Petrify: a tool for manipulating concurrent specifications and
synthesis of asynchronous controllers

Jordi Cortadella, Univ. Politécnica de Catalunya, Barcelona, Spain
Michael Kishinevsky, Alex Kondratyev, The University of Aizu, Japan
Luciano Lavagno, Politecnico di Torino, Italy
Alex Yakovlev, University of Newcastle upon Tyne, United Kingdom

Abstract

Petrify is a tool for (1) manipulating concurrent specifications and (2) synthesis and opti-
mization of asynchronous control circuits. Given a Petri Net (PN), a Signal Transition Graph
(STG), or a Transition System (TS) ! it (1) generates another PN or STG which is simpler than
the original description and (2) produces an optimized net-list of an asynchronous controller
in the target gate library while preserving the specified input-output behavior. An ability of
back-annotating to the specification level helps the designer to control the design process.

For transforming a specification petrify performs a token flow analysis of the initial PN
and produces a transition system (TS). In the initial TS, all transitions with the same label
are considered as one event. The TS is then transformed and transitions relabeled to fulfill the
conditions required to obtain a safe irredundant PN.

For synthesis of an asynchronous circuit petrify performs state assignment by solving the
Complete State Coding problem. State assignment is coupled with logic minimization and
speed-independent technology mapping to a target library. The final net-list is guaranteed to
be speed-independent, i.e., hazard-free under any distribution of gate delays and multiple input
changes satisfying the initial specification. The tool has been used for synthesis of PNs and
PNs composition, synthesis and re-synthesis of asynchronous controllers and can be also applied
in areas related with the analysis of concurrent programs. This paper provides an overview of
petrify and the theory behind its main functions.

1 Introduction

Petri nets [31, 28] are a widespread formalism to model concurrent systems. By labeling transitions
with symbols from a given alphabet, transitions can be interpreted as the occurrence of events or
the execution of tasks in a system. Labeled Petri Nets have been used in numerous applications:
design and specifications of asynchronous circuits [34, 7, 23, 20], resource allocation problem in
operating systems and distributed computation [35], analysis of concurrent programs [32], perfor-
mance analysis and timing verification [19, 33|, high-level design [16]. Petri Nets are popular due
to their inherent ability to express both concurrent and non-deterministic behavior.

State-based models are common languages for formal specification and verification of complex

systems (FSMs [15, 22|, Burst mode automata [30]). Even the formal operational semantics for
most of the event-based models (CSP [18], CCS [24, 25]) is given by means of states. The drawback

!Transition system is a directed graph with vertices labeled as states and arcs labeled with events. Transition
system can be viewed as an abstract state graph.

of state-based models is that they represent causality, concurrency and conflict relations between
events in terms of state sequences or state configurations (e.g., state diamonds). This is an unde-
sirable characteristic for the designer, who always wants succinct representations of a system that
explicitly represent its properties. Therefore, it is very important to identify, starting from a flat
state-based representation, the set of causality relations, concurrent events and conflict conditions
implicit in the representation itself, because they carry useful information for the designer or/and
design algorithms.

Tool petrify implements a method which, given a finite state model, called Transition System
(TS) in the sequel, synthesizes a safe Petri Net with a reachability graph that is bisimilar to the
original TS. In particular, the reachability graph can be either isomorphic to the original TS
or isomorphic to a minimized version of the original TS. The synthesized PN is always place-
irredundant, i.e., it is not possible to remove any place from the net without changing its behavior.
The synthesis technique is based on constructing regions. A region in a TS is a set of states
corresponding to a place in a PN. Transitions in and out of this set of states “mimic” the PN firing
behavior (which un-marks predecessor places and marks successor places of a transition).

The notion of regions was introduced in [17] (and developed in [29, 1, 3, 14, 26]) as a basic
intermediate object between state-based and event-based specifications. This papers have been
limited with the so-called class of elementary TSs which allow for PN representation with uniquely
labeled transitions (each event has only one occurrence in the PN). We have shown [11] how theory
of regions can be efficiently used for synthesizing place-irredundant and place-minimal PNs for
elementary and non-elementary TSs.

Synthesis of Petri Nets

|

\ Free-choice PN

3 State Graphs, \
; :
| /A IR i

Bur st-mode automata

State encoded
Transition System

Asynchronous cir cuit
(net-list)

Figure 1: Petrify’s framework for manipulating specifications and for designing of asynchronous
circuits

The method for synthesis of PNs provides a technique for transforming specifications. Given a
model which can be mapped into a TS, we can derive a PN which is bisimilar to the initial model
of the process. In such a way we can create a tool which automatically translates CSP, CCS, FSM,
Burst-mode machines and other models into labeled Petri Nets. Also, we can use this tool for
the transformation of Petri Nets aimed at optimality under some criterion (place count, transition
count, number of places, PN graph complexity, etc.) or for deriving a net belonging to a given
class (pure, free choice, unique choice, etc.). Such an interactive tool allows a designer to play with
a PN-like specification, performing equivalent transformations of PNs, and/or transformations of
other specifications into PNs under different design constraints and optimization criteria. Fig. 1
shows our framework for synthesizing PNs and transforming specifications.

In [8, 10, 9] we show that regions are tightly connected with the set of properties that must
be preserved across the state encoding and technology mapping process for asynchronous circuits.
Hence, regions and their intersections can be efficiently used for state signal insertion. Therefore,
sets of states which correspond to places (and transitions) of PNs are useful for efficient synthesis
techniques of digital circuits. For synthesis of asynchronous circuits petrify performs state as-
signment by solving the Complete State Coding problem [7, 23]. State assignment is coupled with
logic minimization and speed-independent technology mapping to a target library (Fig. 1). The
final net-list is guaranteed to be speed-independent, i.e., hazard-free under any distribution of gate
delays and multiple input changes satisfying the initial specification.

This paper is further organized as follows. Section 2 describes what petrify can do in more
details. Section 3 describes how petrify manipulates concurrent specifications. Section 4 shows to
synthesize asynchronous control circuits with petrify. Section 5 concludes the paper and shows
directions for the future development of the tool.

2 What is Petrify

2.1 Manipulating PNs and TSs

Petrify has two basic functions that allow manipulating concurrent specifications:

o Synthesis of safe Petri Nets or Signal Transition Graphs from a given Transition System.

STGs are PNs with transitions interpreted as changes of the circuit signals. They are widely
used in design of asynchronous circuits. TSs are abstract state graphs with labeled arcs. State
Graphs are binary encoded TSs. An example of the transformation performed by Petrify is
shown in Fig. 2.

e Re-synthesis of Petri Nets and Signal Transition Graphs.

Behavior-preserving transformation of PNs can be aimed at optimality under some criterion
(place count, transition count, number of places, PN graph complexity, etc.) or at deriving a
net belonging to a given class (safe, Free-Choice, Unique-Choice, etc.).

Given a bounded PN (possibly with weighted arcs and inhibitor arcs) petrify will generate an
equivalent safe place-irredundant PN. For example, given a PN in Fig. 3(b), which corresponds
to a TS from Fig. 3(a) petrify will produce as an output a place-irredundant (and place-
minimal) safe PN shown in Fig. 3(c).

2.2 Synthesis of asynchronous circuits

Ay

Figure 2: Synthesis of a PN

sl
T
a b
2
C
s3
d
A
(€)

Figure 3: (a) Transition system. (b) Minimal saturated and (c) place-irredundant nets.

A user view of the circuit synthesis is illustrated by the example shown in Fig. 4. Given an initial
STG specification (the left part of the figure), the tool realizes that the immediate construction of
a net-list is not possible. Indeed, the property of Complete State Coding is not satisfied: different
states of the system are encoded with the same binary code although they imply contradictory next
values for at least one of the output signals. To resolve this state conflict petrify automatically
inserts a new state signal (¢sc0). Transitions of this state signal (¢sc0— and ¢sc0+) are inserted in
such way that the resulting logic is optimized according to a selected cost-function.

After inserting this state signal no state conflicts exists in the system and a speed-independent
circuit can be constructed with C-elements ? and complex gates (in the middle). However, these
complex gates may not be available in the gate library. Assume, for example, that the library
contains only simple gates with 2 inputs and C-elements. In such case, petrify will automatically
perform combinational and sequential decomposition of the logic, preserving speed-independent

2(C-element is an asynchronous latch with a next function ¢ = ab + ca + cb, where a,b are inputs to the latch and
c is its output.

mapl+

AN

map3- X+ map5+

T
AN R
\&/ v/ 70+\ yf

C-

2

X-

map4+ map5- map3+

o { ! | t

RN ™o T

NS N/ x- a
> - v osc0r /)

| ? } A
N o+ Y
c+ map2+ map2-
;4 at b+ V/ \ _ 81)4
A) N NP

*********** v Complex gates

a

oo --

No circuit

(incomplete
state encoding)

Figure 4: State encoding and technology mapping

properties and striving to minimize the logic. The final logic net-list for this library and the
corresponding Signal Transition Graph will be automatically derived by the tool (Fig. 4, the right

part).

3 Theory behind Petrify

The theory behind petrify is presented in [11, 12|. Petrify strives to minimize the number of
places, in order to make the final Petri Net more understandable by the designer. It either generates

a complete set of minimal regions (which are analogous to prime implicants in Boolean minimiza-
tion) or further removes redundant regions (which is similar to generating a prime irredundant
cover in Boolean minimization).

In the initial TS, all transitions with the same label are considered as one event. Petrify solves
the problem of merging and splitting “equivalent” labels, i.e., those labels which model the same
event, but must be split in order to yield a valid Petri Net. Therefore, the synthesis method is not
limited to elementary TSs, which are quite restricted; we can handle the full class of TSs by means
of label splitting. In the following sections we will briefly and informally review the theory behind
petrify.

3.1 Basic models: Petri Nets and Transition Systems

Informally, a TS ([29]) can be represented as an arc-labeled directed graph. A simple example of
a TS is shown in Fig.2 (the left part). A TS is called deterministic if for each state s and each
label a there can be at most one state s’ such that s = s'. A TS is called commutative if whenever
two actions can be executed from some state in any order, then their execution always leads to the
same state, regardless of the order. For the purpose of synthesis of asynchronous circuits we are
mainly interested only in deterministic and commutative TSs.

A Petri Net is a quadruple N = (P, T, F,mq), where P is a finite set of places, T is a finite
set of transitions, F' C (P x T') U (T x P) is the flow relation, and my is the initial marking. A
transition ¢ € T is enabled at marking my if all its input places are marked. An enabled transition
t may fire, producing a new marking ms with one less token in each input place and one more
token in each output place (denoted my SR my). The right half of Fig.2 presents a PN expressing
the same behavior as the TS shown in the left half of the same figure. Tokens represent the initial
marking which corresponds to the top left state of the TS.

The set of all markings reachable in N from the initial marking my is called its Reachability Set.
The graph with vertices corresponding to the markings of a PN and with arcs connecting markings
reachable in one transition is called the Reachability Graph (RG) of the PN.

A Signal Transition Graph (STG, [6, 34]) is a Petri net with transitions labeled with up and
down transitions of signals (denoted by #* and z~ for signal).

A PN is called
o safe if no more than one token can appear in a place in any reachable marking,

e free-choice if for each place p with more than one output transition each of this transitions
has exactly one input place — place p, i.e., the enabling condition of conflicting transitions
depends only on the marking of a single place.

e place-irredundant if removing any place from the PN will change the set of possible sequences
of firing transitions (i.e., behavior of the net will be disturbed).

A PN in Fig.2 is safe, free-choice and place-irredundant.

3.2 Regions and Excitation Regions

Let S1 be a subset of the states of a TS, S; C S. If s ¢ S; and s’ € S;, then we say that
transition s — s’ enters Si. If s € S; and s' ¢ Sq, then transition s 5 s' exits S;. Otherwise,
transition s — s’ does not cross Sy. A region is a subset of states with which all transitions labeled

with the same event e have exactly the same “entry/exit” relation. This relation will become the
predecessor /successor relation in the Petri net.

Let us consider the TS shown in Fig.3(a). The set of states ro = {s2,s3, s5} is a region, since all
transitions labeled with a and with b enter r5, and all transitions labeled with d exit r9. Transitions

labeled with ¢ do not cross ro. On the other hand, {ss, s3} is not a region since transition s3 4, S4

enters this set, while another transition also labeled with d, s 4, sg, does not.

A region r is a pre-region of event e if there is a transition labeled with e which exits ». A
region 7 is a post-region of event e if there is a transition labeled with e which enters r. The set of
all pre-regions and post-regions of e is denoted with °e and e° respectively.

While regions in a TS are related to places in the corresponding PN, an excitation region for
event a is a maximal set of states in which transition a is enabled. Therefore, excitation regions
are related to transitions of the PN. More formally, a set of states is called a generalized excitation
region (denoted by GER(a)) for event a if it is a mazimal set of states (a set of states with a
given property is maximal if it is not a subset of any other set with this property) such that for
every state s € GER(a) there is a transition s 2 . Sometimes it is more convenient to consider
connected subsets of GERs. A set of states is called an ezcitation region (denoted by ER;(a)) if
it is a mazimal connected set of states such that for every state s € ER;(a) there is a transition
s %. Since any event a can have several separated ERs, an index j is used to distinguish between
different connected occurrences of a in the TS. In the TS from Fig.3(a) there are two excitation

regions for event d: ER;(d) = {s3} and ER(d) = {s5}, while GER(d) = {s3, s5}.

3.3 Deriving PNs based on the excitation closure

Given a set of all minimal regions (a region is called minimal if it is not a superset of any other
region) let us build a PN following four rules:

e For each event e of the TS a transition labeled with e is generated in the PN;
e For each minimal region r a place r is generated;

e Place r contains a token in the initial marking iff the corresponding region r contains the
initial state of the TS;

e The flow relation of the PN is as follows: transition labeled with e is an output transition for
place r iff r is a pre-region of event e in the TS and e is an input transition of r iff region r
is a post-region of e.

As shown in [11], if the following two conditions hold then a PN derived by the four rules above
is bisimilar to the original TS. Bisimilar [25] means that behavior of the TS and the PN cannot be
distinguished by the external observer who can only see the events of these two models.

o FEuxcitation closure: For each event e the intersection of pre-regions is equal to its generalized
excitation region.

e Fuvent cffectiveness: For each event e there is at least one pre-region.

Moreover, one may remove regions still preserving behavior of the PN until excitation closure is
violated. By removing regions from the set of all minimal regions while still keeping the excitation
closure condition petrify generates a place-irredundant PN. By further merging of the minimal
regions a place-minimal net can be generated.

GER(0)={ 2,5}

b: exit, out
b exit b no cross
add s3, 56/ \add sl,s7
{s2,53,55,6} {s1,52,85,s7}
isregion b: enter, in, out

d: enter, in, out

d no cross
add s4

{s1,82,54,s5,s7}
b: enter, in

b no cross
add s3, s6

{s1,52,53,4,55,56,57}
isregion

Figure 5: (a) TS, (b) expansion tree for pre-regions of event ¢, (¢) excitation closed TS, (d) PN, (e)
reachability graph of the PN

3.4 Generating minimal regions and label splitting

The set of minimal pre-regions of an event e is calculated by gradually expanding its generalized
excitation region to obtain sets of states that do not violate the “entry-exit” relationship. When
the excitation closure is not fulfilled, i.e.

ﬂ r # GER(e)

rca

some events must be split to satisfy this condition.

The strategy to split events is explained by the example shown in Fig.5 for the pre-regions of
event c. Initially, GEFR(c) = {s2, 55} is taken for expansion. Event b violates the region conditions,
since two transitions labeled with b exit {s2, s5} and two other transitions labeled with b are outside
{s2,s5}. Next, two possible legalizations for event b are considered:

e Two input states for transitions of b, which are not yet included into the constructed set of
states, s3 and s6, are added into the set. Now event b exits set {s2, 53, 85, 86}. Since no other
violations of region conditions are found this set is a region.

e Two output states for transitions of b, {s1, s7}, which are not yet included into the set are
added to the set in the attempt to make b non-crossing. This attempt fails since more

violations of the region conditions are found and further expansions are applied until all
branches of the search tree find a region.

The example illustrates how all branches will eventually be pruned, in the worst case, when covering
the whole set of states.
Let us call r' the intersection of the regions found in the expansion. We have

TI — {817 52,83, 84, S5, S6, 57} N {527 83, S5, 86} - {827 33,85, 86}
The strategy for label splitting will take all those explored sets r such that
{ss,s5} CrCr'

All three states explored before finding regions are good candidates. However, the set {s9,s5} is
the best one by the fact that only one event violates the crossing conditions and it makes the
intersection of pre-regions smaller (closer to GER). Thus, event b is split into two new events (b;
and by) for {s2, s5} to become a region. The new TS is equivalent to the original (up to renaming
of the split events). The corresponding PN is shown in Fig.5(d) and its RG in Fig.5(e). Note that it
contains one state less than the original TS, due to the implicit minimization for equivalent states
s4 and s7 (states s4 and s7 are equivalent since there is only one output transition for each of them,
labeled with b, and each of these transitions enter state s1).

3.5 Internal representation of the objects

e marking: p1P2Psp4Ps
e region, set of states: py, paps

e flow relation (for ¢):
(p2pspapa) - (G23593494) - (P1 & 1)

Figure 6: Symbolic representation
of Petri net objects in petrify

The proposed method requires a broad exploration of sets of states of a TS. Moreover, operations
such as intersection, inclusion and equality among the explored sets must be executed often. An
efficient representation of the TS and its states is thus crucial to cope with the complexity of such
operations.

Given an appropriate encoding of the states of the TS, we have chosen to use Ordered Binary
Decision Diagrams [4] to represent sets of states (by means of characteristic functions) and the
TS (by means of the disjunction of transition relations, one for each label). The algorithms to
manipulate the sets of states of the TS are based on symbolic techniques for verification of sequential
machines [13].

For deriving a TS from the initial PN petrify performs a token flow analysis of the initial STG
and produces a transition system in symbolic form, using Binary Decision Diagrams. The latter
represent boolean characteristic functions of markings, states, sets of states and the flow relation
as shown in Fig.6.

4 Theory behind asynchronous circuit synthesis

4.1 Asynchronous circuits and speed-independence

An asynchronous circuit is an arbitrary interconnection of logic gates such that no two gate out-
puts are connected together ([36, 27]). Each logic gate is characterized by a Boolean equation
describing the gate output as a function of the gate inputs and (if the gate is sequential, rather
than combinational) of the gate output.

The behavior of a circuit can be completely characterized by using a TS with one state for each
Boolean vector representing the values of the gate outputs and of the primary inputs of the circuit
(collectively called signals). An example of an asynchronous circuit is given in Fig. 4.

Roughly speaking, a circuit is defined to be speed-independent if its behavior remains correct
under any changes of gate delays. No hazards are possible in speed-independent circuits under any
input changes (possibly multiple input changes in non-fundamental mode) [23, 20].

4.2 Property-preserving event insertion

Event insertion is informally seen as an operation on a TS which selects a subset of states, splits
each state in it into two states and creates, on the basis of these new states, an excitation and
switching region for a new event. Fig. 7 shows the chosen insertion scheme, analogous to that used
by most authors in the area, in the three main cases of insertion with respect to the position of the
states in the insertion set, denoted ER(z) (entrance to, ezit from or inside ER(x)).

SR(X)
1 1
oeiZe oele o<fCe Vb Kle
ER(X) ER(x)
S-ER(X) S-ER(x)

Figure 7: Event insertion scheme

State signal insertion must also preserve the speed-independence of the original specification,
that is required for the existence of a hazard-free asynchronous circuit implementation.

Let a TS has a set of events F and a set of transitions T. An event a of the TS is said to be
persistent in a subset S' of states of Siff Vsl € S',b € E: [s1 % A(sl 2, $2) € T| = s2 . An event
is said to be persistent if it is persistent in S. For a binary encoded TS, determinism, commutativity
and output event persistency guarantee speed-independence of its circuit implementation. Insertion
sets should be chosen in such a way that persistency and commutativity of the original events are
not violated.

The following property of insertion sets, based on theory developed in [8], provides a rationale
for our approach.

Property 4.1 Regions, excitation regions and intersections of pre-regions can be used as insertion
sets in a commutative and deterministic TS.

This property suggests that the good candidates for insertion sets should be sought on the basis
of regions and their intersections. Since any disjoint union of regions is also a region, this gives
an important corollary that nice sets of states can be built very efficiently, from “bricks” (regions)
rather than “sand” (states).

10

4.3 Selecting excitation regions for new signals

Assume that the set of states S in a TS is partitioned into two subsets which are to be encoded
by means of an additional signal. This new signal can be added either in order to satisfy the
CSC condition, or to break up a complex gate into a set of smaller gates. In the latter case, a
new signal is added to represent the output of the intermediate gates added to the circuit and the
speed-independent implementability of the decomposed specification is checked again ([5]).

Let # and ¥ = § — r denote the blocks of such a partition. In order to implement such an
encoding, we need to insert appropriate transitions of the new signals in the border states between
the two subsets.

Petrify considers the so-called ezit border (EB) of a partition block r, denoted by EB(r),
which is informally a subset of states of r with transitions exiting r. We call EB(r) well-formed if
there are no transitions leading from states in EB(r) to states in r — EB(r). Symmetrically, input
borders can be handled. Fig. 8 illustrates the notions of exit and input borders.

Input bor der

Exit border

Figure 8: Exit and input borders

Note that we need each new signal z to orderly cycle through states in which it has value 0,
0*, 1 and 1*. We can formalize this requirement with the notion of I-partition ([37] used a similar
definition).

An T-partition divides a set of all states of a TS into four blocks: §° S! St and S~. S°(S?)
defines the states in which z will have the value 0 (1). S*(S7) defines GER(z+) (GER(z—)). For a
consistent encoding of x, the only allowed events crossing boundaries of the blocks are the following;:
S — S5t -8 567 8% 8§t S~ and S~ — ST (the latter two would cause a persistency
violation, though). The problem of finding an I-partition is reduced to finding a bipartition S and
is done in four steps:

1. Find a bipartition of states {b,b}

2. Calculate EB(b) and EB(b) (similarly for input borders)
3. Extend EBs to well-formed EBs by backward closure

4. Check that persistency condition is not violated

Three first steps are shown in Fig. 9.

4.4 Gate-level speed-independence conditions

Necessary and sufficient conditions for speed-independent implementation using unbounded fanin
and gates (with unlimited input inversions), bounded fanin or gates and C' elements were given
in [21] (extending a previous result of [2]). Petrify uses a basic implementation architecture, called

11

Figure 9: From bipartition to I-partition

the standard-C architecture (Fig. 10). Contrary to the previous tools instead of unbounded fanin
gates for the first level, petrify can search for implementable gates, that is gates which exist in
the chosen library.

e — R(T)

R(PY R(TE)

Ny

R R(T)

(@)
Figure 10: The standard-C architecture extended for complex gates

The basic idea of the standard-C implementation architecture is that every first-level gate
implements an up or down transition of the user-specified signal behavior. In order to ensure
speed-independent operation, a number of constraints that are collectively called the monotonous
poly-term cover conditions ([21]) must be satisfied.

In the following we will consider partitions of the set of excitation regions of a given signal a
into joint excitation regions ERj(a*). The word ”joint” here indicates that a few excitation regions
can be joined together and implemented with one logic gate in the circuit.

The joint quiescent region QR;(a*) of a given signal transition with joint excitation region
ERj(a*) is a mazimal set of states s such that:

e ¢ is stable in s, and

e s is reachable from ER;(a*) only through states in which a is stable, and

e s is not reachable from any other ERy(a*) such that k # j without going through ER;(a*).
Similarly, the backward region BR;j(a*) is a maximal set of states s such that:

e ¢ is stable in s, and

e ERj(a") is reachable from s only through states in which a is stable, and

e no other ERy(a*) such that k # j is reachable from s without going through EFR;(a*).

12

Let Cj(a*) denote one of the first-level gates in the standard-C architecture. Cj(a*) is a correct
monotonous poly-term cover for the joint excitation region ER;(a*) if:

1. Cj(a*) covers (i.e., its Boolean equation evaluates to 1) all states of ER;(a*).
2. Cj(a*) covers only states of ER;(a*) U QR;(a*) U BR;(a*).

3. If Cj(a*) covers some state s of BR;(a*), then s is also covered by some other Cj(a*) such
that a} and aj are complementary (up and down or down and up, respectively) and s €

BRj((l*) N QRk(a*)

4. Cj(a*) has exactly one up and one down transition in any sequence of states within ER;(a*)U

QRj(a") U BR;j(a").

Under these conditions, it is possible to show that the outputs of the first-level gates are one-hot
encoded, and that means that any valid Boolean decomposition of the second-level or gates will be
speed-independent.

The chosen architecture is general enough to cover the case in which a signal in the specification
admits a combinational implementation, because in that case the set and reset network are the
complement of each other, and the C element with identical inputs can be simplified to a wire.

4.5 Strategy for technology mapping

The strategy for technology mapping which is implemented in the procedure for selecting the best
I-partitions and in the cost function is based on two iterative steps:

e Combinational decomposition and extraction of set and reset functions

e If no valid combinational decomposition can be found, then additional state signals are in-
serted preserving speed-independence to increase the don’t care set and to simplify the logic.

Special conditions for correct speed-independent decomposition must be preserved, since each
signal transition at the decomposed gate must be acknowledged by some other gate in the speed-
independent circuit. Contrary to conditions from [5] petrify allows gate sharing and fit well in
our region-based partitioning of the states. The simple gate circuit shown in Fig. 4 is obtained
from the complex gate circuit by combinational decomposition. Note that some of the C-elements
were eliminated.

5 Conclusions

Petri nets have shown to be an appropriate formalism to describe the behavior of systems with
concurrency, causality and conflicts between events. For this type of systems, the method presented
in this paper allows to transform different models (CSP, CCS, FSMs, PNs) into a unique formalism
for which synthesis, analysis, composition and verification tools can be built.

Synthesizing Petri nets from state-based models is a task of reverse engineering that abstracts
the temporal dimension from a flat description of the sequences of events produced by the system.
The synthesis method discovers the actual temporal relations between the events. The symbiosis
among the notions of TS, region and ezcitation region in the same method has been crucial to derive
efficient algorithms both for manipulating concurrent specifications and algorithms for synthesis and
optimization of asynchronous circuits.

For the future directions we consider extending petrify for handling:

13

e unsafe, general PNs;
e synthesis of synchronous parallel controllers;

e applications to a hardware/software codesign of reactive controllers.

How to get and use Petrify

You can get the tool from the following www address: http://www.ac.upc.es/ vlsi/petrify /petrify.html.
There is a man page there describing the syntax for representing input PNs, STGs and TSs and
possible options for petrify.

References

[1] E. Badouel, L. Bernardinello, and Ph. Darondeau. Polynomial algorithms for the synthesis of bounded
nets. Technical Report 2316, INRIA, RENNES Cedex, France, 1994.

[2] P. A. Beerel and T. H-Y. Meng. Automatic gate-level synthesis of speed-independent circuits. In
Proceedings of the International Conference on Computer-Aided Destgn, November 1992.

[3] L. Bernardinello, G. De Michelis, K. Petruni, and S. Vigna. On synchronic structure of transition
systems. Technical report, Universita di Milano, Milano, 1994.

[4] Randal Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput-
ing Surveys, 24(3):293-318, September 1992.

[5] S. Burns. General conditions for the decomposition of state holding elements. In International Sympo-
stum on Advanced Research in Asynchronous Circuits and Systems, Aizu, Japan, March 1996.

[6] T.-A. Chu. On the models for designing VLSI asynchronous digital systems. Integration: the VLSI
journal, 4:99-113, 1986.

[7] T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifications. PhD thesis, MIT,
June 1987.

[8] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Complete state encoding
based on the theory of regions. In International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 36—47, March 1996.

[9] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Coupling technology
mapping, logic optimization and state encoding. Technical report, Universitat Politecnica de Catalunya,
1996.

[10] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Methodology and tools for
state encoding in asynchronous circuit synthesis. In Proceedings of the Design Automation Conference,
June 1996. to appear.

[11] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing Petri nets from state-based
models. In Proc. of ICCAD’95, pages 164-171, November 1995.

[12] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing Petri nets from state-based
models. Technical Report RR 95/09 UPC/DAC, Universitat Politecnica de Catalunya, April 1995.

[13] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using boolean functional
vectors. In L. Claesen, editor, Proc. IFIP Int. Workshop on Applied Formal Methods for Correct VLSI
Design, pages 111-128, Leuven, Belgium, November 1989.

[14] J. Desel and W. Reisig. The synthesis problem of Petri nets. Technical Report TUM-19231, Technische
Universitdt Miinchen, September 1992.

14

15]
[16]
17]
18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]
[26]

27]
28]
[29]
30]
31)
32]

[33]
[34]

[35]
[36]
[37]

D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. The
MIT Press, Cambridge, Mass., 1988. An ACM Distinguished Dissertation 1988.

D. Drusinsky. Extended state diagrams and reactive systems. Dr.Dobb’s Journal, pages 72-80,106-107,
October 1994.

A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part I, II. Acta Informatica, 27:315-368,
1990.

C. A. R. Hoare. Communicating Sequential Processes. In Communications of the ACM, pages 666-677,
August 1978.

Henrik Hulgaard and Steven M. Burns. Bounded delay timing analysis of a class of CSP programs
with choice. In Proc. International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 2-11, November 1994.

M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Concurrent Hardware: The Theory
and Practice of Self-Timed Design. John Wiley and Sons, London, 1993.

A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A. Yakovlev. Basic gate implementation
of speed-independent circuits. In Proceedings of the Design Automation Conference, pages 56—62, June
1994.

R. P. Kurshan. Analysis of discrete event coordination. In Lecture Notes in Computer Scitence. Springer-
Verlag, 1990.

L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis and testing of asynchronous cir-
cuits. Kluwer Academic Publishers, 1993.

Robin Milner. A calculus of communication systems. In Lecture Notes in Computer Science, volume 92,
Springer-Verlag, 1980.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

M. Mukund. Petri nets and step transition systems. Int. Journal of Foundations of Computer Science,
3(4):443-478, 1992.

D. E. Muller and W. C. Bartky. A theory of asynchronous circuits. In Annals of Computing Laboratory
of Harvard University, pages 204-243, 1959.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of IEEE, 77(4):541-580, April
1989.

M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition systems. Theoretical Computer
Science, 96:3-33, 1992.

S. M. Nowick and D. L. Dill. Automatic synthesis of locally-clocked asynchronous state machines. In
Proceedings of the International Conference on Computer-Aided Design, November 1991.

C. A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn, Institut fiir Instrumentelle Mathematik,
1962. (technical report Schriften des IIM Nr. 3).

M. Pezzé, R. N. Taylor, and M. Young. Graph models for reachability analysis of concurrent programs.
ACM Transactions on Software Engineering and Methodology, 4(2):171-213, 1995.

T. G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis, Stanford University, 1993.

L. Y. Rosenblum and A. V. Yakovlev. Signal graphs: from self-timed to timed ones. In International
Workshop on Timed Petri Nets, Torino, Italy, 1985.

D.C. Tsichritzis and P.A. Bernstein. Operating Systems. Academic Press, London, 1974.
S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley Interscience, 1969.

P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man. A generalized state assignment theory for trans-
formations on Signal Transition Graphs. In Proceedings of the International Conference on Computer-
Aided Design, pages 112-117, November 1992.

15

