
Petrify: a tool for manipulating concurrent speci�cations andsynthesis of asynchronous controllersJordi Cortadella, Univ. Polit�ecnica de Catalunya, Barcelona, SpainMichael Kishinevsky, Alex Kondratyev, The University of Aizu, JapanLuciano Lavagno, Politecnico di Torino, ItalyAlex Yakovlev, University of Newcastle upon Tyne, United KingdomAbstractPetrify is a tool for (1) manipulating concurrent speci�cations and (2) synthesis and opti-mization of asynchronous control circuits. Given a Petri Net (PN), a Signal Transition Graph(STG), or a Transition System (TS) 1 it (1) generates another PN or STG which is simpler thanthe original description and (2) produces an optimized net-list of an asynchronous controllerin the target gate library while preserving the speci�ed input-output behavior. An ability ofback-annotating to the speci�cation level helps the designer to control the design process.For transforming a speci�cation petrify performs a token
ow analysis of the initial PNand produces a transition system (TS). In the initial TS, all transitions with the same labelare considered as one event. The TS is then transformed and transitions relabeled to ful�ll theconditions required to obtain a safe irredundant PN.For synthesis of an asynchronous circuit petrify performs state assignment by solving theComplete State Coding problem. State assignment is coupled with logic minimization andspeed-independent technology mapping to a target library. The �nal net-list is guaranteed tobe speed-independent, i.e., hazard-free under any distribution of gate delays and multiple inputchanges satisfying the initial speci�cation. The tool has been used for synthesis of PNs andPNs composition, synthesis and re-synthesis of asynchronous controllers and can be also appliedin areas related with the analysis of concurrent programs. This paper provides an overview ofpetrify and the theory behind its main functions.1 IntroductionPetri nets [31, 28] are a widespread formalism to model concurrent systems. By labeling transitionswith symbols from a given alphabet, transitions can be interpreted as the occurrence of events orthe execution of tasks in a system. Labeled Petri Nets have been used in numerous applications:design and speci�cations of asynchronous circuits [34, 7, 23, 20], resource allocation problem inoperating systems and distributed computation [35], analysis of concurrent programs [32], perfor-mance analysis and timing veri�cation [19, 33], high-level design [16]. Petri Nets are popular dueto their inherent ability to express both concurrent and non-deterministic behavior.State-based models are common languages for formal speci�cation and veri�cation of complexsystems (FSMs [15, 22], Burst mode automata [30]). Even the formal operational semantics formost of the event-based models (CSP [18], CCS [24, 25]) is given by means of states. The drawback1Transition system is a directed graph with vertices labeled as states and arcs labeled with events. Transitionsystem can be viewed as an abstract state graph. 1

of state-based models is that they represent causality, concurrency and con
ict relations betweenevents in terms of state sequences or state con�gurations (e.g., state diamonds). This is an unde-sirable characteristic for the designer, who always wants succinct representations of a system thatexplicitly represent its properties. Therefore, it is very important to identify, starting from a
atstate-based representation, the set of causality relations, concurrent events and con
ict conditionsimplicit in the representation itself, because they carry useful information for the designer or/anddesign algorithms.Tool petrify implements a method which, given a �nite state model, called Transition System(TS) in the sequel, synthesizes a safe Petri Net with a reachability graph that is bisimilar to theoriginal TS. In particular, the reachability graph can be either isomorphic to the original TSor isomorphic to a minimized version of the original TS. The synthesized PN is always place-irredundant, i.e., it is not possible to remove any place from the net without changing its behavior.The synthesis technique is based on constructing regions. A region in a TS is a set of statescorresponding to a place in a PN. Transitions in and out of this set of states \mimic" the PN �ringbehavior (which un-marks predecessor places and marks successor places of a transition).The notion of regions was introduced in [17] (and developed in [29, 1, 3, 14, 26]) as a basicintermediate object between state-based and event-based speci�cations. This papers have beenlimited with the so-called class of elementary TSs which allow for PN representation with uniquelylabeled transitions (each event has only one occurrence in the PN). We have shown [11] how theoryof regions can be e�ciently used for synthesizing place-irredundant and place-minimal PNs forelementary and non-elementary TSs.

Asynchronous circuit

(net-list)

Safe Petri Net
Transition

System

Petri Nets

CCS

CSP

FSM

Free-choice PN

Synthesis of asynchronous circuits

Synthesis of Petri Nets

Model transformation

State Graphs

Burst-mode automata

Transition System
State encodedgate

libraries

Irredundant PN

Figure 1: Petrify's framework for manipulating speci�cations and for designing of asynchronouscircuits 2

The method for synthesis of PNs provides a technique for transforming speci�cations. Given amodel which can be mapped into a TS, we can derive a PN which is bisimilar to the initial modelof the process. In such a way we can create a tool which automatically translates CSP, CCS, FSM,Burst-mode machines and other models into labeled Petri Nets. Also, we can use this tool forthe transformation of Petri Nets aimed at optimality under some criterion (place count, transitioncount, number of places, PN graph complexity, etc.) or for deriving a net belonging to a givenclass (pure, free choice, unique choice, etc.). Such an interactive tool allows a designer to play witha PN-like speci�cation, performing equivalent transformations of PNs, and/or transformations ofother speci�cations into PNs under di�erent design constraints and optimization criteria. Fig. 1shows our framework for synthesizing PNs and transforming speci�cations.In [8, 10, 9] we show that regions are tightly connected with the set of properties that mustbe preserved across the state encoding and technology mapping process for asynchronous circuits.Hence, regions and their intersections can be e�ciently used for state signal insertion. Therefore,sets of states which correspond to places (and transitions) of PNs are useful for e�cient synthesistechniques of digital circuits. For synthesis of asynchronous circuits petrify performs state as-signment by solving the Complete State Coding problem [7, 23]. State assignment is coupled withlogic minimization and speed-independent technology mapping to a target library (Fig. 1). The�nal net-list is guaranteed to be speed-independent, i.e., hazard-free under any distribution of gatedelays and multiple input changes satisfying the initial speci�cation.This paper is further organized as follows. Section 2 describes what petrify can do in moredetails. Section 3 describes how petrify manipulates concurrent speci�cations. Section 4 shows tosynthesize asynchronous control circuits with petrify. Section 5 concludes the paper and showsdirections for the future development of the tool.2 What is Petrify2.1 Manipulating PNs and TSsPetrify has two basic functions that allow manipulating concurrent speci�cations:� Synthesis of safe Petri Nets or Signal Transition Graphs from a given Transition System.STGs are PNs with transitions interpreted as changes of the circuit signals. They are widelyused in design of asynchronous circuits. TSs are abstract state graphs with labeled arcs. StateGraphs are binary encoded TSs. An example of the transformation performed by Petrify isshown in Fig. 2.� Re-synthesis of Petri Nets and Signal Transition Graphs .Behavior-preserving transformation of PNs can be aimed at optimality under some criterion(place count, transition count, number of places, PN graph complexity, etc.) or at deriving anet belonging to a given class (safe, Free-Choice, Unique-Choice, etc.).Given a bounded PN (possibly with weighted arcs and inhibitor arcs) petrify will generate anequivalent safe place-irredundant PN. For example, given a PN in Fig. 3(b), which correspondsto a TS from Fig. 3(a) petrify will produce as an output a place-irredundant (and place-minimal) safe PN shown in Fig. 3(c).2.2 Synthesis of asynchronous circuits3

a

b
c

d

e

f

g

h

j

g

)
g

acb

d

e

f

h

jFigure 2: Synthesis of a PN
a b

c d

e f

r0

r1

r2

r3 r4 r5

r6 r7

r8

a b

c d

e f

r0

r1

r2

r3 r4

r7

r8

a

c

d c

d

b
s1

s2

s3

s4

s5

s6

s7

e f

(b)(a) (c)Figure 3: (a) Transition system. (b) Minimal saturated and (c) place-irredundant nets.A user view of the circuit synthesis is illustrated by the example shown in Fig. 4. Given an initialSTG speci�cation (the left part of the �gure), the tool realizes that the immediate construction ofa net-list is not possible. Indeed, the property of Complete State Coding is not satis�ed: di�erentstates of the system are encoded with the same binary code although they imply contradictory nextvalues for at least one of the output signals. To resolve this state con
ict petrify automaticallyinserts a new state signal (csc0). Transitions of this state signal (csc0� and csc0+) are inserted insuch way that the resulting logic is optimized according to a selected cost-function.After inserting this state signal no state con
icts exists in the system and a speed-independentcircuit can be constructed with C-elements 2 and complex gates (in the middle). However, thesecomplex gates may not be available in the gate library. Assume, for example, that the librarycontains only simple gates with 2 inputs and C-elements. In such case, petrify will automaticallyperform combinational and sequential decomposition of the logic, preserving speed-independent2C-element is an asynchronous latch with a next function c = ab+ ca+ cb, where a; b are inputs to the latch andc is its output. 4

b-

y+x-

a-

y-x+

y-

c-

x-

b+a+

c+

y+ x+

b-

y+x- y-

a-

x+

csc0-

c-

y-

x-

csc0+

a+ b+

c+

y+ x+

map1+

map3- x+ map5+

y+

c+

a+

b+

csc0+ y-

map4+ map5- map3+

map2+

map1- csc0-

x- a-

c- y+ x-

map2-

x+ y- map4-

b-

C csc0
c

a

map1

y

x

b
csc0

a

map5

map4
c

b
csc0

map2

map3

csc0

map1

map1

C

C

C

b

csc0
x

y

csc0

b
csc0

c
a

x
a
b

b
c

csc0

c

a

Complex gates

state encoding)
(incomplete

No circuit

Figure 4: State encoding and technology mappingproperties and striving to minimize the logic. The �nal logic net-list for this library and thecorresponding Signal Transition Graph will be automatically derived by the tool (Fig. 4, the rightpart).3 Theory behind PetrifyThe theory behind petrify is presented in [11, 12]. Petrify strives to minimize the number ofplaces, in order to make the �nal Petri Net more understandable by the designer. It either generates5

a complete set of minimal regions (which are analogous to prime implicants in Boolean minimiza-tion) or further removes redundant regions (which is similar to generating a prime irredundantcover in Boolean minimization).In the initial TS, all transitions with the same label are considered as one event. Petrify solvesthe problem of merging and splitting \equivalent" labels, i.e., those labels which model the sameevent, but must be split in order to yield a valid Petri Net. Therefore, the synthesis method is notlimited to elementary TSs, which are quite restricted; we can handle the full class of TSs by meansof label splitting. In the following sections we will brie
y and informally review the theory behindpetrify.3.1 Basic models: Petri Nets and Transition SystemsInformally, a TS ([29]) can be represented as an arc-labeled directed graph. A simple example ofa TS is shown in Fig.2 (the left part). A TS is called deterministic if for each state s and eachlabel a there can be at most one state s0 such that s a! s0. A TS is called commutative if whenevertwo actions can be executed from some state in any order, then their execution always leads to thesame state, regardless of the order. For the purpose of synthesis of asynchronous circuits we aremainly interested only in deterministic and commutative TSs.A Petri Net is a quadruple N = (P; T; F;m0), where P is a �nite set of places, T is a �niteset of transitions, F � (P � T) [(T � P) is the
ow relation, and m0 is the initial marking. Atransition t 2 T is enabled at marking m1 if all its input places are marked. An enabled transitiont may �re, producing a new marking m2 with one less token in each input place and one moretoken in each output place (denoted m1 t! m2). The right half of Fig.2 presents a PN expressingthe same behavior as the TS shown in the left half of the same �gure. Tokens represent the initialmarking which corresponds to the top left state of the TS.The set of all markings reachable in N from the initial marking m0 is called its Reachability Set.The graph with vertices corresponding to the markings of a PN and with arcs connecting markingsreachable in one transition is called the Reachability Graph (RG) of the PN.A Signal Transition Graph (STG, [6, 34]) is a Petri net with transitions labeled with up anddown transitions of signals (denoted by x+ and x� for signal x).A PN is called� safe if no more than one token can appear in a place in any reachable marking,� free-choice if for each place p with more than one output transition each of this transitionshas exactly one input place { place p, i.e., the enabling condition of con
icting transitionsdepends only on the marking of a single place.� place-irredundant if removing any place from the PN will change the set of possible sequencesof �ring transitions (i.e., behavior of the net will be disturbed).A PN in Fig.2 is safe, free-choice and place-irredundant.3.2 Regions and Excitation RegionsLet S1 be a subset of the states of a TS, S1 � S. If s 62 S1 and s0 2 S1, then we say thattransition s a! s0 enters S1. If s 2 S1 and s0 62 S1, then transition s a! s0 exits S1. Otherwise,transition s a! s0 does not cross S1. A region is a subset of states with which all transitions labeled6

with the same event e have exactly the same \entry/exit" relation. This relation will become thepredecessor/successor relation in the Petri net.Let us consider the TS shown in Fig.3(a). The set of states r2 = fs2; s3; s5g is a region, since alltransitions labeled with a and with b enter r2, and all transitions labeled with d exit r2. Transitionslabeled with c do not cross r2. On the other hand, fs2; s3g is not a region since transition s3 d! s4enters this set, while another transition also labeled with d, s5 d! s6, does not.A region r is a pre-region of event e if there is a transition labeled with e which exits r. Aregion r is a post-region of event e if there is a transition labeled with e which enters r. The set ofall pre-regions and post-regions of e is denoted with �e and e� respectively.While regions in a TS are related to places in the corresponding PN, an excitation region forevent a is a maximal set of states in which transition a is enabled. Therefore, excitation regionsare related to transitions of the PN. More formally, a set of states is called a generalized excitationregion (denoted by GER(a)) for event a if it is a maximal set of states (a set of states with agiven property is maximal if it is not a subset of any other set with this property) such that forevery state s 2 GER(a) there is a transition s a! . Sometimes it is more convenient to considerconnected subsets of GERs. A set of states is called an excitation region (denoted by ERj(a)) ifit is a maximal connected set of states such that for every state s 2 ERj(a) there is a transitions a!. Since any event a can have several separated ERs, an index j is used to distinguish betweendi�erent connected occurrences of a in the TS. In the TS from Fig.3(a) there are two excitationregions for event d: ER1(d) = fs3g and ER2(d) = fs5g, while GER(d) = fs3; s5g.3.3 Deriving PNs based on the excitation closureGiven a set of all minimal regions (a region is called minimal if it is not a superset of any otherregion) let us build a PN following four rules:� For each event e of the TS a transition labeled with e is generated in the PN;� For each minimal region r a place r is generated;� Place r contains a token in the initial marking i� the corresponding region r contains theinitial state of the TS;� The
ow relation of the PN is as follows: transition labeled with e is an output transition forplace r i� r is a pre-region of event e in the TS and e is an input transition of r i� region ris a post-region of e.As shown in [11], if the following two conditions hold then a PN derived by the four rules aboveis bisimilar to the original TS. Bisimilar [25] means that behavior of the TS and the PN cannot bedistinguished by the external observer who can only see the events of these two models.� Excitation closure: For each event e the intersection of pre-regions is equal to its generalizedexcitation region.� Event e�ectiveness: For each event e there is at least one pre-region.Moreover, one may remove regions still preserving behavior of the PN until excitation closure isviolated. By removing regions from the set of all minimal regions while still keeping the excitationclosure condition petrify generates a place-irredundant PN. By further merging of the minimalregions a place-minimal net can be generated. 7

s1

s2

s3

s4

s5

s6

a

b

b

b

b

d

d

d

c c

s1

s2

s3

s4

s5

s6

a

b

b

b

b

d

d

d

c c

s7

d

s1

s2

s3

s4

s5

s6

a

d

d

d

c c

s7

d

a

b

c

d

r1

r2

r3

r4

r5

b

b2

b2

b1

b1

(1)

(2)

{s2,s3,s5,s6}
 is region

{s1,s2,s4,s5,s7}
 b: enter, in

{s1,s2,s3,s4,s5,s6,s7}
 is region

 b exit
add s3,s6

b no cross
add s1,s7

d no cross
 add s4

b no cross
add s3,s6

 {s1,s2,s5,s7}
b: enter, in, out
d: enter, in, out

GER(c)={s2,s5}
 b: exit, out

(a) (b)

(c)

(d)

(e)Figure 5: (a) TS, (b) expansion tree for pre-regions of event c, (c) excitation closed TS, (d) PN, (e)reachability graph of the PN3.4 Generating minimal regions and label splittingThe set of minimal pre-regions of an event e is calculated by gradually expanding its generalizedexcitation region to obtain sets of states that do not violate the \entry-exit" relationship. Whenthe excitation closure is not ful�lled, i.e. \r2 �a r 6= GER(e)some events must be split to satisfy this condition.The strategy to split events is explained by the example shown in Fig.5 for the pre-regions ofevent c. Initially, GER(c) = fs2; s5g is taken for expansion. Event b violates the region conditions,since two transitions labeled with b exit fs2; s5g and two other transitions labeled with b are outsidefs2; s5g. Next, two possible legalizations for event b are considered:� Two input states for transitions of b, which are not yet included into the constructed set ofstates, s3 and s6, are added into the set. Now event b exits set fs2; s3; s5; s6g. Since no otherviolations of region conditions are found this set is a region.� Two output states for transitions of b, fs1; s7g, which are not yet included into the set areadded to the set in the attempt to make b non-crossing. This attempt fails since more8

violations of the region conditions are found and further expansions are applied until allbranches of the search tree �nd a region.The example illustrates how all branches will eventually be pruned, in the worst case, when coveringthe whole set of states.Let us call r0 the intersection of the regions found in the expansion. We haver0 = fs1; s2; s3; s4; s5; s6; s7g \ fs2; s3; s5; s6g = fs2; s3; s5; s6gThe strategy for label splitting will take all those explored sets r such thatfs2; s5g � r � r0All three states explored before �nding regions are good candidates. However, the set fs2; s5g isthe best one by the fact that only one event violates the crossing conditions and it makes theintersection of pre-regions smaller (closer to GER). Thus, event b is split into two new events (b1and b2) for fs2; s5g to become a region. The new TS is equivalent to the original (up to renamingof the split events). The corresponding PN is shown in Fig.5(d) and its RG in Fig.5(e). Note that itcontains one state less than the original TS, due to the implicit minimization for equivalent statess4 and s7 (states s4 and s7 are equivalent since there is only one output transition for each of them,labeled with b, and each of these transitions enter state s1).3.5 Internal representation of the objects
p1

p2

p3 p4

p5

t

Figure 6: Symbolic representationof Petri net objects in petrify
� marking: p1�p2�p3p4�p5� region, set of states: p1, p2p5�
ow relation (for t):(p2p5�p3�p4) � (�q2�q5q3q4) � (p1 , q1)The proposed method requires a broad exploration of sets of states of a TS. Moreover, operationssuch as intersection, inclusion and equality among the explored sets must be executed often. Ane�cient representation of the TS and its states is thus crucial to cope with the complexity of suchoperations.Given an appropriate encoding of the states of the TS, we have chosen to use Ordered BinaryDecision Diagrams [4] to represent sets of states (by means of characteristic functions) and theTS (by means of the disjunction of transition relations, one for each label). The algorithms tomanipulate the sets of states of the TS are based on symbolic techniques for veri�cation of sequentialmachines [13].For deriving a TS from the initial PN petrify performs a token
ow analysis of the initial STGand produces a transition system in symbolic form, using Binary Decision Diagrams. The latterrepresent boolean characteristic functions of markings, states, sets of states and the
ow relationas shown in Fig.6. 9

4 Theory behind asynchronous circuit synthesis4.1 Asynchronous circuits and speed-independenceAn asynchronous circuit is an arbitrary interconnection of logic gates such that no two gate out-puts are connected together ([36, 27]). Each logic gate is characterized by a Boolean equationdescribing the gate output as a function of the gate inputs and (if the gate is sequential , ratherthan combinational) of the gate output.The behavior of a circuit can be completely characterized by using a TS with one state for eachBoolean vector representing the values of the gate outputs and of the primary inputs of the circuit(collectively called signals). An example of an asynchronous circuit is given in Fig. 4.Roughly speaking, a circuit is de�ned to be speed-independent if its behavior remains correctunder any changes of gate delays. No hazards are possible in speed-independent circuits under anyinput changes (possibly multiple input changes in non-fundamental mode) [23, 20].4.2 Property-preserving event insertionEvent insertion is informally seen as an operation on a TS which selects a subset of states, splitseach state in it into two states and creates, on the basis of these new states, an excitation andswitching region for a new event. Fig. 7 shows the chosen insertion scheme, analogous to that usedby most authors in the area, in the three main cases of insertion with respect to the position of thestates in the insertion set, denoted ER(x) (entrance to, exit from or inside ER(x)).
S−ER(x)

ER(x)

a b c

S−ER(x)

ER(x)

b c

a
b

x x x x

SR(x)

Figure 7: Event insertion schemeState signal insertion must also preserve the speed-independence of the original speci�cation,that is required for the existence of a hazard-free asynchronous circuit implementation.Let a TS has a set of events E and a set of transitions T . An event a of the TS is said to bepersistent in a subset S0 of states of S i� 8s1 2 S0; b 2 E : [s1 a! ^(s1 b! s2) 2 T]) s2 a!. An eventis said to be persistent if it is persistent in S. For a binary encoded TS, determinism, commutativityand output event persistency guarantee speed-independence of its circuit implementation. Insertionsets should be chosen in such a way that persistency and commutativity of the original events arenot violated.The following property of insertion sets, based on theory developed in [8], provides a rationalefor our approach.Property 4.1 Regions, excitation regions and intersections of pre-regions can be used as insertionsets in a commutative and deterministic TS.This property suggests that the good candidates for insertion sets should be sought on the basisof regions and their intersections. Since any disjoint union of regions is also a region, this givesan important corollary that nice sets of states can be built very e�ciently, from \bricks" (regions)rather than \sand" (states). 10

4.3 Selecting excitation regions for new signalsAssume that the set of states S in a TS is partitioned into two subsets which are to be encodedby means of an additional signal. This new signal can be added either in order to satisfy theCSC condition, or to break up a complex gate into a set of smaller gates. In the latter case, anew signal is added to represent the output of the intermediate gates added to the circuit and thespeed-independent implementability of the decomposed speci�cation is checked again ([5]).Let r and r = S � r denote the blocks of such a partition. In order to implement such anencoding, we need to insert appropriate transitions of the new signals in the border states betweenthe two subsets.Petrify considers the so-called exit border (EB) of a partition block r, denoted by EB(r),which is informally a subset of states of r with transitions exiting r. We call EB(r) well-formed ifthere are no transitions leading from states in EB(r) to states in r�EB(r). Symmetrically, inputborders can be handled. Fig. 8 illustrates the notions of exit and input borders.
a a

r

b

c d

Input border

Exit borderFigure 8: Exit and input bordersNote that we need each new signal x to orderly cycle through states in which it has value 0,0�, 1 and 1�. We can formalize this requirement with the notion of I-partition ([37] used a similarde�nition).An I-partition divides a set of all states of a TS into four blocks: S0, S1, S+ and S�. S0(S1)de�nes the states in which x will have the value 0 (1). S+(S�) de�nes GER(x+) (GER(x�)). For aconsistent encoding of x, the only allowed events crossing boundaries of the blocks are the following:S0 ! S+ ! S1 ! S� ! S0, S+ ! S� and S� ! S+ (the latter two would cause a persistencyviolation, though). The problem of �nding an I-partition is reduced to �nding a bipartition S andis done in four steps:1. Find a bipartition of states fb; bg2. Calculate EB(b) and EB(b) (similarly for input borders)3. Extend EBs to well-formed EBs by backward closure4. Check that persistency condition is not violatedThree �rst steps are shown in Fig. 9.4.4 Gate-level speed-independence conditionsNecessary and su�cient conditions for speed-independent implementation using unbounded faninand gates (with unlimited input inversions), bounded fanin or gates and C elements were givenin [21] (extending a previous result of [2]). Petrify uses a basic implementation architecture, called11

b

b

b

b

b

bFigure 9: From bipartition to I-partitionthe standard-C architecture (Fig. 10). Contrary to the previous tools instead of unbounded faningates for the �rst level, petrify can search for implementable gates, that is gates which exist inthe chosen library.
Nf

fS

C

R(T +)f
1

R(T +)f
2

fRR(T −)f

(b)

(a)

Nf

1

2

f

f

fR(T +)

R(T +)

S

Nf
fR(T −)

f
R

(c)Figure 10: The standard-C architecture extended for complex gatesThe basic idea of the standard-C implementation architecture is that every �rst-level gateimplements an up or down transition of the user-speci�ed signal behavior. In order to ensurespeed-independent operation, a number of constraints that are collectively called the monotonouspoly-term cover conditions ([21]) must be satis�ed.In the following we will consider partitions of the set of excitation regions of a given signal ainto joint excitation regions ERj(a�). The word "joint" here indicates that a few excitation regionscan be joined together and implemented with one logic gate in the circuit.The joint quiescent region QRj(a�) of a given signal transition with joint excitation regionERj(a�) is a maximal set of states s such that:� a is stable in s, and� s is reachable from ERj(a�) only through states in which a is stable, and� s is not reachable from any other ERk(a�) such that k 6= j without going through ERj(a�).Similarly, the backward region BRj(a�) is a maximal set of states s such that:� a is stable in s, and� ERj(a�) is reachable from s only through states in which a is stable, and� no other ERk(a�) such that k 6= j is reachable from s without going through ERj(a�).12

Let Cj(a�) denote one of the �rst-level gates in the standard-C architecture. Cj(a�) is a correctmonotonous poly-term cover for the joint excitation region ERj(a�) if:1. Cj(a�) covers (i.e., its Boolean equation evaluates to 1) all states of ERj(a�).2. Cj(a�) covers only states of ERj(a�) [QRj(a�) [BRj(a�).3. If Cj(a�) covers some state s of BRj(a�), then s is also covered by some other Ck(a�) suchthat a�j and a�k are complementary (up and down or down and up, respectively) and s 2BRj(a�) \QRk(a�).4. Cj(a�) has exactly one up and one down transition in any sequence of states within ERj(a�)[QRj(a�) [BRj(a�).Under these conditions, it is possible to show that the outputs of the �rst-level gates are one-hotencoded , and that means that any valid Boolean decomposition of the second-level or gates will bespeed-independent.The chosen architecture is general enough to cover the case in which a signal in the speci�cationadmits a combinational implementation, because in that case the set and reset network are thecomplement of each other, and the C element with identical inputs can be simpli�ed to a wire.4.5 Strategy for technology mappingThe strategy for technology mapping which is implemented in the procedure for selecting the bestI-partitions and in the cost function is based on two iterative steps:� Combinational decomposition and extraction of set and reset functions� If no valid combinational decomposition can be found, then additional state signals are in-serted preserving speed-independence to increase the don't care set and to simplify the logic.Special conditions for correct speed-independent decomposition must be preserved, since eachsignal transition at the decomposed gate must be acknowledged by some other gate in the speed-independent circuit. Contrary to conditions from [5] petrify allows gate sharing and �t well inour region-based partitioning of the states. The simple gate circuit shown in Fig. 4 is obtainedfrom the complex gate circuit by combinational decomposition. Note that some of the C-elementswere eliminated.5 ConclusionsPetri nets have shown to be an appropriate formalism to describe the behavior of systems withconcurrency, causality and con
icts between events. For this type of systems, the method presentedin this paper allows to transform di�erent models (CSP, CCS, FSMs, PNs) into a unique formalismfor which synthesis, analysis, composition and veri�cation tools can be built.Synthesizing Petri nets from state-based models is a task of reverse engineering that abstractsthe temporal dimension from a
at description of the sequences of events produced by the system.The synthesis method discovers the actual temporal relations between the events. The symbiosisamong the notions of TS, region and excitation region in the same method has been crucial to derivee�cient algorithms both for manipulating concurrent speci�cations and algorithms for synthesis andoptimization of asynchronous circuits.For the future directions we consider extending petrify for handling:13

� unsafe, general PNs;� synthesis of synchronous parallel controllers;� applications to a hardware/software codesign of reactive controllers.How to get and use PetrifyYou can get the tool from the following www address: http://www.ac.upc.es/~vlsi/petrify/petrify.html.There is a man page there describing the syntax for representing input PNs, STGs and TSs andpossible options for petrify.References[1] E. Badouel, L. Bernardinello, and Ph. Darondeau. Polynomial algorithms for the synthesis of boundednets. Technical Report 2316, INRIA, RENNES Cedex, France, 1994.[2] P. A. Beerel and T. H-Y. Meng. Automatic gate-level synthesis of speed-independent circuits. InProceedings of the International Conference on Computer-Aided Design, November 1992.[3] L. Bernardinello, G. De Michelis, K. Petruni, and S. Vigna. On synchronic structure of transitionsystems. Technical report, Universita di Milano, Milano, 1994.[4] Randal Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput-ing Surveys, 24(3):293{318, September 1992.[5] S. Burns. General conditions for the decomposition of state holding elements. In International Sympo-sium on Advanced Research in Asynchronous Circuits and Systems, Aizu, Japan, March 1996.[6] T.-A. Chu. On the models for designing VLSI asynchronous digital systems. Integration: the VLSIjournal, 4:99{113, 1986.[7] T.-A. Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Speci�cations. PhD thesis, MIT,June 1987.[8] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Complete state encodingbased on the theory of regions. In International Symposium on Advanced Research in AsynchronousCircuits and Systems, pages 36{47, March 1996.[9] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Coupling technologymapping, logic optimization and state encoding. Technical report, Universitat Politecnica de Catalunya,1996.[10] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Methodology and tools forstate encoding in asynchronous circuit synthesis. In Proceedings of the Design Automation Conference,June 1996. to appear.[11] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing Petri nets from state-basedmodels. In Proc. of ICCAD'95, pages 164{171, November 1995.[12] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing Petri nets from state-basedmodels. Technical Report RR 95/09 UPC/DAC, Universitat Politecnica de Catalunya, April 1995.[13] O. Coudert, C. Berthet, and J. C. Madre. Veri�cation of sequential machines using boolean functionalvectors. In L. Claesen, editor, Proc. IFIP Int. Workshop on Applied Formal Methods for Correct VLSIDesign, pages 111{128, Leuven, Belgium, November 1989.[14] J. Desel and W. Reisig. The synthesis problem of Petri nets. Technical Report TUM-I9231, TechnischeUniversit�at M�unchen, September 1992. 14

[15] D.L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-Independent Circuits. TheMIT Press, Cambridge, Mass., 1988. An ACM Distinguished Dissertation 1988.[16] D. Drusinsky. Extended state diagrams and reactive systems. Dr.Dobb's Journal, pages 72{80,106{107,October 1994.[17] A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures. Part I, II. Acta Informatica, 27:315{368,1990.[18] C. A. R. Hoare. Communicating Sequential Processes. In Communications of the ACM, pages 666{677,August 1978.[19] Henrik Hulgaard and Steven M. Burns. Bounded delay timing analysis of a class of CSP programswith choice. In Proc. International Symposium on Advanced Research in Asynchronous Circuits andSystems, pages 2{11, November 1994.[20] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky. Concurrent Hardware: The Theoryand Practice of Self-Timed Design. John Wiley and Sons, London, 1993.[21] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A. Yakovlev. Basic gate implementationof speed-independent circuits. In Proceedings of the Design Automation Conference, pages 56{62, June1994.[22] R. P. Kurshan. Analysis of discrete event coordination. In Lecture Notes in Computer Science. Springer-Verlag, 1990.[23] L. Lavagno and A. Sangiovanni-Vincentelli. Algorithms for synthesis and testing of asynchronous cir-cuits. Kluwer Academic Publishers, 1993.[24] Robin Milner. A calculus of communication systems. In Lecture Notes in Computer Science, volume 92.Springer-Verlag, 1980.[25] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.[26] M. Mukund. Petri nets and step transition systems. Int. Journal of Foundations of Computer Science,3(4):443{478, 1992.[27] D. E. Muller and W. C. Bartky. A theory of asynchronous circuits. In Annals of Computing Laboratoryof Harvard University, pages 204{243, 1959.[28] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of IEEE, 77(4):541{580, April1989.[29] M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition systems. Theoretical ComputerScience, 96:3{33, 1992.[30] S. M. Nowick and D. L. Dill. Automatic synthesis of locally-clocked asynchronous state machines. InProceedings of the International Conference on Computer-Aided Design, November 1991.[31] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn, Institut f�ur Instrumentelle Mathematik,1962. (technical report Schriften des IIM Nr. 3).[32] M. Pezz�e, R. N. Taylor, and M. Young. Graph models for reachability analysis of concurrent programs.ACM Transactions on Software Engineering and Methodology, 4(2):171{213, 1995.[33] T. G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis, Stanford University, 1993.[34] L. Y. Rosenblum and A. V. Yakovlev. Signal graphs: from self-timed to timed ones. In InternationalWorkshop on Timed Petri Nets, Torino, Italy, 1985.[35] D.C. Tsichritzis and P.A. Bernstein. Operating Systems. Academic Press, London, 1974.[36] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley Interscience, 1969.[37] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man. A generalized state assignment theory for trans-formations on Signal Transition Graphs. In Proceedings of the International Conference on Computer-Aided Design, pages 112{117, November 1992. 15

