our mayor is trustworthy,” ¢: “Our mayor is a good speller,” and r = “Our mayor
isapatriot.” Express each of the statementsin Exercises 1520 in logical form:

15. Although our mayor is not trustworthy, heisagood speller.

16. Either our mayor istrustworthy, or heisagood speller.

17. Our mayor is atrustworthy patriot who spells well.

18. While our mayor is both trustworthy and patriotic, he is not agood speller.
19. It may or may not be the case that our mayor is trustworthy.

20. Either our mayor is not trustworthy or not a patriot, yet heis an excellent speller.

1 William Shakespeare

2 1bid.

3 from Dictionary of the Khazars by Milorad Pavic (Vintage Press).

4 From Metamagical Themas: Questing for the Essence of Mind and Pattern by Douglas R. Hofstadter (Bantam
Books, New Y ork 1986)
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Let p: “Willis is a good teacher,” ¢: “Carla is a good teacher,” r: “Willis' students hate
math,” s: “ Carla' s students hate math.” Express the statements in Exercises 21-30 in words.

21. pA(~r) 22. (~pIN(~q)

23. pV(rA(~q)) 24. (rv(~p))N\q
25. gV(~q) 26. (~p)A(~$))Vq
27. rA(~r) 28. (~s)V(~1)

29. ~(qVs) 30. ~(pAr)

Assume that it is true that “Polly sings well,” it is false that “ Quentin writes well,” and it is
true that “Ritais good at math.” Determine the truth of each of the statementsin Exercises 31—
40.

31. Polly singswell and Quentin writes well.

32. Polly singswell or Quentin writeswell.

33. Polly sings poorly and Quentin writes well.

34. Polly sings poorly or Quentin writes poorly.

35. Either Polly sings well and Quentin writes poorly, or Ritais good at math.

36. Either Polly sings well and Quentin writes poorly, or Ritais not good at math.

37. Either Polly singswell or Quentin writeswell, or Ritais good at math.

38. Either Polly sings wel and Quentin writes wdl, or Polly sings wdl and Rita is good a
math.

39. Polly singswell, and either Quentin writeswell or Ritais good at math.
40. Polly sings poorly, or Quentin writes poorly and Ritais good at math.
Communication and Reasoning Exer cises
41. The statement that either p or ¢ istrue, but not both is called the exclusive digunction of p

and g, whichwewriteasp [1g. Giveaformulafor p [1¢ in terms of the logica operators ~, A
and V.
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42. The statement that either p and g ae both true, or neither is true, is cdled the
biconditional of p and ¢, and writeit asp — ¢. Giveaformulafor p - ¢ in terms of the logica
operators~, Aand V.

43. Referring to Exercise 41, give an example of an everyday usage of exclusive digunction.

44. Referring to Exercise 42, give an example of an everyday usage of exclusive conjunction.

45. Give an example of a sdf-referential question that isits own answer.!

46. Comment on the following pair of sentences:

The next statement isfalse.
The preceding statement istrue.

1 Such a question was posed by Douglas Hofstadter in Metamagical Themas: Questing for the Essence of Mind and
Pattern (Bantam Books, New Y ork 1986)
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L.2 Logical Equivalence, Tautologies, and Contradictions

We suggested in the preceding section that certain statements are equivaent. For example,
we claimed that (pAg)Ar and pA(gAr) are equivalent—a fact we called the associative law for
conjunction. In this section, we use truth tables to say precisely what we mean by logica
equivdence, and we aso study cetan daements that ae ether “self-evident”
(“tautological”), or “evidently false” (“contradictory”).

We start with some more examples of truth tables.

Example 1 Truth Tables
Construct the truth table for ~(pAg).

Solution Whenever we encounter a complex formulalike this we work from the inside out, just
aswe might do if we had to evaluate an algebraic expression like —(a + b). Thus, we start with
the p and ¢ columns, then construct the pAg column, and finally, the ~(pAg) column.

|pAg | ~(pA9)

M=
a4 (<
mmTmH
A4

Notice how we get the ~(pAg) column from the pAg column: we reverse dl the truth values.

Example 2
Construct the truth table for pV(pAg).

Solution Since there are two variables, p and ¢, we again start with the p and ¢ columns. We
then evaluate pAg, and finally take the digunction of the result with p.

|pAg | PV(PAG)

q
T[T T
FIF | T
T|F | F
FIF | F

How did we get the last column from the others? Since we are “or-ing” p with pAg, we look a
the valuesin the p and pAg columns and combine these according to the instructions for “or.”
Thus, for example, in the second row we have TVF =T and in the third row we have FVF = F.
(If you look at the second row of the truth table for “or” youwill see T | F | T, and in the last
row you will seeF |F|F.)
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Example 3
Construct the truth table for ~(pAg)A(~r).

Solution Here, there are three variables. p, ¢ and r. Thus we start with three initid columns
showing al eight possihilities.

M TAAAA|S
TTTMHdTTHH|<
MAT—AT—=74|~

We now add columns for pAg, ~(pAg) and ~r, and findly ~(pAg)A(~r), according to the
instructions for these logical operators. Here is how the table would grow as we construct it.

)
)

plagl|r |pAg plag|r |pAg |~pAg)| ~r
TITIT! T T(TI[T]|T F F
TITIFIlT TITIF|T F T
TIEITIEF T|F|T|F T F
TIEIFI|FE T|FI|F|F T T
FITITIE FIT|T|F T F
FITIFI|F FIT|F|F T T
FIEITIF FIF|T|F T F
FIEIF | F F|F |F |F T T
and finally,
Pla|r |PAg |~PAQ) | ~r |~(PAGA(~T)
T(T[T]| T F F F
TITIE|T F T F
TIF|[T|F T F F
T|FI|F|F T T T
FITI|TI|F T F F
F|IT|F|F T T T
FIF|T|F T F F
FIFI|F|F T T T

We say that two statements are logically equivalent if, for al possible truth vaues of the
variables involved, the two statements aways have the same truth values. If s and ¢ ae
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equivaent, wewrite s = ¢. This is not another logical statement. It is smply the claim that the
two statements s and ¢ are logically equivaent. Here are some examples.

Example 4 Logical Equivalence
Show that p = ~(~p). Thisis called double negation.

Solution To demonstrate the logical equivaence of these two statements, we construct a truth
table with columns for both p and ~(~p).

"

| | ~(~p)
HE

F
The p column gives the two possible truth vaues for p, while the ~p column gives the
corresponding values for its negation. We get the values in the ~(~p) column from those in the
~p column by reversing the truth values: if ~p isfase, then its negation, ~(~p), must be true, and
vice-versa. Since the p and ~(~p) columns now contain the same truth values in al rows (“for
all possible truth values of the variablesinvolved”), they are logically equivalent.

PP
T|F
FlT

Example 5 Double Negation
Rewrite “It’ s not true that I’m not happy” in simpler form.

Solution Let p: “1 am happy,” so that the given statement is ~(~p). This is equivaent to p, in
other words, to the statement “1 am happy.”

Before we go on... Unlike French (“Ceci n’est pas une pipe’) and colloquia English (“This
ain’t no pipe’), adouble negative in logic always means a positive statement.

Example 6 DeMorgan’s Law
Show that ~(pAg) = (~p)V(~q). Thisisone of DeMorgan'sLaws.
Solution We construct atruth table showing both ~(pAg) and (~p)V(~q).

TN

|[pAg | ~pA9) | ~p | ~q | (=P)V(~q)

R R Kl IS
Mm—=an-|<
mTTnA
44
47T
7T
44T
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Since the ~(pAg) column and (~p)V(~g) column agree, we conclude that they are equivalent.

Beforewe go on... The statement ~(pAg) can be read as “It is not the case that both p and ¢
aretrue’ or “p and g are not both true.” We have just shown that this is equivaent to “Either
pisfaseorgisfase”

Example 7 DeMorgan’s Law

Let p: “the President isa Democrat,” and ¢: “the President is a Republican.” Interpret ~(pAg)
and the equivalent statement given by DeMorgan’'s Law.

Solution ~(pAg): “the President is not both a Democrat and a Republican.” This is the same
as saying: “either the President is not a Democrat, or he is not a Republican, or he is neither,”
which is (~p)V(~q).

Before we go on... Thisis not the same as “the President is a Republican or a Democrat,”
which would be ¢Vp. The statement ~(pAg) would be true if the President were from a third
party, while gvp would not.

Here are the two equivalences known as DeMorgan’s Laws.

DeMorgan’'s Laws
If p and g are statements, then

~(pAg) = (~p)V(~q)
~(pVq) = (~p)A\(~q)

Mechanicaly speaking, this means that, when we distribute a negation sign, it reverses A
and v, and the negation applies to both parts.

A compound statement is a tautology if its truth value is dways T, regardless of the truth
values of itsvariables. It isacontradiction if itstruth value isaways F, regardless of the truth
values of its variables. Notice that these are properties of a single statement, while logica
equivaence relates two statements.

Example 8 Tautologies
Show that the statement p\V/(~p) is atautology.

Solution We look at its truth table.
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p | ~p| pV(~p)
T|IF|[ T
F | T

T
N___ dITs

Since there are only Tsin the p\v/(~p) column, we conclude that pv(~p) is a tautology. We can
think of this as saying that the truth value of the statement p\V/(~p) is independent of the vaue of
the “input” variable p.

Beforewegoon...
“You are sad,” the Knight said in an anxious tone: “let me sing you a song to comfort
you. . . Everybody that hears me sing it—either it brings the tearsinto their eyes, or else—"
“Or esewhat?’ said Alice, for the Knight had made a sudden pause.
“Or elseit doesn’'t, you know.t”

Example 9
Show that (pVvq)VI(~p)A(~q)] isatautology.

Solution Itstruth table is the following.

~p | ~q | pvg | ~PIAN~q) | (PVOVI(~pIA(~q)]

A |
T | =
-7
=M=
m——-
=TT
——-d

Again, since the last column contains only Ts, the statement is a tautol ogy.

When a statement is atautology, we also say that the statement is tautological. In common
usage this sometimes means simply that the statement is convincing. In logic it means
something stronger: that the statement is aways true, under al circumstances. In contrast, a
contradiction, or contradictory statement, is never true, under any circumstances.

Example 10 Contradictions

Show that the statement (pVg)A[(~p)A(~q)] isacontradiction.

Solution Itstruth table is the following.

1 From Through the Looking-Glass, by Lewis Carroll. Lewis Carroll was the pen name of the Rev. Charles
Lutwidge Dodgson (1832-1898), a logician who taught at Christ Church College, Oxford.
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~p | ~q | pVg | (~pIA(~q) | (PVOAI(~PIN(~q)]

MmT—aA =
M—T— | =
—— 7T
—T—T
m—a—-
AT
MMM

Since the last column contains only Fs, we conclude that (p\vg)Al(~p)A(~g)] is a contradiction.

Beforewe go on... In common usage we sometimes say that two statements are contradictory.
By thiswe mean that their conjunction is a contradiction: they cannot both be true. For example,
the statements pvg and (~p)A(~g) are contradictory, since we've just shown that their
conjunctionis a contradiction. In other words, no matter what the truth values of p and ¢, it is
never true that both p\vg and (~p)A(~q) are true a the same time. (Can you see why thisis so
from the meaning of pvq?)

Most statements are neither tautologies nor contradictions. The first three examples in this
section were of statements that were sometimes true and sometimes false.

Here is a list of some important logica equivaences, most of which we have aready
encountered. (The verifications of some of these appear as exercises.) We shall add to this list
aswe go along.

Important Logical Equivalences: First List

~(~p) Ep the Double Negative Law

PAG = gN\p the Commutative Law for conjunction.
pVq = qVp the Commutative Law for digunction.
(PAQAr = pA(gAF) the Associative Law for conjunction.
(pVg)Vvr = pV(gVr) the Associative Law for digunction.
~(pVq) = (~p)N\(~q) DeMorgan's Laws

~(pAqQ) = (~p)V(~q)

PA(gVr) = (pAQ)V(PATF) the Distributive Laws
PV(GAr) = (pV@N(PVr)

PAD = p Absorption Laws
pVp =p

Note that these logical equivalences apply to any statements. The ps, gs and rs can stand for
atomic statements or compound statements.

Example 11 Simplifying
Simplify the statement ~([pA(~q)]Ar).
Solution By “simplify” we mean “find a simpler equivalent statement.” We can anadyze this

statement from the outside in. It is first of al a negation, but further it is the negation ~(AAB),
where A is (pA(~g)) and B is r. To see that the statement has this structure, look for the
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“principal connective,” the last connective (“and” or “or”) you would evaluate in forming the
truth table. Now one of DeMorgan’'sLawsis

~(ANB) = (~A)V(~B).

Applying this equivalence gives
~([PACDINY) = (PN~ DV (~).

We can apply DeMorgan's Law again, this time to the statement ~(pA(~g)). Doing so gives
~[PA~q)] = (~p)V~(~q) = (~p)Vq.

Notice that we' ve also used the Double Negative law. Putting these equivalences together gives
~([PACPIN) = (~[PA~@)DV(~1) = (~p)V@V(~T),

which we can write as
(~p)VgV(~1),

since the Associative Law tells us that it does not matter which two expressionswe “or” first.

Example 12

Consider: “You will get an A if either you are clever and the sun shines, or you are clever and it
rains.” Rephrase the condition more ssimply.

Solution The condition is“you are clever and the sun shines, or you are clever and it rains.”
Let’s analyze this symbolically: Let p: “you are clever,” ¢: “the sun shines,” and r: “it rains.”
The condition is then (pAg)V(pAr). We can “factor out” the p using one of the distributive
lawsin reverse, getting

(PAQV(PAr) = pA(gVr).

We are taking advantage of the fact that the logical equivalences we listed can be read from right
to left as well as from left to right. Putting pA(g\Vvr) back into English, we can rephrase the
sentence as“You will get an A if you are clever and either the sun shinesor it rains.”

L.2 Exercises

Construct the truth tables for expressions in Exercises 1-10.

1. pA(~q) 2. pV(~q)
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3. ~(~p)Vp 4. pA(~p)
3. (~pIN(~q) 6. (~p)V(~q)
7. (pNq)N\r 8. pA(gAr)
9. pA(gVr) 10. (pAgQ)V(pArF)

Use truth tables to verify the logical equivaences given in Exercises 11-20.
1l1l.pnp =p

12.pvp =p

13. pvg = gVp. . . the Commutative Law for digunction.

14. pAg = gAp. . . the Commutative Law for conjunction.

15. ~(pVvq) = (~pIN(~q)

16. ~(pA(~q)) = (~p)Vq

17. (pAgQ)Ar = pA(gAr) . . . the Associative Law for conjunction.
18. (pVvq)Vvr = pV(qVr). . . the Associative Law for digunction.
19. pV(gN(~q)) = p

20. pA(~p) = gN(~q)

Use truth tables to check whether each statement in Exercises 21-26 is a tautology,
contradiction, or neither.

21. pA(~p) 22. pA\p
23. pA~(pVq) 24. pv~(pVq)
25. pV~(pAq) 26. qV~(pA(~p))

Apply the stated |logica equivaence to each of the statementsin Exercises 27-34.
27. pV(~p); the Commutative law 28. pA(~q); the Commutative law
29. ~(pA(~q)); DeMorgan's Law 30. ~(¢gV(~q)); DeMorgan's Law

31. pv~(pAg); DeMorgan's Law 32. gv~(pA(~p)); DeMorgan's Law
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33. pV((~p)Aq); the Digtributive Law  34. (~¢)A((~p)Vq); the Distributive Law.

Uselogica equivalencesto rewrite each of the sentencesin Exercises 35-42. If possible, rewrite
more smply.

35. It isnot true that both | am Julius Caesar and you are afool.
36. It isnot true that either | am Julius Caesar or you are afool.

37. Either it'sraining and | have forgotten my umbrella, or it'sraining and | have forgotten my
hat.

38. | forgot my hat or my umbrella, and | forgot my hat or my glasses.

39. My computer crashes when it has been on along time, and when it’ s not the case that ether
the air isdry or the moon is not full.

40. The study determined that the market crashed because interest rates rose, or because it was
not the case that both earnings rose and the moon was not full.

41. Thewarning light will come on if the pressure drops while the temperature is high, or if the
pressure drops while not both the emergency override and the manual controls are activated.

42. The darm will sound if the door is opened and the override button is not pushed while the
adarm is activated, or if there is motion and it is not the case that either the override button is
pushed or the dlarm is not activated.

Communication and Reasoning Exer cises
43. If two propositions are logically equivaent, what can be said about their truth tables?

44. If aproposition is neither a tautology nor a contradiction, what can be said about its truth
table?

45, Can an atomic statement be atautology or a contradiction? Explain.
46. Can a statement with asingle variable p be atautology or a contradiction? Explain.

47.1f A and B are two (possibly compound statements) such that AVB is a contradiction, what
can you say about A and B?

48. If A and B are two (possibly compound statements) such that AAB is a tautology, what can
you say about A and B?
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49. Y our friend thinks that all tautologies are logically equivaent to one another. Is he correct?
Explain.

50. Another friend thinks that, if two statements are logically equivadent to each other, then they
must either be tautologies or contradictions. |s she correct? Explain.
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L .3 The Conditional and the Biconditional

Consider the following statement: “If you earn an A inlogic, then I'll buy you a new car.”
It seems to be made up out of two simpler statements,

p: “youearnan A inlogic,” and
g: “1 will buy you anew car.”

The origina statement says: if p is true, then q is true, or, more smply, if p, then ¢. We can
also phrasethisas p implies ¢, and we write the statement symbolically as p—yq.

Now let us suppose for the sake of argument that the origina statement: “If you earn an A
in logic, then I’ll buy you a new car,” is true. This does not mean that you will earn an A in
logic. All it saysisthat if you do so, then | will buy you that car. Thinking of this as a promise,
the only way that it can be broken isif you do earnan A and | do not buy you a new car. With
thisin mind we define the logical statement p—¢ asfollows.

Conditional
The conditional p—¢q, which we read “if p, then ¢” or “p implies ¢,” is defined by the
following truth table.

p|aq|p—q
T(T| T
T|F| F
FIT| T
FIF| T

The arrow “— " is the conditional operator, and in p—¢ the Statement p is cdled the
antecedent, or hypothesis, and ¢ is called the consequent, or conclusion.

Note

(1) The only way that p—¢ can be faseisif p istrue and ¢ is false—this is the case of the
“broken promise.”

(2) If you look at the truth table again, you see that we say that “p—>¢” is true when p is fase,
no matter what the truth value of ¢. Think again about the promise—if you don’t get that A,
then whether or not | buy you a new car, | have not broken my promise. However, this part of
the truth table seems strange if you think of “if p then ¢” as saying that p causes g. The
problem is that there are really many ways in which the English phrase “if .. .then...” is
used. Mathematicians have ssimply agreed that the meaning given by the truth table above is the
most useful for mathematics, and so that is the meaning we shall aways use. Shortly we'll list
some other English phrases that we interpret as conditional statements.

Here are some examples that will help to explain each linein the truth table.
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Example 1 True Implies True
Isthe following statement true or false?“If 1 + 1 = 2 then the sun risesin the east.”
Solution
Yes, sinceboth“1 + 1 = 2” and “the sun rises in the east” are true, and the first line in the
truth table of the conditional yields a true statement. In general,
If p and g are both true, then p—g¢ istrue.
Beforewe go on... Notice that the statements p and ¢ need not have anything to do with one

another. We are not saying that the sun rises in the east because 1 + 1 = 2, smply that the
whole statement islogicaly true.

Example 2 True Can’t Imply False

Isthe following statement true or false? “When it rains, | need to water my lawn.”

Solution

No. We can rephrase this statement as “If it rains then | need to water my lawn,” which is
clearly false: if it truly doesrain, then it is clearly fase that | need to water my lawn. The second
line of the truth table for the conditional yields afalse statement. In general,

If pistrueand g isfalse, then p—¢ isfalse.

Before we go on... Notice that we interpreted “When p, ¢” as“If p then ¢.”

Example 3 False Implies Anything

Is the following statement true or false? “If the moon is made of green cheese, then | am a
professor of mathematics.”

Solution

True. While the first part of the statement is false, the second part could be true or fase,
depending on the speaker. But, the third and fourth lines of the truth table for the conditional
both yield true statements. In genera,

If p isfalse, then p—¢ istrue, no matter whether ¢ istrue or not.
Before we go on... “If | had a million dollars I’d be on Easy Street.” “Yeah, and if my

grandmother had wheels she'd be abus.” The point of the retort is that anything follows from
afase hypothesis.
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Example 4 The “ Switcheroo” Law
Show that p—¢ = (~p)Vgq.

Solution
We show the equivalence using a truth table.

l i
N/

Before we go on... In other words, p—>¢q is true if ether p is fase or ¢ is true. By
DeMorgan's Law these statements are also equivdent to ~(pA(~g)). The only way the
conditional can be falseisthe case of the broken promise: when p istrue and g isfalse.

For lack of abetter name, we shall call the equivdence p—¢q = (~p)Vvq the * Switcheroo”
law.1

Thefact that we can convert implication to digunction should surprise you. In fact, behind
this is a very powerful technique. It is not too hard (using truth tables) to convert any logica
statement into a digunction of conjunctions of atoms or their negations. This is caled
digunctive normal form, and is essentia in the design of the logica circuitry making up digita
computers.

p—q | ~p | (~p)Vq

iR e S
M—HTH|[<
——4mH
—4Tm
—— T

We have aready seen how colorful language can be. Not surprisingly, it turns out that there
are a great variety of different ways of saying that p implies ¢g. Here are some of the most
common:

Some Phrasings of the Conditional
We interpret each of the following as equivalent to the conditional p—.

If p then g. pimpliesgq.

g follows from p. Not p unlessg.

qifp. ponly if g.

Whenever p, g. g Whenever p.

p issufficient for g. q i1snecessary for p.

p isasufficient condition for g. g 1sanecessary condition for p.

Notice the difference between “if” and “only if.” We say that “p only if ¢g” means p—¢
since, assuming that p—>¢ istrue, p can betrue only if g isaso. In other words, the only line of
the truth table that has p—¢ true and p true aso has ¢ true. The phrasing “p is a sufficient

1 This name was used by Douglas R. Hofstadter in his book Godel, Escher, Bach: An Eternal Golden Braid (Basic
Books 1979).
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condition for ¢” saysthat it sufficesto know that p istrue to be able to conclude that ¢ is true.
For example, it is sufficient that you get an A inlogic for meto buy you anew car. Other things
might induce me to buy you the car, but an A in logic would suffice. The phrasing “¢ is
necessary for p” saysthat, for p to be true ¢ must be true (just as we said for “p only if ¢”).

Example 5 Rephrasing a Conditional
Rephrase the sentence “If it’s Tuesday, this must be Belgium.”

Solution
Here are various ways of rephrasing the sentence:
“Its being Tuesday implies that thisis Belgium.”
“Thisis Belgium if it's Tuesday.”
“It's Tuesday only if thisis Belgium.”
“It can't be Tuesday unless thisis Belgium.”
“Its being Tuesday is sufficient for this to be Belgium.”
“That thisis Belgium is a hecessary condition for its being Tuesday.”

In the exercises for 82, we saw that the commutative law holds for both conjunction and
digunction: pAg = gAp, and pvgq = q\Vp.

Question Does the commutative law hold for the conditional. In other words, is p—q¢q
equivaent to g—p?

Answer No, as we can see in the following truth table.

pla|p—a|a—p
T(T| 1T | 7
TIF|F | T
FIT| T | F
FIF| T | T

C

not the same

Converse
The statement ¢—p is caled the converse of the statement p—¢. A conditional and its
converse are not equivalent.

The fact that a conditional can easily be confused with its converse is often used in
advertising. For example, the slogan “Drink Boors, the official beverage of the US Olympic
Team” suggests that all US Olympic athletes drink Boors (i.e., if you are aUS Olympic athlete,
then you drink Boors). What it is trying to insinuate at the same time is the converse: that dl
drinkers of Boors become US Olympic athletes (if you drink Boors then you are a US
Olympic athlete, or: it is sufficient to drink Boors to become a US Olympic athlete).
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Although the conditional p—¢ is not the same asits conversg, it isthe same as its so-called
contrapositive, (~q)—(~p). While this could easily be shown with a truth table (which you
will be asked to do in an exercise) we can show this equivaence by using the equivaences we
already know:

p—q = (~p)Vq (Switcheroo)
= gV(~p) (Commutativity of V)
= ~(~q)V(~p) (Double Negative)
= (~q)—(~p) (Switcheroo)t

Contrapositive
The statement (~g)—(~p) is cdled the contrapositive of the statement p—¢. A conditiona
and its contrapositive are equivalent.

Example 6 Converse and Contrapositive

Give the converse and contrapositive of the statement “1f you earn an A in logic, then I’ [l buy
you anew car.”

Solution
As we noted earlier, this statement has the form p—¢ where p is the statement “you earn an
A” and ¢ is the statement “1’ll buy you a new car.” The converse is g—p. In words, thisis

“If 1 buy you a new car then you earned an A inlogic.”
The contrapositive is (~g)—(~p). In words, thisis“If | don’t buy you a new car, then you
didn'tearnan A inlogic.”

Beforewe go on... Assuming that the origina statement is true, notice that the converse is not
necessarily true. There is nothing in the original promise that prevents me from buying you a
new car anyway if you do not earn the A. On the other hand, the contrapositiveistrue. If | don’t
buy you a new car, it must be that you didn’t earn an A, otherwise | would be breaking my
promise.

It sometimes happens that we do want both a conditional and its converse to be true. The
conjunction of aconditiona and its converseis caled abiconditional.

1 Note that the Switcheroo law appliesto any pair of statements, and says that ~AvVB = A—B, no matter what A and
B are. Inthelast step, wehad A = (~g) and B = (~p).
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Biconditional
The biconditional, written p - g, is defined to be the statement (p—¢)A(¢g—p). Its truth table

isthe following.

-
T|—|'r|—| Q

L—
T
F
F
T

Looking at the truth table, we can see that p — ¢ is true when p and ¢ have the same truth
values and it is false when they have different truth values. Here are some common phrasings of
the biconditiona.

Phrasings of the Biconditional

We interpret each of the following as equivalent to p - g.
pifandonlyif g.
p isnecessary and sufficient for g.
pisequivaentto g.

For the phrasing “p if and only if ¢,” remember that “p if ¢” means g—p while “p only
if ¢” means p—>q. For the phrasing “p isequivalent to ¢,” the statements A and B are logicaly
equivaent if and only if the statement A - B is a tautology (why?). We'll return to that in the
next section. Notice that p - g islogically equivalent to g - p (you are asked to show this as an
exercise), so we can reverse p and ¢ in the phrasings above.

Example 7 Rephrasing a Biconditional
Rephrase the statement “1 teach math if and only if | am paid alarge sum of money.”

Solution

Here are some possible rephrasings:
| am paid alarge sum of money if and only if | teach math.
My teaching math is necessary and sufficient for me to be paid alarge sum of money.
For me to teach math it is necessary and sufficient that | be paid alarge sum of money.

Beforewe go on... Another possibility is: “1 will not be paid alarge sum of money if and only
if 1 do not teach math.” Why isthis equivalent to the others?

L.3 Exercises

Find the truth value of each of the statementsin Exercises 1-28.

1. “If 1=1, then 2=2."
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2. “If 1=1, then 2=3."

3. “If 1=0, then 1=1."

4. “If 1£0, then 2£2.”

5. “If 1=1 and 1=2, then 1=2."

6. “If 1=3 or 1=2 then 1=1."

7."If everything | say isfalse, then everything | say istrue.”

8. “If everything | say isfalse, then 1=2."

9. “A sufficient condition for 1 to equal 2is1=3."

10. “1=0isasufficient condition for 1 to equal 2.”

11. “1=0is anecessary condition for 1 to equal 2.”

12. “1=1 isanecessary condition for 1 to equal 2.”

13. “1=2 isanecessary condition for 1 to be unequal to 2.”

14. “1#2 isanecessary condition for 1 to be unequal to 3.”

15. “If | pay homage to the great Den, then the sun will rise in the east.”

16. “If | fail to pay homage to the great Den, then the sun will still rise in the east.”
17."“In order for the suntorisein the east, it is necessary that it setsin the west.”
18. “In order for the suntorisein the east, it is sufficient that it setsin the west.”
19. “The sun risesin the west only if it setsin the west.”

20. “The sunrisesin the east only if it setsin the east.”

21. “The Milky Way Galaxy will fall into agreat black holeif everything | say isfalse.”
22. “The Milky Way Galaxy will not fall into agreat black hole only if 1=1."
23. “1=2 isanecessary and sufficient condition for 1 to be unequal to 2.”

24. *1#£2 isanecessary and sufficient condition for 1 to be unequal to 3.”
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25. “Thesunwill risein the east if and only if it setsin the west.”
26. “The sun will risein the east if and only if it does not set in the west.”

27. “In order for the sun to rise in the weg, it is necessary and sufficient that it sets in the
east.”

28. “In order for the sun to rise in the eadt, it is necessary and sufficient that it sets in the
west.”

Construct the truth table for each of the statements in Exercises 29-40, and indicate which (if
any) are tautologies or contradictions.

29. p—(qVp) 30. (pvg)—~p

31. (pAQ)—~p 32. (p—~p)—~p
33. (p—~p)—p 34. pANp—>~p)

35. (pA~p)—q 36. ~((pA~p)—q)
37. p- (pVvq) 38. (pAq) - ~p

39. (pA~p) & (gA~q) 40. (pV~p) « (gV~q)

Use truth tables to demonstrate the equivalences in Exercises 41-46.
4l.p—q = (~q)—(~p) 42. ~(p—q) = pN(~q)

4. p—q = (p)vg 4. (p—~p) =~p

45. (po~p) = (qo~q) 46.(p~~q) = (g ~p)

Give the contrapositive and converse of each of the statements in Exercises 47-54, phrasing
your answersin words.

47.“1f | think, then | am.”

48. “If | do not think, then | do not exist.”
49. “1f | do not think, then | am Buddha.”
50. “If I am Buddha, then | think.”

51. “These birds are of afeather only if they flock together.”
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52. “These birds flock together only if they are of afeather.”

53. “In order to worship Den, it is necessary to sacrifice beasts of burden.”

54. “In order to read the Tarot, it is necessary to consult the Oracle.”

Express each of the statements in Exercises 55-60 in equivaent digunctive form.
55. “I amif | think.”

56. “I think if I am.”

57. “ Symphony orchestras will cease to exist without government subsidy.”

58. “The education system will collapse without continued taxpayer support.”
59. “Research in the pure sciences will continue if our society wishesit.”

60. “Nuclear physicists would be out of work if their accomplishments were measured purely
by the generation of profit.”

Trandate the statements in Exercises 61-70 into compound statements utilizing either the
conditional or the biconditional, and using p for the statement "I am Julius Caesar" and q for
the statement "Y ou are Brutus'

61. “If | am Julius Caesar then you are not Brutus.”

62. “It isnot the case that if | am Julius Caesar then you are Brutus.”

63. “I am Julius Caesar only if you are not Brutus.”

64. “You are Brutus only if I am not Julius Caesar.”

65. “1 am Julius Caesar if and only if you are not Brutus.”

66. “You are not Brutusif and only if I am not Julius Caesar.”

67. “Either you are Brutus, or | am Julius Caesar.”

68. “Either I am not Julius Caesar, or you are Brutus.”

69. “In order for you to be Brutus, it is necessary and sufficient that | am not Julius Caesar.”

70. “In order for you to not be Brutus, it is necessary and sufficient that | am not Julius
Caesar.”
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Communication and Reasoning Exer cises

71. Give an example of an instance where p—¢ means that ¢ causes p.

72. Complete the following. If p—¢, thenitsconverse, |, isthe statement that _ and (ig/is

not) logically equivaent to p—q.

73. Complete the following sentence. If both p—¢ and its are true, then the biconditiond,
,is

74. 1f B isatautology, why is A—B a so atautology, regardless of A?

75. If Aisacontradiction, why is A—B atautology, regardless of B?

76. If A isatautology and B is a contradiction, what can you say about A—B?
77.1f A and B are both contradictions, what can you say about A — B?

78. Give an instance of a biconditional p - g where neither p nor ¢ causes the other.
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L.4 Tautological Implications and Tautological
Equivalences

In this section we enlarge our list of “standard” tautologies by adding ones involving the
conditional and the biconditional. From now on, we use smal letters like p and ¢ to denote
atomic statements only, and uppercase letters like A and B to denote statements of al types,
compound or atomic.

We first look a some tautological implications, tautologies of the form A—B. You
should check the truth table of each of the statements we give to see that they are, indeed,
tautologies.

M odus Ponens or Direct Reasoning

[((p—@)A\P]—¢q

In words: If an implication and its premise are both true, then so isits conclusion.

For example, if p: “1 love math” and ¢: “I will pass this course,” then we have the
following tautology:

If my loving math impliesthat | will pass this course, and if | do love math, then |
will pass this course.

We can write a statement like thisin argument form? asfollows:

If 1 love math, then | will passthis course.
| love math.

Therefore, | will pass this course.

In symbol form again, we write the following.

pP—q
P
O g

What appears above the line in an argument is what is “given;” what appears below is the
conclusion we can draw.

Modus ponens is the most direct form of everyday reasoning, hence its dternate name
“direct reasoning.” When we know that p implies ¢ and we know that p is true, we can
conclude that ¢ is aso true. This is sometimes known as affirming the hypothesis. You
should not confuse this with a fallacious argument like: ”If | were an Olympic athlete then |
would drink Boors. | do drink Boors, therefore | am an Olympic athlete.” (Do you see why

1 We shall define arguments precisely in Section 6, but we shall start using them informally now.
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this is nonsense? See the preceding section.) This is known as the falacy of affirming the
consequent. Thereis, however, a correct argument in which we deny the consequent:

Modus Tollens or Indirect Reasoning
[(P—DN~)]—(~p)

In words: If an implication istrue but its conclusion isfalse, then its premiseisfalse.

In argument form, thisis:

P—q
~q
O ~p

For example:

If 1 love math, then | will passthis course.
| will not pass this course.

Therefore, | must not love math.

This argument is not quite so direct as before; it contains a little twist: “If | loved math |
would pass this course. However, | will not pass this course. Therefore, it must be that | don’t
love math (else | would pass this course).” Hence the name “indirect reasoning.”

Note that, again, thereisasimilar, but fallacious argument to avoid: “If | were an Olympic
athlete then | would drink Boors. However, | am not an Olympic athlete. Therefore, | won't
drink Boors.” Thisisamistake Boors certainly hopes you do not make!

Simplification
(PAg)—p
and
(PANg)—q

In words, thefirst says: If both p and ¢ are true, then, in particular, p istrue.

Quick Example
If the sky is blue and the moon is round, then (in particular) the sky is blue.
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Addition

p—(pVq)
and

qg—(pVq)

In words, the first says: If p istrue, then we know that either p or g istrue.

Quick Example
If the sky is blue, then either the sky is blue of some ducks are kangaroos.

Note that it doesn’t matter in this example whether ¢ istrue or not. Aslong aswe know that
p istrue then pvg must aso be true.

Warning The following are not tautologies:
(PVg)—p

p—(PAq)
In the exercise set you will be asked to check that these are, indeed, not tautol ogies.

Digunctive Syllogism or One-or-the-Other

[(PVOA(~p)]—q
and

[(pVOAN~g)]—p
In words: If either p or ¢ istrue, and one is known to be false, then the other must be true.
Quick Example

If either the cook or the butler did it, but we know that the cook didn’t do it, then the butler did
it.

Transitivity

[(p—Ng—1)]—(p—T)
Inwords: If g isimplied by p and r isimplied by ¢, then r isimplied by p.
Quick Example

When it rains the ground gets muddy and when the ground is muddy my shoes get dirty. So,
when it rains my shoes get dirty.

We sometimes think of transitivity asa“chainrule,” alowing us to chain arrows together.
In other words, follow the arrows:. An arrow from p to ¢ and an arrow from ¢ to r give us an
arrow all theway fromp tor.
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Also important are the tautological equivalences, tautologies of the form A - B. Recdl
that the statement A B istrue exactly when A and B have the same truth vaue. When A and B
are compound statements, this must be true for al truth values of the atomic statements used in
A and B. Thismeansthat A and B arelogically equivalent statements.

Logical Equivalence and Tautological Equivalence
Tosay that A = B isthe same as saying that A ~ B isatautology.

So, every logica equivalence we aready know gives us a tautological equivalence. Here is an
example. We give lots more in the table at the end of the section.

Double Negation

pe ~(~p)

Since the biconditional can be read either way, we get two argument forms from each
tautological equivaence. Inthiscase, they are:

P
0 ~(~p)

and
~(~p)
Op

We conclude this section with alist of useful tautologies.
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A. Tautological Implications

Symbolic Form

Argument Form

Name

[((p—A\pl—4q pP—q Modus Ponens
p (Direct Reasoning)
U g
[(p—q)N~q}—~p P—q Modus Tollens
~q (Indirect Reasoning)
0 ~p
(PAq)—p PAG PAG Simplification
(PANG)—q 0 p 04
p—(pVg) p Addition
U pvg
[(PVOA~P)—4q pVq pVq Disjunctive Syllogism
[(PVPYA(~q)|—p ~p ~q (One-or-the-Other)
g Op
[(p—@Ng—r)]—(p—r) P—q Trangtivity
q—r
0 p—r

B. Tautological Equivalences

Symbolic Form Argument Forms Name

po~(~p) P ~(~p) Double Negative
U ~(~p) U p

PANG < gN\p PAG pVq Commuitative Laws

PYa - avp 0 gnp O qvp

(PAGATF & pN(GAT) (PAQAF PAGATY) Associative Laws
U pA(gAr) U (pAQAF

(pVq)Vr - pV(gVr) M pVigVr)
U pV(qVr) O (pvg)Vvr

~(pVq) < (~p)N\(~q) ~(pVq) (~pIN(~q) DeMorgan's Laws
U (~p)A(~q) U ~(pvq)
~(DA ~D)V(~

~(pAG) > (~pIV(~q) A CPIV9)
0 (~p)V(~q) 0 ~(pAg)
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PA(GVT) & (PAQV(PAT) PA(GVT) (pAQV(PAT) Distributive Laws
U(pAg)V(pAr) OpA(gVr)
PV - VAV | PN (PVaNpVT)
(Ve ApVr) UpV(gAr)
PAD < p PAD p |dempotent Laws
Op O pAp
V
pVpop pvp P
U p 0 pvp
(p—q) - (~pVq) P—q ~p\Vq Switcheroo
U ~pVvg 0 p—q
P—q) - (~¢q—~p) P—q ~g—>~p Contrapositive
0 ~g—~p 0 p—q _
Op-9Ng-p) 0O peg
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L.4 Exercises

Use truth tables to check the tautologiesin Exercises 1-10 (these refer to the lists a the end of
the section).

1. Modus Tollens 2. Simplification: pAg—p
3. Addition 4. Digunctive Syllogism: [(pV@)A(~p)]—¢q
5. Trangtivity 6. Double Negative

7. Commutative Law: (pAg) « (gAp) 8. Commutative Law: (pVq) - (qVp)
9. Switcheroo 10. Contrapositive.

Show that the statements in Exercises 11-16 are not tautologies by giving examples of
statements p and ¢ for which these implications are false.

11. (pvg)—p 12. p—(pNq)
13. (p—q)—(q—p) 14. ~(pAQ)—(~p)\(~q)]
15. (p—q)—(~p—~q) 16. (p—A@p—1))—(q—1)

Write each of the statements in Exercises 17-32 in symbolic form, and then decide whether it is
atautology or not.

17.1f I am hungry and thirsty, then | am hungry.
18. If I am hungry or thirsty, then | am hungry.

19. If it’s not true that roses are red and violets are blue, then roses are not red and violets are
not blue.

20. If roses are not red or violets are not blue, then it’ s not true that roses are red and violets are
blue.

21. For meto bring my umbrella it’'s necessary that it rain. Therefore if it does not rain | will
not bring my umbrella.

22. For meto bring my umbrellait’s sufficient that it rain. Thereforeif it doesnot rain | will not
bring my umbrella

23. For me to bring my umbrellait’s necessary and sufficient that it rain. Therefore if it does
not rain | will not bring my umbrella
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24. For meto bring my umbrellait’s necessary and sufficient that it rain. Therefore if | do not
bring my umbrelait will not rain.

25. For meto pass math it is sufficient that | have a good teacher. Therefore, | will either have a
good teacher or | will not pass math.

26. For me to pass math it is necessary that | have a good teacher. Therefore, | will either have a
good teacher or | will not pass math.

27.1 am either tired or hungry, but | am not tired, so | must be hungry.
28. | am either smart or athletic, and | am athletic, so | must not be smart.

29. To get good grades it is necessary to study, and if you get good grades you will get a good
job. Therefore, it is sufficient to study to get agood job.

30. To get good gradesit is sufficient to study, and to get agood job it is necessary to get good
grades. Therefore, if you study you will get agood job.

31. To get good grades it is necessary to study, but John did not get good grades. Therefore
John did not study.

32. To get good gradesiit is necessary and sufficient to study, but Jill did not study. Therefore
Jill will not get good grades.

Communication and Reasoning Exer cises

33. How would you convert atautology of the form AvB into atautologica implication?

34. How would you convert a tautology of the form (A—B)A(C—D) into two tautological
implications?

35. Complete the following sentence. A tautological equivalence can be expressed as
tautological implications.

36. Complete the following sentence. If A—(B—C) is a tautologica implication, then, given
___and__,wecanawaysdeduce .
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L .5 Rules of Inference

In the preceding section, we introduced the “argument form” of a tautologica implication.
For example, we wrote Modus Ponens in the following way:

pP—q
P
O g

We think of the statements above the line, the premises, as statements given to us as true, and
the statement below the line, the conclusion, as a statement that must then also be true.

Our convention has been that small letters like p stand for atomic statements. But, there is
no reason to restrict Modus Ponens to such statements. For example, we would like to be able
to make the following argument:

If roses are red and violets are blue, then sugar is sweet and so are you.
Roses arered and violets are blue.
Therefore, sugar is sweet and so are you.

In symboals, thisis
(PAGQ)—(rAs)

PAg
O rAs

So, we really should write Modus Ponens in the following more general and hence usable form:

A—B
A

U B

where, as our convention hasit, A and B can be any statements, atomic or compound.

In this form, Modus Ponensis our first rule of inference. We shall use rules of inference
to assemble lists of true statements, called proofs. A proof is a way of showing how a
conclusion follows from a collection of premises. Modus Ponens, in particular, allows us to say
thet, if A—B and A both appear as statements in a proof, then we are justified in adding B as
another statement in the proof. (We shall say more about proofs in the next section.)



42

Chapter L Logic

Example 1 Applying Modus Ponens
Apply Modus Ponens to statements 1 and 3 in the following list.

1. (pvg)—(rN~s)
2. ~r—>s
3. pVvgq

Solution
All three statementsin this list are compound statements. We can rewrite them in the following

way.

=

—B

halls e
= 0

Recall that Modus Ponens tells us that, if the two statements A—B and A appear in alist, we
can write down B as wdl. Applying Modus Ponens, then, to lines 1 and 3 (line 2 doesn’t get
involved here), we can lengthen our list to get the following.

1. (pvg)—(rn~s) Premise
2. ~r—>s Premise
3. pVq Premise
4. rA~s 1, 3 Modus Ponens

On the right we have recorded the justification for each line. Lines 1, 2, and 3 were given to us
as premises, but we got line 4 by applying Modus Ponensto lines 1 and 3.

Before we go on... The above list of four statements consitutes a proof that Statement 4 follows
from the premises 1-3, and werefer to it asa proof of the argument

(pVq)—(rN~s) Premise
~p—>§ Premise
pVq Premise
O rA~s Conclusion

In general, arule of inferenceis an instruction for obtaining new true statements from alist
of statements we aready know or assume to be true. If you were studying logic as a
mathematics or philosophy mgor, you might use the smallest collection of rules of inference
you could get away with. We'll be more generous and give you more tools to work with. For
example, any of the tautologies listed in the preceding section gives us arule of inference.
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Ruleof Inference T1

Any tautology that appearsin the lists at the end of the preceding section may be used as a rule
of inference.

Example 2 Applying Modus Tollens
Apply Modus Tollens to the following premises.

1. (pvg)—(rN~s)
2. ~(rA~s)
3. (pvg)—p

Solution
The given list can be written like this:

1.A—B
2.~B
3. A—C

Asarule of inference, Modus Tollens has the following form.

A—B
~B

0 ~A

This matches the first two premises, so we can apply Modus Tollens to get the following.

1. (pvg)—(rn~s) Premise
2. ~(rA~s) Premise
3. (pvg)—p Premise
4. ~(pVvq) 1, 2 Modus Tollens

Beforewe go on... We used A—C to represent the third premise when thinking about how to
use Modus Tollens. It didn’t really matter how we represented it; we could just as easily have
written D. Since were not using this statement at dl, it doesn't matter how we represent it. On
the other hand, we needed to write the first two statements as A—B and ~B in order to see that
we could apply Modus Tollens to them. Part of learning to apply the rules of inference is
learning how to analyze the structure of statements at the right level of detail.

Recall that atautology is a statement that is always true. As such, we should be dlowed to
add it to alist of true statements. This give us our next rule of inference.
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Rule of Inference T2

Any tautology that appears in the lists at the end of the preceding section may be added as a
new line in a proof.

Example 3 Using T2

Justify each step in the following.

1. p—~(~p)
2. ~(~p)—p
3. p—p

Solution

Each of the first two steps is an gpplication of rule of inference T2. Recdl that p - ~(~p) isa
tautology, called Double Negation. We permit ourselvesto break a tautological equivaence into
its two tautological implications and write down either one. In this case, we wrote down both.
The third step is an application of rule of inference T1, using Trangtivity. Thus, we can write
our justifications like this:

1. p—~(~p) Double Negative
2. ~(~p)—p Double Negative
3. p—p 1, 2 Trangtivity

Before we go on... What we have just written down is a proof of the following argument, in
which there are no premises:

O p—p

Rules T1 and T2 are thetwo we shall use most often. The next two are used less often, but
are sometimes necessary.

Rule of Inference S (Substitution)

We can replace any part of a compound statement with a tautologically equivaent statement.

Aswith T2, werdly on our list at the end of the preceding section to decide what statements
are tautologically equivalent. Notice that Rule S is the same as the mathematica rule of
substitution: in any equation, if part of an expression is equa to something else, then we can
replaceit by that something else.

Example 4 Substitution

Justify the third and fourth steps in the following proof.
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1. (~(~p))—q Premise
2.p Premise
3. p—q
4.q

Solution

The third line resembles the first except that ~(~p) has been replaced by p. But, that replacement
can be justified by the substitution rule because the Double Negation tautology tells us that p is
tautologically equivaent to ~(~p). To get the fourth line we ssimply apply Modus Ponens to the
second and third lines. Thus, we can fill in the following justifications.

1. (~(~p))—q Premise

2.p Premise

3. p—q 1, Substitution

4.q 2, 3 Modus Ponens

Rule of Inference C (Conjunction)

If A and B are any two linesin a proof, then we can add the line AAB to the proof.

Thisisjust the obviousfact that, if we aready know A and B to be true, then we know that
AAB istrue.

Question Arewe done yet?
Answer Not quite. Recall that we will generally be given premises that we are to assume true.

We get to write them down as stepsin our proof aswell, so we may as wel record one last rule
of inference.

Rule of Inference P (Premise)

We can write down a premise as alinein a proof.

Of course, we cannot make up premises as we go along, they will be given to us at the start.
It istraditional, but not necessary, to write down all of the premises as the first lines of a proof.
On the other hand, some people like to write them down only as they are needed.

In the following rather tricky proof, we start with two premises, and shall manage to use
every single rule of inference except for T2:
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Example 5 The Rules of Inference
Fill in the justificationsin the following proof.
1. a—q Premise
2. b—q Premise
3. ~avq
4. ~bvq
5. (~avVq)N\(~bVq)
6. (~an~b)Vq
7. ~(avb)Vvq
8. (avb)y—q
Solution
Here are the justifications, with the type of rule of inference noted after each:
1. a—q Premise (P)
2. b—q Premise (P)
3. ~avq 1, Switcheroo (T1)
4. ~bvq 2, Switcheroo (T1)
5. (~avV@)N(~bVq) 3, 4 Conjunction (C)
6. (~an~b)Vgq 5, Digtributive Law? (T1)
7. ~(avb)Vvq 6, DeMorgan (S)
8. (avb)—q 7, Switcheroo (T1)

Before we go on... This proves shows the vaidity of the following argument:

a—q
b—q
U (avb)—q

In other words, if each of a and b implies ¢, then if either one is true then so is ¢. This should
be obviousif you think about it a bit, but its proof is not!

1 Note that we have used the Distributive law “backwards.” That is, we have used it in the following form (as listed
among our tautological equivalences):

(AVON(BVO)
U (AAB)VC



L.5 Exercises

L.5. Rules of Inference

47

In each of Exercises 1-34, supply the missing statement or reason, as the case may be. (To
make life smpler, we shall alow you to write ~(~p) as just p whenever it occurs. This saves an

extrastep in practice)

Statement Reason
1. 1.p—~q Premise 2.
2.p Premise
3.---- 1,2 Modus Ponens
3. 1. (~pvg)—~(gAr) Premise 4,
2. ~pVq Premise
3.---- 1,2 Modus Ponens
5. 1. (~pvg)—~(gNr) Premise 6.
2. gN\r Premise
3.---- 1,2 Modus Tollens
7. 1.~(~pVvg) Premise 8.
- 1, DeMorgan
9. 1.(pAr)—~q Premise 10.
. ~q—T Premise
- 1,2 Trangtive Law
11. 1. (pAr)y—~q Premise 12.
2. ~q—r Premise
3. ~r Premise
4.---- 1,2 Trangtive Law
5 ---- 3,4 Modus Tallens
13. 1. (p—q)Vvr Premise 14.
2. ~r Premise
3.---- 1,2 Digunctive
Syllogism
15. 1. p—(rAg) Premise 16.
2. ~r Premise
3.---- 2, Addition of ~¢
4, ---- 3, DeMorgan
5.---- 1,4 Modus Tollens

1 Use simplification in the following form:

ANB

Statement

1.
2.
3.

1

~p—4q
~pP

2. ~pN\q

3.

1.

3.

1.
2.

W N =

W N

g wn -

SNhwDN e

Reason
Premise
Premise
1,2 Modus Ponens

. (~pAg@)—(gN~r) Premise

Premise
1,2 Modus Ponens

(~pAg)—(gN~r) Premise
2.~gN~r)

~(pPN\~q)

~S

. ~(PAQ)Vs
.~

Premise
1,2 Modus Tollens

Premise
1, DeMorgan

. (~pAg)—(gA~r) Premise
. (gNA~r)—s

Premise
1,2 Trangtive Law

. (~pAg)—(gA~r) Premise
. (GN\~r)—s

Premise

Premise

1,2 Trangitive Law
3,4 Modus Tollens

Premise

Premise

1,2 Digunctive
Syllogism

Premise

Premise

1,2 Modus Tollens
3, DeMorgan
Simplificationt
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17.

19.

21.

23.

25.

27.

29.

. (pAq)—1

L. ~(~pVg)—pA~q

. p—~(gNr)
. gNr
3.~p

N —

1. ~pV(r—>s)
2. p—(r—s)

L. ~[p—~(gAr)]
2. ~[~pV~(gNr)]
3. pA(gAr)

1.(pVg)—(rAs)
2.p

3.pVq

4.rAs

5.r

1. p—~q

2. ~q—>~r

3. (r—~p)—t
4. p—~r
5.r—~p

6.1
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Premise 18.
Premise

Premise

3,2RuleC

1,4 Modus Ponens
-—- 20.
Premise 22.
Premise

Premise 24.
Premise 26.
Premise 28.
Premise

Premise 30.
Premise

Premise

o

W N = N = —

AW -

AN N AW

gD

p—r Premise
p Premise
s Premise
---- 1,2 Modus Ponens
---- 34RuleC
Np—A~ql—p ----
. (SAt)—(gN~r) Premise
. (sAD) Premise
CgN~T ----
. ~p—>q Premise
. ~pV~q ----
. (~pA~q)—p Premise
c~PN=@QNVP -
- (pVe)Vp -
. (pVg@)V~r Premise
. ~PA\~q Premise
~(pVa) -
.~T ----
.~rVS .-
. (pvg)—(rv~s) Premise
. ~TAS Premise
. ~(rV~s) ----
~(pVg) -
. ~PA~q ----
.~p ----

uB
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315 1. pA~p Premise 32. 1.~p Premise
2.p ---- 2. p Premise
3.~p ---- 3.~pV~p ----
4. ~pVq ---- 4. p—~p ----
5.p—q ---- 5.pVvp ----
6.9 ---- 6. ~p—p

33. 1.p—~(~p) ---- 34. 1.~pvp Premise
2.p—p ---- 2.t Premise
3. ~pVp ---- 3.tv~p
4. (~pVp)V~q ---- 4. ~pVt ----

5. ~pV(pV~q) ---- 5. (~pVpIN(~pVD) - ---
6. ~pV(~qVp) ---- 6. ~pV(pA?) ----
1. p—(~qVp) ----
8. p—(g—p) ----

Convert each of Exercises 35—40 into a symbolic proof, and supply the justifications for each
step.

35. For meto carry my umbrellait is necessary that it rain. When it rains| always wear my hat.
Today | did not wear my hat. Therefore, it must not be raining, and so | am not carrying my
umbrella

36. For me to take my umbrellait is sufficient that it rain. For me to wear my hat it is necessary
that it rain. | am wearing my hat today. Therefore, it must be raining, and so | must have taken
my umbrella

37. Y ou cannot be both happy and rich. Therefore, you are either not happy, or not rich. Now
you do appear to be happy. Therefore, you must not berich.

38. If | were smart or good-looking, | would be happy and rich. But | am not rich. So it’s true
that either I’'m not happy or I’'m not rich. In other words, | am not both happy and rich.
Therefore | am not smart or good-looking. In other words | am not smart and neither am |
good-looking. In particular, | am not smart.

39. If interest rates fall, then the stock market will rise. If interest rates do not fdl, then housing
starts and consumer spending will fall. Now, consumer spending is not falling. So, it’s true that
housing starts are not falling or consumer spending is not falling, that is, it is false that housing

* Thisisa proof that, if we assume the contradiction pA(~p) true, then g follows, no matter what ¢ is. In argument
form:

PA(~p)

Oq
In other words, if you permit a contradiction in an argument, then everything istrue! This proof is discussed again in
the next section.
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starts and consumer spending are both falling. This means that interest rates are faling, so the
stock market will rise.

40. If interest rates or the bond market fdl, then the stock market will rise. If interest rates do
not fall, then housing starts will fall. Housing starts are rising, so interest rates must be falling.

Therefore, it istrue that interest rates or the bond market are falling, and so the stock market will
rise.

Communication and Reasoning Exer cises

41. Complete the following sentence. The Modus Tollens rule of inference says that, if both
___and__ appear on alist of statements known to betrue, thenwecanadd .

42. Complete the following sentence. The Modus Ponens rule of inference says that, if both
___and___ appear on alist of statements known to betrue, thenwecanadd .

43. Modify Example 5 to produce a proof that uses every type of inference rule we have
discussed. (Try replacing g by b and referring to Example 3.)

44. Explain why the following is not a reasonable candidate for anew rule of inference:
A

U AAB
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L.6 Arguments and Proofs

Let us now make precise the notions of argument and proof. In Example 5 in the preceding
section we saw the following argument.

a—q
b—q
U (avb)—q

Precisaly, an argument is alist of statements called premises followed by a statement caled
the conclusion. (We dlow the list of premises to be empty, as in Example 3 in the preceding
section.) We say that an argument is valid if the conjunction of its premises implies its
conclusion. In other words, vaidity means that if all the premises are true, then so is the
conclusion. Vdidity of an argument does not guarantee the truth of its premises, so does not
guarantee the truth of its conclusion. It only guarantees that the conclusion will be true if the
premises are.

Arguments and Validity

An argument is a list of statements called premises followed by a statement called the
conclusion.

If, as above, the premises are P, through P, and the conclusion is C, then the argument is said to
be valid if the statement

(PAPA ...AP)— C

isatautology.

Question To show the validity of an argument like

a—q
b—q
U (avb)—q

what we need to do is check that the statement [(a—¢)A(b—>¢q)]—[(a\vb)—>¢q] is a tautology.
So to show that an argument isvalid we need to construct atruth table, right?
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Answer Well, that would work, but there are a couple of problems. Firgt, the truth table can get
quite large. The truth table for [(a—¢)A(b—¢q)]—I[(aVvb)—¢q] has eight rows and nine
columns. It gets worse quickly, since each extra variable doubles the number of rows.

Second, checking the validity of an argument mechanicaly by constructing a truth table is
amost completely unenlightening; it gives you no good idea why an argument is vaid. We'll
concentrate on an alternative way of showing that an argument isvalid, caled aproof, that is far
more interesting and tells you much more about what is going on in the argument.

Lagtly, while truth tables suffice to check the vdidity of statements in the propositional
caculus, they do not work for the predicate calculus we will begin to discuss in the following
section. Hence, they do not work for real mathematical arguments. One of our ulterior motives
isto show you what mathematiciansreally do: They create proofs.

Question OK, so what is a proof?

Answer Informaly, a proof is away of convincing you that the conclusion follows from the
premises, or that the conclusion must be true if the premises are. Formally, a proof is alist of
statements, usually beginning with the premises, in which each statement that is not a premise
must be true if the statements preceding it are true. In particular, the truth of the last statement,
the conclusion, must follow from the truth of the first statements, the premises. How do we
know that each statement follows from the preceding ones? We cite a rule of inference that
guaranteesthat it is so.

Proofs

A proof of an argument is alist of statements, each of which is obtained from the preceding
statements using one of therules of inference T1, T2, S, C, or P. The last statement in the proof
must be the conclusion of the argument.

As an example, we have the following proof of the argument given above, which we
considered in the preceding section:

1. a—q Premise

2. b—q Premise

3. ~aVvq 1, Switcheroo

4. ~bVvq 2, Switcheroo

5. (~avV@)N(~bVq) 3, 4 Conjunction
6. (~an~b)Vq 5, Digtributive Law
7. ~(avb)Vvq 6, DeMorgan

8. (avb)—q 7, Switcheroo
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It isreassuring, but not at al obvious, that every valid argument in the propositiona calculus
has a proofl. Equally reassuring is the fact that no invalid argument has a proof. The only way
to learn to find proofs is by looking at lots of examples and doing lots of practice. In the
following exampleswe' |l try to give you some tips as we go along.

Example 1 Modus Ponens

Proof the following valid argument (which we saw at the beginning of the preceding section).

(PAG)—(rAs)
PAG

O rAs

Solution
As we mentioned earlier, part of finding a proof is recognizing the form of what you have to
work with. In this case, the argument we are given has the following form.

A—B
A

UB

But this is nothing more than Modus Ponens. Thus, we get the following one-step proof.

L. (pAQ)—(rAs) Premise
2. pA\q Premise
3. rAs 1, 2 Modus Ponens

Before we go on... Here is a case in which a proof is much shorter than a truth table. Since
there are four variables, the truth table would have 16 rows. Also, the proof shows you that the
argument isjust an elaborate version of Modus Ponens.

Modus Ponens and Modus Tollens are, perhaps, the most commonly used rules of
inference. Y ou should get used to looking for places you can apply them.

1 This does not apply to the predicate calculus, and in particular it does not apply to the arguments used in real
mathematics. The logician Kurt Gddel shook the mathematical world in 1931 when he showed that there are valid
mathematical arguments that have no proofs! This result is known as Gédel’ s Incompl eteness Theorem.
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Example 2 Modus Tollens

Prove the following valid argument.

PAG
r—>(~p)

O ~r

Solution

Looking at the second premise and the conclusion, it looks like we should use Modus Tollens.
However, to do that we would need to know that p is true, snce Modus Tollens tells us that p
and —(~p) together give us ~r. How do we get p by itsdlf? Since we are given pAg, we can
use Simplification. Thus, we get the following proof.

1. pAg Premise

2. r—(~p) Premise

3.p 1, Smplification

4. ~r 2, 3 Modus Tollens

Before we go on... Notice that, when thinking about how to do the proof, we worked
backwards from what we wanted. Thisis an enormoudy useful technique. Sometimes you need
to work forward from what you are given and a so backwards from what you want, until the two
meet in the middle.

Rule C plays an important role in the next proof.

Example 3 Rule C Invoked
Prove the following valid argument.

p—a
p—b
P

O anb

Solution We can get both a and 4 individually using Modus Ponens. To get their conjunction,
all we need doisinvoke Rule C.
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1. p—a Premise

2. p—b Premise

3.p Premise

4.a 1, 3 Modus Ponens
5.b 2, 3 Modus Ponens
6. aNb 4,5RuleC

Example 4 Strategy

Prove the following valid argument

p—(qVr)
P
~r

O ¢

Solution
Let usthink of a strategy for finding a proof. We first examine what we need.
1. Weneed ¢g. The only place g appearsin the premisesisin thefirst, as part of the consequent,
qVr. We can pull out the consequent using the first two premises and Modus Ponens.
2. To get g alone from g\Vvr we need to exclude r. But the third premise says that r is false, so
we can use Digunctive Syllogism to complete the proof.

Thus, we get the following proof.

1. p—(gqVvr) Premise

2.p Premise

3.~r Premise

4. qVvr 1, 2 Modus Ponens

5.¢q 3, 4 Digunctive Syllogism

Before we go on... Agan, notice the back-and-forth thought process. We started to work
backwards from ¢. We noticed that, working forwards, we could get ¢\vr. Working backwards
from ¢ again, we noticed that Digunctive Syllogism would make the ends mest.

Example 5 More Strategy
Prove the following valid argument

(pVvr)—(sAt)
)4

Ut
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Solution Hereis a strategy:

1. Weneed r. This occursin the consequent of the first premise. We could get this by Modus
Ponens if we knew that p\vr were true.

2. All we know isthat p istrue from the second premise. But the Addition rule will give us pvr.
3. Combining (1) and (2) will give usthe consequent sAz. To get 7 on its own, we can then use
smplification:

1. (pvr)—(sAt) Premise

2.p Premise

3. pvr 2, Addition

4. sAt 1, 3 Modus Ponens
5.t 4, Smplification

Example 6 Working Backwards
Prove the following valid argument.

a—(bA\c)
~b

O ~a

Solution
1. We need ~a, which occurs as the negation of the antecedent in the first premise. We could
get thisusing Modus Tollens, if we knew that bAc was false.
2. Thus, we have anew goal: Show ~(bAc). What we have is ~b. We can make these |ook closer
by applying DeMorgan’s Law to rewrite ~(bAc) as (~b)V(~c).
3. Now we recognize that we can use Addition to get (~b)V(~c) from ~b.

This gives us the following proof.

1. a—(bAc) Premise

2. ~b Premise

3. ~bV~c 2, Addition

4. ~(bAc) 3, DeMorgan

5. ~a 1, 4 Modus Tollens

Before we go on... This time we worked almost entirely backwards. However, we must write
the proof forwards. This is a common complaint when students first start to do proofs in
symbolic logic or in mathematics. The proof does not follow the train of thought that went into
finding it. Often, the thought processis exactly the reverse of what the proof suggests.

Another point to keep in mind isthat there are often many different proofs of a given vdid
argument. Here is another proof of the argument above:
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1. a—(bAc) Premise

2. ~b Premise

3. ~(bAc)—(~a) 1, Contrapositive

4. ~b\V/~c 2, Addition

5. ~(bAc) 4, DeMorgan

6. ~a 3, 5 Modus Ponens

Congtructing a proof isalittle like playing a game of chess. You need to pick the right moves,
out of all that are possible, to get you to your god.

Example 7 Working Forwards

Prove the following valid argument.

S—>r
(pVg)—(~r)
(~8)—(~q—1)
p

0 ¢

Solution
1. We need to end up with ¢ alone. Now, ¢ appears in both the second and third premises, and it
is not clear at this point which to focus on. Perhaps we should look at what we have and see
what we can get working forwards.
2. Thelast premise, p, isthe simplest and so should be the easiest to do something with. 1t looks
like we should be able to combine it with the second using Modus Ponens. In fact, we can use
Addition to get p\vg from p and then use Modus Ponens to get ~r from the second premise.
3. Now we can combine ~r with the first premise to get ~s by Modus Tollens.
4. Things are moving along nicely. We can combine ~s with the third premise to get ~g—r,
using Modus Ponens.
5. Remembering that we till have ~r, we can use Modus Tollens now to get ¢, which iswhat we
wanted!

This gives us the following proof.

1. s—r Premise

2. (pvVgq)—~r Premise

3. ~s—(~q—r) Premise

4.p Premise

5. pVvq 4, Addition

6. ~r 4, 2 Modus Ponens
7. ~s 1, 6 Modus Tollens
8. ~qg—r 3, 7 Modus Ponens
9.¢q 6, 8 Modus Tollens
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As the preceding example shows, not al proofs are easy to find. Sometimes you have to
fiddle a bit to get one. If the line of argument you're trying doesn’t pan out, experiment with
something else. Here are some things to try that often help:

1. Replace an implication with its contrapositive.

2. Use DeMorgan's Law to rewrite a negation of aconjunction or digunction.

3. Use any of the other tautological equivalences to rewrite a statement.

4. Take a coffee break to clear your head.

Above dl, be persistent. After you take that coffee break, get back to work!

The next argument basically assertsthat if we permit a single contradiction in an argument,
then anything is possible. (A proof appeared in the exercise set at the end of the last section, but
it isinteresting enough to warrant further ingpection.)

Example 8 Slippery Argument

Prove and comment on the argument

PA(~p)
O ¢

Solution Notice that the premise pA(~p) is a contradiction. If you write out the truth table for
[pPA(~p)]—¢, you can see why thisisavalid argument. But let us try to come up with a proof.
1. The easiest way to begin isto use smplification to “break up” the statement pA(~p) into the
two separate statements p and ~p.

2. Noticethat ¢ does not occur anywhere among the premises. One way we can get it out of thin
air isto use Addition, so let'stry adding it to p to get pvg.

3. Now the statement ~p that we got from (1) tellsusthat p is fase, so that this, combined with
pVq, gives us g, by Digunctive Syllogism.

1. pA(~p) Premise

2.p 1, Smplification

3.~p 1, Smplification

4. pVvq 2, Addition

5.¢q 3, 4 Digunctive Syllogism

Before we go on...Notice that this proof is one step shorter than the one you saw in the
exercises. This illustrates again the fact that there may be severa different proofs of the same
argument. The simplest proof (which often means the shortest one) is considered the most
elegant.

We were also asked to comment on the argument. Look a the premise: it is making the
contradictory claim that both p and ~p are true. What the argument says is that, once you alow
acontradiction into an argument, anything is true. Notice that the conclusion, ¢, has nothing to
do with the premise.

In generd, afa se antecedent implies any consequent, true or not. Here is an example which
illustrates how to make this claim precise: “If 0 = 1, then | am the King of England” is a true
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statement no matter who saysit. To write this as an argument, let us take p to be the statement
“O = 1" and ¢ to be the statement “I am the King of England.” Then our statement is
equivaent to the argument

p

0 ¢

But that's not dl! As mathematicians, we happen to know that the statement p isfase, so that ~p
isatrue statement. Thuswe areredlly arguing that

P
~P

O q
By Rule C, thisisreally the same as

PA(~p)
O ¢

which we know isvaid.*

Example 9 An Invalid Argument

Show that the following argument is not valid.

Solution
Proofs can only be used to show that an argument is valid. If you try to prove this argument,
you' |l get nowhere. It looks sort of like Modus Ponens, except that it’ s backwards. It looks sort
of like Modus Tollens, but the negations are missing. It just looks wrong, and it is.

To show that an argument is invaid we need to find a counterexample. This is an
assignment of truth values to the variables that makes the premises true but the conclusion fase,
thus showing that the conclusion does not follow from the premises.

* When mathematician and philosopher Bertrand Russell claimed to a colleague that, from a false statement he could
prove anything, he was challenged as follows:

“Provethat, if 0 = 1, then you are the King of England.”

To thishereplied, “Simple. If 0 = 1, then, adding 1 to each side, 1 = 2. Since the King and | are two, it follows that
theKing and | are one, and | am the King of England!”
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In this case, for the conclusion to be false we need p to be F. For the premises to be true we
certainly need g tobe T. All we need to do is check that both premises are then true: The first
premiseis p—¢q, whichistruewhen p isFand ¢ isT. Thisis our counterexample.

A counterexample is more vivid if we illustrate it with concrete statements. For p, which
must be F, let ustake the statement “0 = 1.” For ¢, which must be T, let us take the statement
“The earth isround.” Our argument then has the following, patently ridiculous, form:

If 0= 1, then the earth isround. True
The earth is round. True
Therefore, 0= 1. Fase.

Before we go on... This particular argument is a common fallacy know as the fallacy of
affirming the consequent. It is aso know as the fallacy of the converse since it seems to
come from a confusion of p—¢ with its converse g—p. (If the first premise were g—p, then
the argument would be an example of the valid Modus Ponens.)

Example 10 Valid or Invalid?

Decide whether the following arguments are valid or not. If an argument isvalid, give a proof; if
it isnot, give a counterexample:

(a) Every irreversible chemical reaction dissipates heat. Therefore, if a chemical reaction is
reversible, it dissipates no hest.

(b) The moon is made of blue cheese. If the moon is made of blue cheese, it must be
gorgonzola. Therefore, the moon is made of gorgonzola.

Solution

() To analyze any argument given in words we first trandate it into symbolic form. The first
sentence discusses two aspects of a chemica reaction, whether it is irreversible and whether is
dissipates hesat. Let p: “this chemical reaction is irreversible” and ¢: “this chemica reaction
dissipates heat.” Then the first statement is p—¢. The concluson is the implication
(~p)—(~q). Therefore, the argument is, in symbolic form, the following.

P—q
O (~p)—(~q)

This argument may remind us of the Contrapositive rule. However, the conclusion is
backwards, since the contrapositive of p—>¢q is (~q)—(~p). This suggests that the argument is
invaid, so let ustry to find a counterexample.

Our counterexample should make the premise true but the conclusion false. The only way
to make an implication false is for the antecedent to be true and the consequent false, so we
must have ~p true and ~¢g false. In other words, p should be false and ¢ true. Fortunately, this
makes the premise true, so we have found our counterexample. In terms of the meanings we
assigned to p and ¢, a counterexample would be given by a chemical reaction that was reversible
but dissipated heat.
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If we want to express the counterexample in a more immediately understandable way, we
could let p: “this creature is a horse” and ¢: “this creature is amammal.” A counterexample
would then be given by any creature who was not a horse but was amammal, say a dog.

(b) Let ustake p: "The moon is made of blue cheese." g: "The moon is made of gorgonzola."
Then the argument takes the following form.

pP—q
p

O ¢

We seethat thisisjust an application of modus ponens, so the argument is valid (even though
the conclusion isfalse!)

Before we go on... In (a), the conclusion of the original argument is in fact true: Reversible
chemical reactions dissipate no heat. However, the argument used to arrive at this conclusion
wasinvalid. In part (b), a premise and the conclusion are false (one of the premises happens to
be true. Do you see which one?) and yet the argument used to arrive a the false conclusion is
vaid. This points up the difference between truth and validity. The vdidity of an argument
depends solely on itsform. Validity assures you that if the premises happen to be true for some
interpretation of the variables then the conclusion will also be true. Vaidity tells you nothing
about whether the premises are true, nor doesit tell you what happens when a premise is fase.
Likewise, if an argument isinvalid it does not necessarily mean that the conclusion is fase, just
that its truth does not follow from the truth of the premises.

The following example is reminiscent of the kind of question that often appears in aptitude
test such asthe LSAT.

Example 11 Logical Reasoning

Decide whether the following argument is valid or not. If it is, give a proof; if it is not, give a
counterexample:

When Alexis attends math class, her friends Guppy and Desmorelda also attend. Since
Desmoreldaisin love with Luke, Luke' s attendance at classisa sufficient condition for her
to attend as well. On the other hand, for Desmorelda to attend class it is necessary that
Alexis aso be there (as she needs someone to talk to during the boring portions of the
class). Therefore, Luke won't attend class unless Guppy also attends.

Solution

The only way to make heads or tails out of al thisis to trandate into symbols. To make life
eader, let us choose the first letter of a person’s name to symbolize their attendance a math
class. Thus, a: “Alexis attends math class,” and so on. Our argument now has the following
form.
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a—(gNd)
[—d

d—a

U l—g
Let ustry to provethis. Looking at the premises we can see the following string of implications:
l—d—a—(gNd).
Thus, the Trangitivity rule will give us —(gAd) pretty easily. It does appear that [ implies g, so
theargument is vaid. To get from [—(gAd) to I—g we would like to use Simplification, but

we can't do it directly. The way around thisisto use Switcheroo, a useful tool for manipulating
implications. Here' s the proof:

1. a—(gNd) Premise
2. 1—d Premise
3.d—a Premise
4. [—a 2, 3 Trangtivity
5. 1—(gNd) 1, 4 Trangtivity
6. ~I\V(gNd) 5, Switcheroo
7. (~Ivg)N(~Ivd) 6, Distributive Law
8. (~lVvg) 7, Simplification
9. l—yg 8, Switcheroo
L.6 Exercises
Prove each of the valid arguments in Exercises 1-22.
1. (pvr)—~q 2. ~p—(qg—s)
pVr ~p
U ~q U g—s
3. ~p—(r—r~1) 4, (~pVvr)y—~q
~(r—>~1) q
g p U ~(~pVvr)
5. ~p—(gNr) 6. p—(rns)
~DPA\S ~r
u r U ~p

7. p—q 8.  p—(gnr)



11.

13.

15.

17.

19.

21.

~(gVr)

U ~p
(pVvr)y— q

s —p

(PNV~q)—r
s—(tA\u)
SAp

U rAu

(p—q)—r
~(qVr)

p—(q—r)

U p—r

U (pAg)—(pVq)

O ~(pA~p)

U (p—~p)—~p

10

12.

14.

16.

18.

20.

22.
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r—s

. (pvg)—r

~r
t—q

(PA~q)—r
S_>p
q—>~u

UNS

Or

(p—q)—(p—r)
qAp

Or

p—(q—r)
~r

0 p—(~q)

O p—~(gA~p)

O (pA~p)—q

U ~p—(p—~p)
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Give counterexamples to each of the fallacies in Exercises 23-26 by finding truth values for the
variables making the premises true and the conclusion false.

23. p—q

24. p—q
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U ~q U g—r
25. (pAq)—T 26. (pAq)—T

p ~r

0 r 0 ~p

Decide whether each of the argumentsin Exercises 27-30 isavalid argument. If it is vdid, give
aproof. If itis invdid, give a counterexample. In any case, supply verba statements that make
al the premises true. If the argument is invalid make sure that they also make the conclusion
false.

27. p—(qVr) 28. p—(qANr)
~q ~q
U ~p U ~p

29. p—r 30. ~(pAg)
U p—q U g

In Exercises 31-44, convert each argument into symbolic form and then decide whether or not it
is vdid. If invdid, give a counterexample by supplying truth vaues for the various atomic
statements.

31. If | were acow, then | would eat grass. However, | am not acow, so | don't eat grass.

32. If we were meant to fly, we would have wings. Since we do indeed fly, and since we would
not fly unless we were meant to fly, it follows that we have wings.

33. If factoriesin the west pollute the air, then acid rain will lead to damage in the east. Indeed,
acid rain is leading to considerable damage in the east, so the factories in the west must be
polluting the air.

34. If factories in the west pollute the air, then acid rain will lead to damage in the east. The
factoriesin the west do not pollute the air, so acid rain will not be a problem in the east.

35. If interest rates go down, inflation will rise. If interest rates go down, the stock market will
alsorise. Therefore, if inflation rises so will the stock market.

36. If interest rates go down, inflation will rise. If inflation rises, so will the bond market.
Therefore, if interest rates go down, the bond market will rise.



L.6. Arguments and Proofs 65

37. If mortgage rates go down, or prices fal, then housing starts will rise. Mortgage rates are
faling, therefore housing starts will rise.

38. If mortgage rates go down or prices fal, then housing starts will rise. Prices are rising,
therefore housing starts will not rise.

39. When it rains on the gresat plains of the Nile, Sagittarius is in the shadow of Jupiter, and as
you know, it dways rains if Mercury is ascending. On the other hand, Sagittarius falls in
Jupiter's shadow only when either the moon is full or Mercury is ascending. | have noticed a
disturbing pattern to the weather predictions of Desmorelda, so-caled “Mistress of the
Zodiac.” It seems that she aways predicts that it will rain on the plains of the Nile when
Sagittarius ventures into the Shadow of Jupiter and the moon is full. Should | replace her as
roya meteorologist?

40. My stereo system is faulty: there is no sound coming out of the left speaker. Switching the
speaker leads will not bring sound to the left speaker if and only if the left speaker is faulty. If
switching the speaker leads causes the right speaker to fail, then there is a fault with either the
amplifier or the CD player. Switching the leads from the CD player has no effect if and only if
thereis no problem with the CD player. | discovered the following: switching the leads to the
speakers resulted in both channels failing, and switching the leads from the CD player reversed
the problem from the left to the right speaker. Therefore replacing the CD player and the left
gpeaker will solve the problem.

41. You are chairing an important committee a the UN, and are faced with the following
predicament. Upper Volta refuses to sign your new peace accord unless both Costa Rica and
Bosniasign as well. Since Bosnia has a lucrative trade agreement with Irag, Irag's signing the
peace accord is asufficient condition for Bosniato sign the accord. On the other hand, Bosnia,
fearful of Upper Volta's recent military buildup, refuses to sign the accord unless Upper Volta
also signs. You conclude that Irag won't sign unless Costa Rica also signs.

42. Continuation of Exercise 41 Just as you are about to arrange details for the signing
ceremony, Bosnias representative informs your office that due to a recent scanda involving
highly placed Costa Rican officials, the Bosnians refuse to sign any accord with Costa Rica. In
retdiation, the Costa Rican government announces a hard-line position: they will not sign the
accord unless Iraq aso signs. After thinking things over, you come to the depressing
conclusion that it will be impossible to have anyone sign the accord. [To make your analysis
less time consuming, you may assume the following tautology (which we proved earlier):
(p—~p)—~p. You may also fed freeto quote the result of Exercise 42.]

43. If novioletsarered and someroses are blue,
Then nobody loves you; that is certainly true.
But Lucille does love you,

And Susan and Joy.
Yet some roses are deep blue
Or you're just a boy.
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You assure me you're grown up
Andthat | believe;

The brew in your cup

Isso strong, | perceive.

Now this surely implies
Violetsred as your eyes.

44. (In Memory of Dr. Seuss)
If you glue, then Wu glues
And Golly gluestoo.

If Golly glues, Mally glues
And Solly, you too!

But Holly, not Solly glues
With green gooey glue.
Thus Dolly or Holly glues
But not you nor Wu!

Communication and Reasoning Exer cises
45, Can anything be proved without any premises being given? Explain.

46. Your friend James claims that every argument can be proved in more than one way. Is he
correct? Explain.

47. Y our friend Jane claims to have come up with a proof of the following argument

P
O ¢

Comment on her claim.

48. Y our other friend Janet claims that the smplification rule can be deduced from the addition
rule, and is therefore not necessary. Comment on her claim.
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L.7 Predicate Calculus

One of the most famous argumentsin logic goes as follows.

All men are mortal.
Socratesisaman.
Therefore, Socratesis mortal.

Thereisreally no good way to express this argument using propositional calculus. The problem
is, how do we express symbolically the statement “All men are mortal”?” And how do we do so
in such away that we can relate it to the statement “ Socratesis aman?’ We need to go beyond
the propositional calculus to the predicate calculus, which alows us to manipulate statements
about all or some things.

We begin by rewording “All men are mortal” in something closer to a statement of
propositional calculus:

“For al x, if x isaman then x is mortal.”

The sentence “x is a man” is not a statement in the sense we've discussed so far, since it
involve an unknown thing x and we can’'t assign a truth vaue without knowing what x we're
talking about. This sentence can be broken down into its subject, x, and a predicate, “is a
man.” We say that the sentence is a statement form, since it becomes a statement once we fill
in x. Here is how we shall write it symbolicaly: The subject is aready represented by the
symbol x, called aterm here, and we use the symbol P for the predicate “is aman.” We then
write Px for the statement form. (It is traditiona to write the predicate before the term; this is
related to the convention of writing function names before variables in other parts of
mathematics.)

Similarly, if we use Q to represent the predicate “is mortal” then Qx stands for “x is
mortal.” We can then write the statement “If x isaman then x is mortal” as Px—Qx.

To write our whole statement, “For dl x, if x is a man then x is mortal” symbolicaly, we
need symbols for “For al x.” We use the symbol “[1” to stand for the words “for all” or
“for every.” Thus, we can write our complete statement as

Ux[Px—Ox].

The symbol “0” is cdled a quantifier because it describes the number of things we are
talking about: all of them?. Specifically, it isthe universal quantifier because it makes a clam
that something happens universally.

1 There were argumentsin the late 19th century as to the “existential import” of the quantifier 0. The question was,
if you say “all men are mortals,” are you at the same time saying that there are in fact some men? Eventually it was
decided that the most useful choice would be to say that, no, you are making no such claim. For example, the
statement “all moon men are green” would actually be considered atrue statement, since there is no example of a
moon man who is not green to serve as a counterexample. We say then that the statement is vacuously true. This
isrelated to the meaning of implication: If “M” =“isamoon man” and “G” = “isgreen,” then our statement is
Ox[Mx—Gx]. Since, for every x, Mx isfase, the statement Mx—Gx is awaystrue. Thus, Ox[Mx—Gx] isatrue
statement.
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Question What are those square brackets doing around Px—Qx?

Answer They define what is called the scope of the quantifier Clx. That is, they surround what it
isweare clamingistruefor al x.

Example 1 A Syllogism
Express the argument above, about Socrates, in symbolic form.

Solution

We've done most of the work. The statement “Socrates is mortal” uses the predicate P to
make a statement about a particular man, Socrates. Let us use the letter s to stand for Socrates.
(We shall always use small Ietters for terms and big letters for predicates) Then Ps is the
satement “ Socrates is a man.” Similarly, Qs is the statement “Socrates is mortal.” The
argument now looks like this:

Lx[Px—0x]
Ps

0 QOs

Beforewego on... Thisisan example of aclassical form of argument known as a syllogism.
Roughly, a syllogism is an argument in the predicate calculus with two premises sharing al
common term (in this case, the predicate P, “is aman”). In the following section we shall see
how to prove that such an argument isvalid.

Mathematics is expressed in the language of the predicate calculus. Here's an example of a
mathematical statement expressed symbolically.

Example 2 A Mathematical Statement

Write the following statement symbolically: “If a number is greater than 1 then it is greater than
0.”

Solution

Sincethisis a statement meant to be true of every number, we need to rephrase it to make the
universal quantifier obvious: “For all x, if x isanumber and x is greater than 1, then x is greater
than 0.” Let uswrite N for the predicate “is a number” and use the standard notation “>* for
“is greater than.” Our statement is then:

Ux[(NxA(x>1))—(x>0)].

Notice that we put the phrases “x>1" and “x>0" in parentheses to make the meaning clearer.
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Beforewe go on... Mathematicians being as lazy asthey are, they often don’t bother to specify
that x is a number, regarding it as understood if they write something like x>1. So, a
mathematician might write

Ox[ (x> 1—(x>0)].

In fact, we're being a little sloppy even in our originad solution. We can run into logica
paradoxes if we alow ourselvesto let x range over “everything” possible. We should, instead,
agree beforehand what univer se of things the quantifier “[x” really refersto. In this example,
we might agree that the universe is the set of al real numbers. There is no need to dlow x to
also refer to, say, an elephant.

Example 3 Another Mathematical Statement

Now write the following statement symbolicaly: “Given any two numbers, the square of their
sum is never negative.”

Solution
Again, we are making a statement about all numbers, in fact, about al pairs of numbers. We can
rephrase the statement asfollows:. “For al x and al y, if x and y are numbers then the square of
their sum is not negative.” Since “the square of their sum” is (x+y)* our statement can be
written like this:

O [COy[(NxANy)—~{(x+y)><0}1].
Rather than write Clx[[y[ . . . ]] we often write

[, [ (NxANY)—~{ (x+)2 <0}
If we prefer not to have the negation, we could write

Che, y[(NXANY)—{(x+y)>=0}].

Once more, we could be lazy and write

(e, y[(x+y)2=0].

There are times when, rather than claim that something is true about all things, we only want
toclamthat it is true about at least one thing. For example, we might want to make the clam
that “some politicians are honest,” but we would probably not want to claim this universally. A
way that mathematicians often phrase this is “there exists a politician who is honest.” Our
abbreviation for “there exists’ is“ 1", which is caled the existential quantifier because it
claims the existence of something. If we use P for the predicate “is a politician” and H for the
predicate “is honest,” we can write “some politicians are honest” as
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Lik[PxAHXx].

Example 4 Mixing Quantifiers
Write the following statement symbolically: “Every person is better off than someone else.”

Solution
Let’ srephrase this statement to get closer to our logical symbolism: “For every person x, there
isaperson y such that x is better off than y.” Now we can see two quantifiers, a universa one
and an existential one. We aso need some predicates, including P for “is a person,” and one
more predicate B(x,y) to stand for “x is better off than y.” This is a new kind of predicate,
taking two terms. Since it relates its two terms, such a 2-place predicate is often cdled a
relation.

Now we can write our statement symbolicaly, using lots of brackets to make the meaning
clear:

x[ Px—(LH[PyAB(x,y)])].

Many mathematical definitions are made in terms of quantifiers. An interesting example is
the notion of “divisible by.” To say that anumber x isdivisible by 2, for example, isto say that
x IS 2 times some integer, or that there exists some integer n such that x = 2n. Generalizing a bit
and writing symbolicaly, we can make the following definition.

Divisible By
If x and y are integers, we say that x isdivisible by y if
Lh[InA(x=yn)].

Here, I isthe predicate “is an integer.”

Note: If we agree to restrict our variable to the universe of integers, we don’t have to use the
predicate 7 and we get the following smpler version:

[h[x = yn].

Example 5 Divisibility

Write the following statement symbolically: “1f anumber isdivisible by 6 thenit is divisble by
3and by 2.”

Solution
To smplify the notation, let us agree that our universeisthe set of integers and all variables are
therefore integers.
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First notice that our statement isa universal one about integers. “For every integer n, if n is
divisbleby 6 thenitisdivisible by 3 and by 2.” Now, when we want to write “» is divisible by
6” we have to watch out for the fact that we' ve aready used the variable n and can’t reuse it as
in the definition of “divisible by” above. What we do is pick another letter, say m, and write
On[n = 6m] for “n is divisble by 6.” In generd, the variable being quantified (the one
immediately to the right of the quantifier) is a dummy variable; its name does not matter, as
long as the same name is used consistently throughout the statement.

Doing the same with divisibility by 3 and 2, we can write our statement as follows:

Un[(Un[n = 6m])y—(Un[n = 3m)A(Un[n = 2m])].
Beforewe go on... We used m as the dummy variablein al three parts of this statement, but it
stands for different numbersin each case. If we wanted to emphasize that the three numbers are
different, we could use three different letters, like this:

Un[(Un[n = 6m]y—(Lln = 3iDALn = 2jD].

Thisleads to an interesting question: For agiven n, how arei and j related to m? Pondering this
guestion leads to the mathematical proof of the statement.

In this last example we ve started to see how mathematics can be trandated into symbolic
form. It was the hope of mathematicians a the end of the nineteenth century that al of
mathematics could be made purely forma and symbolic in this way. The most serious attempt
to do this was in Whitehead and Russell’s Principia Mathematica (1910), which trandated a
large part of mathematics into symbolic language. The hope then was that there could be
developed a purely formal procedure for checking the truth of mathematica statements and
producing proofs. This project was cut short by Godel’ s incompl eteness theorem (1931), which
effectively showed the impossibility of any such procedure. Nonetheless, mathematicians till
fed that anything that they do should be expressible in symbolic logic, and the language that
they actually use in writing down their work is a somewhat less formal version of the predicate
calculus.

L.7 Exercises
Trandate each of the sentences in Exercises 1-26 into a statement in the predicate calculus.
(Underlined letters are to be used for the relevant predicates or terms where appropriate.)
1. Every good girl deservesfruit.
2. Good boys deserve fruit aways.
3. All cows eat grass.

4. No cows eat grass.

5. Some cows est grass.
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6. Some birds are fishes.

7. Some cows are not birds and some are.

8. Some cows are birds but no cows are fishes.

9. Although some city drivers are insane, Dorothy isavery sane city driver.

10. Even though all mathematicians are nerds, W aner and Costenoble are not nerds.
11. If one or more livesarelost, then al lives are lost.

12. If every creature evolved from lower forms, then you and | did aswell.

13. Some numbers are larger than two; others are not.

14. Every number smaller than 6 is also smaller than 600.

In Exercises 15-26, you can use the convention that the letters i through »n represent postive
integers.

15. 12 isdivisible by 6.

16. 13isnot divisible by 6.

17. For any positiveinteger m, if 12 isdivisible by m, then so is 24.

18. If 13 isnot divisible by m, then neither is 17.

19. 15isdivisible by some positive integer.

20. 15isdivisible by a positive integer other than 15 or 1.

21. 17 isprime (that is, not divisible by any positive integer except itself and 1).
22. 15isnot prime. (See (21).)

23. There is no smallest positive real number. (Use the convention that the letters x through z
represent real numbers.)

24. Thereisno largest positive integer.

25. If 1 has property P, and if (n+1) has property P whenever n does, then every positive integer
has property P. (This statement is called the Principle of Mathematical Induction.)
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26. If 2 has property P, and if (n+2) has property P whenever n does, then every even positive
integer has property P.

Trand ate the statements in Exercises 27-34 into words.

27. Ox[Rx—Sx]; R = “isaraindrop,” S = "makes a splash.”
28. Oy[Cy—My]; C = “isacowboy,” M = “is macho.”
29. [x[DzAWZ]; D = “isadog,” W = “whimpers.”

30. k[DzA~WZz]; D = “isadog,” W = “whimpers.”

31. Ox[Dx—~Wx]; D = “isadog,” W = “whimpers.”

32. ~Ox[Dx—Wx]; D = “isadog,” W = “whimpers.”

33. [k, y[CzACYAWZA~WY]; C = “isacat,” W = “whimpers’

34. Ox[Px — y[PyAL(x,y)]], P = “isaperson,” L(x,y) = “y isolder than x.”

Communication and Reasoning Exer cises

35. The clam that every athlete drinks ThirstPro is false. In other words, no athletes drink
ThirstPro, right?

36. Give one advantage that predicate calculus has over propositional calculus.

37. Your friend claims that the quantifiers 00 and O are insufficient for her purposes; she
requires new quantifiers to express the phrases “for some” and “there does not exist”. How
would you respond?

38. Consider a new quantifier, “[0” meaning “for no” (asin “for no x can x be larger than
itself”). Express O in tems of the quantifie's you dready have
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L.8 Arguments and Proofsin the Predicate Calculus

In Example 1 in the preceding section we discussed the classical syllogism that goes:

All men are mortal.
Socratesisaman.
Therefore, Socratesis mortal.

We represent this argument symbolically asfollows:

Ux[Px—Ox]
Ps

0 Qs

Here, again, P isthe predicate “isaman” while Q is the predicate “is mortal.” What we now
need to discuss are the rules of inference that allow usto prove that this and other arguments in
the predicate calculus are valid.

Let's first consider the statement Cx[Px—Qx], or, “For dl x, if x is a man then x is
mortal.” From this general statement about men we should be able to specialize to any
particular man, like Socrates. What is true of all things should be true of any one of them. This
gives usthefollowing rule of inference.

Specialization (or Substitution or Dropping a Universal Quantifier)

If s stands for a particular thing, then the following is atautology for any predicate P:
Ux[Px]—Ps.

Stated asarule of inference, thisis:

Ux[Px]

O Ps

Example 1 Proving a Syllogism
Prove that the argument discussed aboveisvalid.

Solution
The proof isasimple application of Specialization and Modus Ponens.

1. Ox[Px—0Ox] Premise
2. Ps Premise
3. Ps—Qs 1, Specidization
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4. Qs 2, 3 Modus Ponens

Before we go on... How did we know to speciaizeto Ps—Qs and not, say to Pc—Qc where
¢ stands for Costenoble? Either is a legitimate deduction, but the conclusion and one of the
premises of our origina argument mention Socrates, not Costenoble, so the specidization to
Socrates is probably more useful.

Hereis another argument.

0<1.
Forany x,if x > 2thenx > 1.
Therefore, there exists anumber less than 2.

We can express this argument symbolically as follows (using the convention that our universe
isthe set of real numbers).

0<1
Ux[(x=2) — (x=1)]

U O[x<2]

Hereisan informa proof of the argument: Substitute O for x in the second premise to get the
statement (0 > 2) — (0 = 1). Using the first premise and Modus Tollens we conclude that 0
< 2. But now we have an example of a number less than 2, so certainly we have shown that
there exists such a number, and we can conclude that Ci[x<2].

Thelast step in that informal argument is the next rule of inference we need to write down.

Existential Generalization (or Adding an Existential Quantifier)

If s stands for a particular thing, then the following is a tautology for any predicate P:
Ps— k[ Px].

Stated as arule of inference, thisis:
Ps

U k[Px]

Example 2 Proving a Generalization
Prove that the argument discussed aboveisvalid.

Solution
We can now turn our informal proof into aformal one.
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1.0<1 Premise

2. Ox[(x=2) — (x=1)] Premise

3.(0=2) — (0=1) 2, Specidization

4.0<2 1, 3Modus Tollens

5. Ok[x<2] 4, Exigtentia Generdlization

Thefind rules of inference we'll discuss have to do with negations of quantified statements.
Suppose that you have a universal statement [lx[Px], which claims that, for dl x, Px is true.
What does it mean to say that its negation ~(Ux[Px]) is true, instead? If it is not true that Px is
always true, then there must be some example where Px isfase. In other words, there must exist
an x for which Px isfalse. This gives usthe following tautology.

Negation of a Universal Quantifier
For any predicate P the following is atautology:

~(Lx[Px])  Lk[~Px].

Mechanicaly, this says that we can pass a negation past “[” if we then change the
quantifier to “[1".

Example 3 Negating a Universal Quantifier
What is the negation of “Every swan is white?’
Solution

Let S be the predicate “is aswan” and W be the predicate “is white.” Our statement, before
negation, is CIx[Sx—Wx]. After negation it becomes the following.

~Ox[Sx—Wx] = k[~(Sx—Wx)].
We can simplify this further if we use Switcheroo to rewrite the implication inside.
~x[Sx—Wx] = D[~(Sx—Wx)]
= [k[~((~Sx)VWx)]
= [[(Sx)A(~Wx)].

Trandating back into words this is: “There exists a swan that is not white” A moment’s
reflection showsthat thisis, indeed, the exact negation of the statement that all swans are white.

Before we go on... Note that the negation is not “No swans are white.” To disprove a
universal statement it suffices to produce one counterexample. In this case, it suffices to say
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that there is (at least) one swan that is not white. To say that no swans are white would be to
make a much stronger statement than to say that not al swans are white.

For the existential quantifier we have avery smilar rule.

Negation of an Existential Quantifier
For any predicate P the following is a tautology:

~(k[Px]) o Ux[~Px].

Example 4 Negating an Existential Quantifier
What is the negation of “There exists aman who isimmortal ?’

Solution
Let P bethe predicate “isaman” and let R be the predicate “isimmortal.” We are looking for
the negation of the statement [k[PxARx]. The negation is:

~(Lk[PxARx]) = Lx[~(PxARx)]
= [x[(~Px)V(~Rx)]
= Ox[Px—(~Rx)].

In words, the negation of “ There exists aman who isimmorta” is*All men are not immortal”
or, “All men are mortal.”

Before we go on... The reasoning behind the negation of [i[Px] being Lx[~Px] isthis: If there
isno example of an x for which Px istrue, then it must be false for al x. For example, if there is
no man who isimmortal, then all men must be mortal.

Here' s an interesting logical equivalence:
(k[Ox] = ~Ux[~Ox].
This tells us that existential statements could be rewritten as (the negations of) universa

statements. If we wished, we could do without the existential quantifier entirely. However,
allowing ourselvesto use it often produces shorter and more readable logical statements.

Example 5 A Lengthy Proof
Proof that the following argument isvalid:

Every student can swim.
Everyone can either swim or surf.
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Betty cannot swim.
Therefore, not everyone who can surf is a student.

Solution
Let S = “isastudent,” W = “can swim,” R = “can surf,” and b = Betty. Symbolicaly, our
argument isthis:

Lx[Sx—Wx]
Ux[ WxVRx]
~Wb

U ~Ox[Rx—Sx]

Consider how we might prove the conclusion. It isaways hard to prove a negative, so rewrite it
as [k[~(Rx—>Sx)]. We can prove this existentia statement by finding an example of someone
for whom ~(Rx—>Sx) is true. Again, let us pull the negation further inside the statement:
~(Rx—>Sx) is equivdent to RxA(~Sx). Now, the only person we know anything about
specifically is Betty, so perhaps we can prove that RbA(~Sb). Working from the beginning, we
have general statements that we should probably specidize to our subject, Betty. Putting these
ideas together we get the following proof.

1. Ox[Sx—Wx] Premise

2. Ox[WxVRx] Premise

3. ~Wb Premise

4. Sb—Wb 1, Specidization

5. WbVRbD 2, Specidization

6. ~Sb 3,4 Modus Tollens
7.Rb 3, 5 One-or-the-other
8. RbA(~Sb) 6, 7 Conjunction

9. ~((~Rb)\V/Sb) 8, DeMorgan

10. ~(Rb—>Sb) 9, Switcheroo

11. Ck[~(Rb—>Sb)] 10, Generdization
12. ~Ox[Rx—>Sx] 11, Negation of aquantifier

We have only scratched the surface of the list of rules of inference necessary to do proofs
in the predicate caculus. Although we would very much like to continue this discussion for a
few more sections, we would be straying rather far beyond the scope of this text. Instead, we
recommend for further reading any of the many books on symbolic logic that exist, including:

I. M. Copi, Symbalic Logic, 5th Ed., Prentice Hall, 1979.

J. E. Rubin, Mathematical Logic: Applications and Theory, Holt, Rinehart, and Winston,
1997.

P. Suppes, Introduction to Logic, Dover Publications, 1999.

L.8 Exercises
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Write the negation of each of the statementsin Exercises 1-26. (No, your answer may not start
with “~".)

1. Ox[Px—~Qx] 2. Ox[(~Px)—Qx]

3. Ox[~(Px—Qx)] 4. Ox[ Px—Qx]

5. C[PxAQx] 6. C]PxvQx]

7. Ok[Px~——Qx] 8. Ck[Px—(QxVRx)]

9. Ux[Ly[P(x.]] 10. Ox[Ly[Px—Qy]]

11. Ox[Px—y[Q(x,)]] 12. Ox[Px—[y[Qx—Ry]]
13. Ux[Dy[Uz[P(x,y,2)]1] 14. Ox[Cy[Oz[PxAQz—Ry]]]

15. All men are mortal.

16. All birds can fly.

17. All pigswith wings can fly.

18. All pigs either have no wingsor can fly.

19. Some men are mortal.

20. Some birds can fly.

21. Some pigs can fly.

22. Some pigs have wings and can fly.

23. For every positive number there isa smaller positive number.
24. For every number x there is anumber y such that y2 = x.
25. Thereisanumber smaller than every positive number.
26. Thereis aperson older than al other people.

Prove each of the arguments in Exercises 27-42.

27. Ux[Px—Ox] 28. LUx[Px—Ox]
~Qb Lx[Ox—Rx]
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U ~Pb

29, ~[k[PXAQx]
Pb

0 ~0b

31. Lx[Px—~Qx]
~[K[(RxVSx)A~Qx]
Rb

U ~Pb

33. Ux[Px—0Ox]
Pb

U Ck[Ox]

35. ~[k[PxAQOx]
Pb

0 ~Ox[Ox]

37. All men are mortal.
Bach isimmortal.
0 Bach was not aman.

39. No pig canfly.

Spotisapig.
[ Spot cannot fly.

41.1 No children are patient.
No impatient person can sit still.
Alex isachild.
[0 Alex cannot sit till.

Chapter L Logic

Pb
U Rb

30. ~[k[Px—Qx]

U Pb

32. Lx[Px—(QxVRx)]
~[X[(OxVRX)A~Sx]
~Sh

U ~Pb

34. Ux[Px—Ox]
~Qb

U ~Lx[Px]

36. ~Lk[PxA~Qx]
Ux[Ox—Rx]

Pb

U [Rx]

38. All men are mortal

All mortals require food.
Arigtotle was aman.

[ Aristotle required food.

40. No mathematicians are fools.
No one, who is not afool, isan
administrator.
Ritaisamathematician.
0 Ritaisnot an administrator.

42. Babiesareillogica
Nobody is despised who can manage
acrocodile.
[llogical persons are despised.

1 This and the following exercise, after Lewis Carroll’s Symbolic Logic.
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Andrew isababy.
[0 Andrew cannot manage a crocodile.
Communication and Reasoning Exer cises

43. In view of the tautol ogies about negation of quantifiers, we could do awvay with the universal
quantifier completely, right?

44. In view of the tautologies about negation of quantifiers, we could do away with the
existential quantifier completely, right?

45. Comment on the following “ generalization rule’:
Px —x| Px]
46. Comment on the following “ specialization rule':
[k[Px] — Px
47. Can one switch the order of universal and existential quantifiers? In other words, is

O Oy[P(x,y)]] equivaent to Oy [Ck[Pxy)]1748. Is Ch[Cy[P(x,y)]] equivdent to Oy
[Cx[PCey)]]?
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You'rethe Expert—Does God Exist?

Faith
Faithisanidand in the setting sun
But proof, yes
Proof is the bottom line for everyone
Paul Simon, Proof, from The Rhythm of the Saints, Warner Bros. Records, 1990

Lord, what fools these mortals be.
William Shakespeare, A Midsummer Night’s Dream

Ashead of your university's Department of Logic, you have been asked to evauate severd
proofs of the existence of God. And many attempts there have been. Three in particular have
caught your attention: they are known as the cosmologica argument, the teleological argument,
and the ontological argument.

Thefirst argument that comes across your desk is the cosmological argument, put forward
by St. Thomas Aquinas (1226-1274), the philosopher who introduced Aristotle’s philosophy
and logic into Christian theology. As its name suggests, this argument is based on a so-called
“cosmologica” consideration—that of the origin of the universe. It goes as follows.

No effect can causeitsalf, but requires another cause. If there were no first cause, there
would be an infinite sequence of preceding causes. Clearly there cannot be an infinite
sequence of causes, therefore thereis afirst cause, and thisis God.

Y ou makethefollowing quick analysis. Let F: “there is afirst cause,” and let I: “there is an
infinite sequence of causes.” Then the argument has the overall form

~F — 1
~I

UF

Thisyou quickly recognize as a correct application of Modus Tollens, together with the Double
Negation law. The question then is, are the premises obvious, or do they require further
judtification? The first seems reasonable, athough it looks like a job for the Department of
Mathematics, so you send it down the hall for their opinion. You aso make a note to ask the
theologians whether they really mean to say that God is simply thefirst cause.

The next argument to cross your desk is another one from Aquinas, known as the
teleologicall argument, which goeslikethis:

All things in the world act towards an end. They could not do this without there being an
intelligence that directs them. Thisintelligence is God.

1 Teleology is the study of evidence of design or purpose in nature.
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Again, you give thisaquick analysis. You let A: “al things act towards an end” and you let D:
“thereis an intelligent director.” The argument is then

A

U D

Again, you recognize a correct application of Modus Tollens. But again you could question the
premises. Do dl things redlly act toward some end? If they do, then must it be the case that
there is an inteligent director? Perhaps this should be passed on to the Department of
Philosophy for further consideration. . .

The third argument you consider is the ontologicall argument, put forward by St. Anselm
(1033-1103), Archbishop of Canterbury. It goes like this.

God is abeing than which none greater can be thought. A being thought of as existing
is greater than one thought of as not existing. Therefore, one cannot think of God as not
existing, so God must exist.

Now thisisalittle more complicated than Aquinas arguments. Y ou look at the conclusion first.
Thisiscertainly alogical statement, so we take GE to be the statement “God exists.” Now look
a the next-to-last phrase: “one cannot think of God as not existing.” Let us take GNE to
represent the statement “ God can be thought of as not existing.”

Now, in the last sentence is really a hidden premise: “if one cannot think of God as not
existing, then God does exist.” It is actualy a debatable point: if one cannot think of some
entity as not existing, does that necessarily imply that it does exist? You decide to give St.
Ansalm the benefit of the doubt, and include the premise ~GNE — GE.

You now look at the first sentence: “God is a being than which none greater can be
thought.” This is simple enough. In more modern language it says simply that “one cannot
think of abeing greater than God.” You let BGG stand for the statement “one can think of a
being greater than God,” and so the first premise will be ~BGG.

The second sentence says “A being thought of as existing is greater than one thought of as
not existing.” In particular, if one can think of a being existing but can think of God as not
existing, than one has thought of a being greater than God. Letting BE stand for the statement
“one can think of abeing existing,” thisisthe premise (BEAGNE)—BGG.

These are the premises you have to work with. After fiddling around with them and getting
nowhere, you realize that an additional premiseisbeing assumed: that one can think of a being
existing: BE.

Y ou now assembl e the following version of the argument.

1 Ontology is the study of the nature of being or existence.
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~BGG

(BE A GNE) — BGG
BE

~GNE — GE

U GE

You find that thisis avalid argument, since it has the following proof.

1. ~BGG Premise

2. (BE A GNE) — BGG Premise

3.BE Premise

4. ~GNE — GE Premise

5. ~(BE AN GNE) 1, 2 Modus Tollens
6. ~BE vV ~GNE 5, DeMorgan

7. ~GNE 3, 6 One-or-the-other
8. GE 4, 7 Modus Ponens

S0, you conclude that anyone accepting the premises must accept the conclusion, and so be
convinced of the existence of God. But are these premises obvioudly true, or do they themselves
require justification?

Exercises

1. Anayzethe following version of the cosmological argument, due to the philosopher Richard
Taylor:1 Everything has a sufficient reason for its existence—either it was caused by something

1 See: Richard Taylor, Metaphysics, Prentice-Hall, Inc., 1963.
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else (its existence is contingent) or it must exist by its very nature (its existence is necessary).
Neither the existence of the world, nor anything init, is necessary, and therefore the existence of
the world was caused by something else. If athing's existence was not ultimately caused by
something whose existence is necessary, there would be no sufficient reason for that thing’'s
existence. Now the world does in fact exist. Therefore, the existence of the world must
ultimately be caused by something whose existence is necessary. This ultimate cause (which
Taylor callsanecessary being) cannot be the world itself or anything init, and thisis God.

2. Find other arguments for the existence of God and analyze them as logical arguments
(arguments from your own religion, those of your friends, etc.).

3. Find examples of argumentsin politics, advertisements, newspapers, etc., and analyze them.
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Answersto Odd-Numbered Exer cises
L.1

1. Fase statement 3. Not a statement, since it is not a declarative sentence 5. False statement;
Father Nikolsky is a fictitious character, and thus he didn't exist. 7. True statement 9. True (we
hope!) statement  11. Statement whose truth vaue depends on what he, she, or it has uttered.

13. Not a statement, sinceit issalf-referentia. 15. (~p)Aq  17. (pAr)Ag  19.pV(~p) 21. Willis
is a good teacher and his students do not hate math. 23. Either Willis is a good teacher, or his
students hate math and Carla is not a good teacher. 25. Either Carlais a good teacher, or she is

not. 27. Willis students both hate and do not hate math. 29. It is not true that either Carlais a
good teacher or her students hate math. 3L F 33.F 3BT 37.T 30.T

41.pliq = (pVgN~(pAg) 43.1 shal either buy anew calculus book or a used one.  45. Here is
one possible answer: “What does this question ask?’

L.2
Lop | a | ~a|prra 3. p | ~p | ~Cp) | ~PIVp
T| T | F F T|F| T T
T|F | T T FI| T| F F
F| T | F F
FlF | T F
Soop g | 2|~ |toAN~9) 7o p | g | r | PAg | ADAF
T | T F F F T T | T T T
T | F F T F T T F T F
F|l T | T F F T F | T F F
FIF| T|T T T | F|F F F
F| T | T F F
F| T | F F F
F| F | T F F
F| F | F F F
9 p | a | r | avr|pNgvn 1L p | prp
T | T | T T T T| T
T | T | F T T F| F
T | F|T T T
T | F | F F F U
F| T | T T F
F| T | F T F same
F| F | T T F
F| F | F F F
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B p g |pvalaw 1 p | g |pva|~eve| ~p | ~a |~p)A~9)
T T T T T T T F F F F
T E T T T F T F F T F
E T T T F T T F T F F
E F F F F F F T T T T
A
_/ N ame
same
17. p q r PAG | (bAQAFr | gAr | pA(gAr)
T T T T T T T
T T F T F F F
T F T F F F F
T F F F F F F
F T T F F T F
F T F F F F F
F F T F F F F
F F F F F F F
4
W
19 p q ~q q/\Nq p\/(q/\Nq) 21 Contr&di Ct| on
P | ~p |p/\~p
T T F F T
T F T F T T| F F
F[ T F F F F| T F
F F T F F
W
23. Contradiction 25. Tautology
p | g | pvg|~Vg | pA~(PVq) P | 9 | pAg |~(pAQ)| pPV~(PAG)
T T T F F T T T F T
T F T F F T F F T T
F T T F F F T F T T
F F F T F F F F T T

27. (~p)Vp  29. (~p)V~(~q)

31. pV((~p)V(~q))

33. (pV(~p)INPVq)

87

35. Either | am not

Julius Caesar or you arenot afool. 37. It'sraining and | have forgotten either my umbrella or my
hat. 39. My computer crashes when it has been on along time, the air is not dry, and the moon is
full. 41. Thewarning light will come on if the pressure drops and either the temperature is high,
the emergency override is not activated, or the manual controls are not activated.

L.3

1. T 3T 5T 7F 9T 11.T 13.F 15T 17T 19T 21.T 23.F 25.T 27.T
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2. p|laq| avw | p—(qvp) 3L pla|rna|~p |or)—p
TI(T T T TI(T T F F
TlE T T TI|F F F T
FIT T T FIT F T T
FI|F F T FI|F F T T
3. p |~ p—Cp)|p—~p)—p 35. Tautology
TIE|l E T K | ~p | pAp | (pA~p)—q
FIT| T F TI(T F F T
T |F F F T
F (T T F T
F|F T F T
31. p|a | pvg | p—0pVqg
TI(T T T
TI|F T T
FI|T T F
F|F F T
39. Tautology
pla |~ |~ | pAp | arn~q|or-py——(ar~q)
TI|T F F F F T
T |F F T F F T
FIT | T F F F T
FIF | T T F F T
a4 p g |p—a| > | ~a |Co—Cp) B p|q |p—a| » | (p)vq
TI(T T F| F T TIT T Fl T
TI|F F Fl T F
RN LA I A
F|F T T| T T FlE T Tl T
N same A N _same_7
same
45, pla|~ |~ |p ~p| g ~q
T|T | F | F F F
TIE|F | T F F
FIT| T | F F F
FIF | T | T F F

47. Contrapositive: “If | do not exig, then | do not think.” Converse: “If | am, then | think.”
49. Contrapositive: “If | am not Buddha, then | think.” Converse: “If | am Buddha, then | do not
think.” 51. Contrapositive: “ These birds do not flock together only if they are not of afeather.”
Converse: “These birds flock together only if they are of a feather.” 53. Contrapositive: “In
order not to sacrifice beasts of burden, it is necessary not to worship Den.” Converse: “In order
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to sacrifice beasts of burden, it is necessary to worship Den.”  55. “Either | am, or | do not
think.” 57. “Either symphony orchestras are subsidized by the government, or they will cease to
exist.” 59. “Either our society wishes research in the pure sciences to cease, or it will continue.”
6l. p—~q 63.p—~q 65.po~q 67.~¢q—p 69.q-~p

L4

L oplaypr—a| ~q |l0—prql—p 3 p|q |pvag|pr—pVe)
T T| T F T TIT| T T
T| F| F T T l $ $ $
FI T| T F T
FIFl T T T FIFITF T

S. pLqg |r |p—q| g—r | p—9Ng—r) | p—r [[(p—9)Ng—1)]—(p—rT)
TITIT| T T T T T
TITIF| T = F F T
TIF|T | F T F T T
TI|F|F | F T E E 1
FITI|T | T T T T T
FITIF | T F = T T
FIF|T | T T T T T
FIF|IF | T T T T T

£ P | 4 | pAq | gN\p | (PA@)<—(gA\p)
T T T T T
T| F| F F T
F| T| F F T
F| F| F F T

9. p | q p—q|~q | (~P)Vq | (P—q)——I[(~p)Vq)]
Tl T|T F T T
T|F|F T F T
F| TI|T F T T
F|F|T T T T

11. p = “Some cows are chickens’; ¢ = “Some chickens lay eggs.” Then pvq is true, whereas
p isfdse. Thus, (pvg)—q¢q isfdse. 13.p = “All swans are white”; ¢ = “Some swans are
white.” Then p—¢ is true (since the statement p is false; not all swans are in fact white). On the
other hand, ¢—p saysthat if some swans are white, then al swans are white. But some swans are
white, so ¢ is true; whereas p is fase. Thus, g—p is fase. Therefore, (p—q)—(g—p) is fdse.
15. Usethe same example asin Exercise 13.  17. (hAt)—h; tautology  19. ~(rAv)—((~r)A(~v));
not a tautology 21. (u—r)—(~r—~u); tautology 23. (u » r)—(~r—~u); tautology
25. (g—p)—(gVv~p); not a tautology 27. (tvh)AN~t)—h; tautology
29. ((g—s)A(g—j))—(s—j); not atautology 31. ((g—s)A~g)—~s ; not atautology
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L5
1~q 3.~gA)  5.~(~pVg) T.pA~q  9.(pAP—r  1L.4. (pAP—1; 5. ~(pAr)
13.p—q 15.3. (~)V(~q); 4. ~(rAQ); 5.~p 17.4.pAg; 5.r 19.DeMorgan 21.1,2

Modus Tollens 23. 1, Switcheroo 25. 1, Switcheroo; 2, DeMorgan 27. 2, Addition; 1,3 Modus
Ponens;, 4, Smplification  29.1,2 Trangtive Law; 4, Contrapositive;, 3,5 Modus Ponens
31.1, Smplification; 1, Smplification; 3, Addition, 4, Switcheroo; 2,5 Modus Ponens 33. Double
Negative; Double Negative (S); 2, Switcheroo; 3, Addition; 4, Associative Law; 5, Commutative
Law; 6, Switcheroo; 7, Switcheroo

35. 1. u—r Premise 37. 1. ~(hAr) Premise
2. r—h Premise 2. ~hv~r 1, DeMorgan
3. ~h Premise 3.h Premise
4. ~r 2,3 Modus Tollens 4. ~r 2,3 Digunctive Syllogism
5. ~u 14 Modus Tollens
39. 1l.i—s Premise
2. ~—(hAc)  Premise
3. ~c Premise
4. ~h\v~c 3, Addition
5. ~(hAc) 4, DeMorgan
6.1 2,5Modus Tollens
7.5 1,6 Modus Ponens
L.6
1. 1. (pvr)—~q Premise 3. 1. ~p—(r—~t) Premise
2. pvr Premise 2. ~(r—~t) Premise
3.~q 1, 2 Modus Ponens 3.p 1, 2 modustollens
5.1. ~p—(gNr) Premise 7. 1.p—q Premise
2. ~pAs Premise 2. ~(gVr) Premise
3.~p 2, smplification 3. ~qN\~r 2, DeMorgan
4. gNr 1, 3 modus ponens 4. ~q 3, smplification
S5.r 4, smplification 5.~p 1, 4 modustollens
9. 1.(pvr—gq Premise 11. 1. (pv~q)— r Premise
2. s—p Premise 2. s—(tA\u) Premise
3.5 Premise 3. SAp Premise
4. p 2, 3 modus ponens 4. s 3, smplification
5. pvr 4, addition 5.tA\u 2, 4 modus ponens
6.q 1, 5 modus ponens 6.u 5, amplification
7.p 3, smplification
8. pV~q 7, addition
O.r 1, 8 modus ponens
10. rAu 6,9ruleC
13. 1. (p—q9)— r Premise 15. 1. p—(¢q—r) Premise
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2. ~(qVr) Premise 2.q Premise
3. ~gNA~r 2, DeMorgan 3. ~pV(g—r) 1, switcheroo
4. ~r 3, smplification 4. ~pV(~qVr) 3, switcheroo
5. ~(p—q) 1, 4 modus tollens 5. ~pV(rv~q) 4, commutativity
6. ~(~pVq) 5, switcheroo 6. (~pVr)V~q 5, asociativity
7. pPA~q 6, DeMorgan 7. ~pVr 2,6 digunctive syllogism
8.p 7, amplification 8. p—r 7, switcheroo
17. 1. (pAg)—p smplification 19. 1.p—~(~p)  doublenegative
2. p—(pVvq) addition 2. p—p double negative
3. (pAgQ)—(pVvq) 1,2trangtivity 3. ~pVp 2, switcheroo
4. ~(pA~p) 3, DeMorgan
21. 1. p—~(~p) double negative
2. p—p double negative
3. ~p\p 2, switcheroo
4. pv~p 3, commutative law
5. (pv~p)A(pV~p) 4, ruleC
6. (pAP)V~p 5, digtributive law
7. ~(~pN~p)\V~p 6, DeMorgan
8. ~(p—~p)V~p 7, switcheroo
9. (p—~p)—p 8, switcheroo

23. pfase gtrue 25. ptrue, g fase rfase 27.Invaid. For a counterexample, we can teke p =
“1=1"; g = “The moon is made of green cheese”, and r = “2+2 =4."

29.vdlid. 1. p—r Premise
2. ~g—>~r Premise
3.r—q 2, contrgpositive
4. p—q 1,3 trangitive law

31. Invalid. This is the same argument as the one in (23). Note that, athough the reasoning is
incorrect, the conclusion istrue. | don't eat grass.
33. Invdid:
p—d Let p befadseand d true.
d
Op
35. Invalid:
d—r Let d befase, rtrue, and s false.
d—s
U r—s
37.vdid:
(mVvp)—h
m
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O h
Proof:
1. (mvp)—h Premise
2.m Premise
3. mvp 2, addition
4. h 1,4 modus ponens

39. Replace her; her prediction isinvalid. Using r = “it rains on the Nile,” s = “Sagittarius fals
in Jupiter's shadow,” m = “Mercury is ascending,” f = “The moon is full,” the argument
becomes:

r—s

m—r

s—(fvm)

U (sAH)—r
Intuitively, the argument seems invaid because, according to the premises, to be assured of r we
need to have m, whereas dl s guaranteesis f or m. To get a counterexample, we try to make the
conclusion fase, which means s and f must be true, but » must be false. What about m? Since
m—r isone of the premises and r isfalse, so must m be false for m—r to be true. Thus we have
sandftrue; r and m false. Let ustake: s = “1+1=2," f = “themoon is round,” » = “the moon
issguare,” and m = “the moon isaballoon.” Then the argument becomes:

If the moon is square, then 1+1 =2 - true
If the moon isaballoon, then it is square - true
If 1+1 = 2, then the moon is either round or aballoon - true
0 If 1+ 1 =2 and the moon is round, then the moon is square - false

41. A correct deduction; if we use the first letter in a country's name to represent the statement that it
signs the accord, then the argument is:

u—(cA\b)

i—b

b—u

U i—c
To proveit, first obtain i—(cAb) using trangtivity, then use switcheroo and simplification to obtain
~iVe, and finally, use switcheroo.
43.Valid: Let v = “some violets are red,” b = “some roses are blue,” [ = “somebody loves
you,” and g = “you’re grown up.”

(~vAD)—~I
[
bv(~g)
8
Ov
Proof:
1. (~vAb)—~I Premise
2.1 Premise
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3. bV(~g) Premise

4.¢ Premise

5. ~(~vADb) 1, 2 modus tollens

6. vW~b 5, DeMorgan

7.b 3,4 digunctive syllogism
8.v 6,7 digunctive syllogism

45. Yes, rule of Inference T2 permits us to add any tautology in our list of tautologies in Section
L.4 asapremise. Thus, we can start with no premises and add tautologies from our list. 47. The
argument isinvalid, and so there is not proof.

L.7
1. Ox[Gx—Dx] 3. Ox[Cx—Ex] 5. k[CxAEXx] 7. k[CxA~Bx] A [k[CxABx], or [k,
[CXxACyABxA\~By] 9. [k[CxAIx] A (CdN ~Id) 11. Ok[LxASx] —  Ox[Lx—Sx]

13. I NxA(x>2)] A DX[NxA(x=<2)], or Dx,y[NxANYAG>2)A(Y<2)] 15. h[12 = 6n]
17. 0m[h[12 = mn] — [h[24 = mn]] 19. Om[h[15 = mn]], or Un,n[l5 = mn]
21. ~Om,n[(mz)AN(mz1T)N(1T = mn)], or Unm[(17 = mn) — m=1)vV(im=17)]
23. Ux[(x>0) — DV[(>0OAQ<x)]] 25.{P1 A Un[Pn—P(n+1)]} — Un[Pn] 27.Every
raindrop makes a splash.  29. Some dogs whimper.  31. No dogs whimper. 33. Some cats
whimper and some catswon't. 35. Wrong; saying that not al athletes drink ThirstPro amounts to
saying that some athletes do not drink it. 37. “For some” can be expressed as [1 and “there does
not exist” as ~[1 Hence no new quantifiers are necessary.

L.8
1. Ik[PxAQx] 3. [k[Px—Qx] 5. Ux[Px—~Qx] 7. Ux[~(Px=——0Qx)] 9. [k[Uy[~P(x,y)]]
11. Ok[PxAOy[~O(x, )11 13. Cx[Oy[Ck[~P(x,y,2)]11] 15.Some men ae immortd.

17. Some pigs with wings cannot fly. 19. All men areimmortal. 21. No pigs can fly. 23. There
is apositive number for which thereisno smaller. 25. For every number thereis a positive number
that isno larger.

27. 1. Ox[Px—Qx] Premise 29. 1. ~[k[PxAQOx] Premise
2.~0b Premise 2. Pb Premise
3. Pb—Q0b 1, Specidization 3. Lx[~(PxAQOx)] 1, Negation
4. ~Pb 2,3 Modus Tollens 4. Ox[(~Px)V(~Qx)] 3, DeMorgan
5. (~Pb)Vv(~Qb) 4, Specidization
6. ~0b 2, 5 Digunctive
Syllogism
31. 1. Ox[Px—~Qx] Premise
2. ~[K[(RxVSx)A~Qx] Premise
3.Rb Premise

4. Ox[~((RxVSx)A~Qx)] 2, Negation
5. x[~(RxVSx)VOx)] 4, DeMorgan
6. ~(RbVSb)VQb 5, Specidization
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7. Rb\V/Sb 3, Addition
8. 0b 6,7 Digunctive Syllogism
9. Pb—~Qb 1, Specidization
10. Pb 8,9 Modus Ponens
33. 1. Ox[Px—Qx] Premise 35. 1. ~[k[PxAQx] Premise
2. Pb Premise 2. Pb Premise
3. Pb—Qb 1, Specidization 3. Ox[~(PxAQx)] 1, Negation
4. Qb 2,3 Modus Ponens 4. ~(PbNQD) 3, Specidization
5. [k[Ox] 4, Generdization 5. (~Pb)V(~Qb) 4, DeMorgan
6. ~Ob 2,5 Digunctive
Syllogism
7. k[~Ox] 6, Generalization
8. ~[x[Ox] 7, Negation
37. 1. Ux[Mx—>Rx] Premise 39. 1. ~[k[PxAFx] Premise
2. ~Rb Premise 2. Ps Premise
3. Mb—Rb 1, Specialization 3. Ox[~(PxAFx)] 1, Negation
4. ~Mb 2,3 Modus Tollens 4. ~(PsAFs) 3, Specidization
5. ~Ps\/~Fs 4, DeMorgan
6. ~Fs 2,5 Digunctive
Syllogism
41. 1. ~[k[CxAPx] Premise
2. ~[k[~PxASx] Premise
3. Ca Premise
4. Ox[~(CxAPx)] 1, Negation
5. ~(CanNPa) 4, Specidization
6. ~Cav~Pa 5, DeMorgan
7. ~Pa 3,6 Digunctive Syllogism
8. Lx[~(~PxASx)] 2, Negation
9. ~(~PaASa) 8, Specidization
10. Pav~Sa 9, DeMorgan
11. ~Sa 7,10 Digunctive Syllogism

43. Right: one can replace [x[ Px] by ~[k[~Px]. 45. It isinvdid; for instance, the fact that 3 is a
positive number does ot permit usto conclude that all numbers are positive.  47. No; For let P(x,y)
stand for x > y. Then the statement on the right is “For dl (numbers) y there exists a (number) x
with x > y”"—a true statement about numbers, whereas the statement on the left is “There is a
(number) x which is bigger than every number y”— afalse statement.



