
A Bundled-Data Asynchronous Circuit Synthesis
Flow Using a Commercial EDA Framework

Matheus Gibiluka, Matheus Trevisan Moreira, Ney Laert Vilar Calazans
GAPH – Faculty of Computer Science – PUCRS – Porto Alegre – RS – Brazil
{matheus.gibiluka, matheus.moreira}@acad.pucrs.br, ney.calazans@pucrs.br

Abstract—Contemporary silicon technology enables integrat-
ing billions of transistors and allows the creation of complex
systems-on-chip. At the same time, strict power dissipation bud-
gets and growing interest in high performance battery-powered
devices drive the need for energy-efficient high performance
circuits. Bundled-data asynchronous circuits are good candidates
for high performance low power systems, as they operate with
average-case delays and present reduced switching activity when
compared to other asynchronous templates. The correct operation
of bundled-data circuits relies on constraints that describe the
timing relationships between data and control signals. However,
commercial EDA frameworks do not offer an encompassing
support to ensure the closure of such constraints, making im-
plementation challenging. This paper proposes a synthesis flow
to enable the description and enforcement of relative timing
constraints at both logic and physical synthesis levels, using the
Synopsys framework and a set of in-house scripts. Two case
studies illustrate the flow: a pipelined multiplier and a network
on chip input buffer FIFO, the latter comprising a non-linear
pipeline and complex control circuits. Both case studies target
the STMicroelectronics 28nm FDSOI technology, and validation
occurs with post-layout simulations. Overall, the flow provides
an automatic approach to meet relative timing constraints in a
template-agnostic manner for bundled-data circuits design.

I. INTRODUCTION

While the increasing level of integration enabled by con-
temporary VLSI technology allows the creation of com-
plex multiprocessor systems-on-chip (MPSoCs), designers face
strict power dissipation budgets. Additionally, the growing de-
mand for high-performance battery-powered devices increases
the requirements for power-efficient circuit implementations.
Traditionally, circuits are implemented in a fully synchronous
manner, that is, all registers are controlled by a single clock
signal that must be properly routed throughout the chip.
In modern technology nodes, however, it has become very
difficult to design a correct and efficient chip-wide clock
distribution tree. In fact, the circuitry required to distribute the
clock signal in a high-speed processor accounts, in average,
for 45% of total power [1]. Asynchronous circuits are a
potential solution for coping with the issues raised by a global
control signal, as they do not require a clock, employing local
handshaking to perform communication instead.

Different templates are available to design asynchronous
circuits, each defined by choices over two essential parameters:
(i) a data encoding scheme; and (ii) a handshake protocol.
For (i), templates rely on either single-rail encoding, which
requires explicit control signals to ascertain data validity, or
on multi-rail delay-insensitive (DI) codes, where validity is
encoded within data signals [2]. The former encoding requires
the use of delay elements (DEs), also called delay lines, to
match the timing of data paths and their associated control
signals. The latter, on the other hand, allow relaxed timing
assumptions, but generally imply added costs in area and
power. This difference ends up splitting asynchronous design
templates in two major families: bundled-data (BD), and
quasi-delay-insensitive (QDI) [3], [4]. Parameter (ii) choices

define asynchronous templates relying on either a 2-phase or
a 4-phase handshake protocol [4]. Generally speaking, QDI
provides more relaxed timing assumptions, but its cost in
terms of area and power can be prohibitively high for many
applications. BD promises to reduce power and increase per-
formance at area/power costs similar to those of synchronous
circuits [5], [6]. BD templates are thus increasingly popular
[6]–[8], and different schemes exist for their implementation,
e.g. desynchronization [9], Mousetrap [10] and Blade [8].

Unfortunately, BD design is challenging and has scarce
support from commercial EDA frameworks. That is due to
the fact that these frameworks primarily target synchronous
design, with fundamentally different timing assumptions, and
rely on the discrete notion of time provided by a global
clock signal [4]. Asynchronous design uses local handshake
operations, where specific control signals define the validity of
each data item. There are three basic challenges for automating
the synthesis of BD circuits:

• Challenge 1: Design DEs to add to control signals,
without compromising performance figures;

• Challenge 2: Identify all relevant timing constraints
among data and control signals;

• Challenge 3: Ensure the meeting of all constraints
during circuit synthesis.

The automatic insertion of buffers in synthesis tools can
overcome Challenge 1 and different works have exploited it in
the past [6], [9], [11], [12]. Also, techniques similar to those
explored for clock distribution in synchronous designs, like
the works presented in [13], [14], are useful to cope with
Challenge 1. Challenges 2 and 3 are more complex and
the degree of automation to cope with these in conventional
EDA frameworks is quite limited. This paper addresses Chal-
lenge 3, by proposing ACDC, a synthesis flow that enables
a commercial EDA framework to fulfill a set of relative
timing constraints (RTCs) [15] during both logic and physical
synthesis. An illustration of the method takes place through
two case studies: a pipelined multiplier with linear structure,
and a network on chip input buffer (a circular FIFO with non-
linear pipeline structure and complex control constraints). Both
designs were successfully synthesized in ST-Microelectronics
28nm FDSOI technology.

The remaining of this paper comprises four sections. Sec-
tion II discusses related work. Section III presents ACDC,
explores how to define and ensure timing constraints using
the Synopsys EDA framework, and discusses the developed
in-house scripts. Section IV presents the two case studies
and discusses the obtained results. Finally, Section V presents
conclusions and directions for future work.

II. RELATED WORK

Recent years saw the proposition of methods for synthe-
sizing asynchronous circuits using commercial EDA tools.
However, most of these target a specific design or design

2015 Euromicro Conference on Digital System Design

978-1-4673-8035-5/15 $31.00 © 2015 IEEE

DOI 10.1109/DSD.2015.104

79

style. This section reviews previous work on synthesis of
BD circuits. Iizuka et al. [12] propose a toolset for synthe-
sizing BD circuits with a resource-sharing model and a Q-
module based control. The flow starts with a synchronous
circuit, controlled by a Finite State Machine (FSM), and
a set of latency constraints. After synchronous synthesis, a
non-automated desynchronization step generates a Q-module
asynchronous netlist. The designer needs to specify all the
paths that must have the timing verified, and the cells that can
be used as delay elements, along with their respective delays.
Static Timing Analysis (STA) extracts timing information,
and DEs are inserted directly on the netlist. After physical
synthesis, the flow performs a final timing verification and,
if it finds violations, DEs are adjusted using an Engineering
Change Order (ECO) flow. Unfortunately, this design flow
supports only one design style for BD design (based on Q-
modules), and there is no automation for delay matching,
because the synthesis tool is not aware of RTCs.

Using a regular Place & Route (P&R) flow, Sotiriou
[16] proposes to implement an one-hot-encoded asynchronous
FSM. The flow takes a gate-level description of the circuit as
input and uses a logic synthesis tool to map it to the target tech-
nology. A General Constraints Format (GCF) describes timing
constraints, but the format limits constraints applicability only
to external top-level pins of the design. Therefore, the method
creates block boundaries on each handshake interface, and each
block undergoes P&R separately. Dummy pins can be added
to help the constraining process. This design flow focuses only
on control circuits, and constraint fulfillment is limited to top-
level constraints. Thus, even simple designs must be separately
synthesized and assembled in a final circuit.

Cortadella et al. propose the desynchronization flow [9]
that obtains a BD asynchronous circuit from a synthesizable
synchronous HDL specification. STA is used to determine the
DE’s delay, which is embedded in the controllers. Pessimistic
logic-path delays are considered when creating DEs during the
P&R flow. After post layout timing verification, DEs adjust-
ment takes place, removing cells from the delay chain to match
the post physical synthesis logic-path delay. Unfortunately, the
work is limited to desynchronize an otherwise synchronous
design, not giving support for setting and fulfilling RTCs. As
the DEs are part of the controllers, they can only be matched
to the logic path relative to that controller.

Ghiribaldi et al. [6], describe the design and synthesis of an
asynchronous BD network on chip router, starting from a low-
level asynchronous RTL description. Circuit optimization and
delay matching take place during logic synthesis. If after phys-
ical synthesis constraints are not met, DE values are updated
and P&R is re-executed. Although it mentions constraints and
their fulfillment, this work provides little information on how
to execute the synthesis process or how to model constraints.

This article proposes a method for modeling and fulfilling
RTCs in BD designs using a commercial EDA framework,
without any other assumption regarding design style or tem-
plate employed. Creation of DEs takes place automatically,
with no need for manual selection or cell characterization. It
supports two synthesis modes: (i) top-down; and (ii) bottom-
up. In (i), all the environment and RTCs are defined with
respect to the top-level design, which requires less synthesis
iterations, as the next Section explains. However, this mode
can lead to non-optimal designs when RTC inter-block de-
pendencies exist. In these cases, mode (ii) suits better, as it
synthesizes each block of the design separately and has its

���������	

���
�����
�����������
	�

�
��������	�����
������

����	
������������

��������������������

������ ����������
������

����������	

�����������	

���
�����
�����������
	�

��������

�������
�

�����
	

����������������
������

����������	

�����������
�����������
������

����	
���������
��	�����
������

�
�����
��	�����
������

�����������
�
�
����������
��

�
������

Fig. 1. The ACDC synthesis flow, partitioned in Logic and Physical synthesis.
Boxes with thicker borders show ACDC steps, while thinner-border boxes
designate regular synthesis steps, performed with commercial EDA tools.

RTCs independently fulfilled. In this way, the latter mode
enables a hierarchical and modular approach that eases the
process of resolving interlocked RTCs in the hierarchy.

III. ACDC

The correct operation of self-timed circuits such as BD
relies on strict timing relationships between control and data
signals. These relationships are of key importance when de-
signing asynchronous BD systems, and can be modeled as
RTCs [15]. Commercial EDA tools, however, do not offer sup-
port to such types of timing relationships. The ACDC synthesis
flow enables the fulfillment of such constraints during circuit
synthesis using the Synopsys EDA framework. The flow is
based on a set of custom tools that enable the use of STA to
translate RTCs into minimum delay constraints (min delay),
which are supported by Synopsys Design Compiler and IC
Compiler tools.

As Figure 1 shows, ACDC is similar to a regular VLSI
synthesis flow, with intermediate steps for optimizations and
DE insertion. Thicker border boxes designate steps exclusive
to ACDC. The flow comprises three main tasks: Initial Logic
Synthesis, Optimization and DE Insertion, and Physical Syn-
thesis. Initially, the circuit description is read and elaborated
(Read Design), and logic synthesis settings are defined (LS
ACDC Initial Settings). The initial configuration allows the
designer to set which libraries and cells the flow is allowed
to use during synthesis. Next, the design is mapped to cells
from a technology library (Initial Synthesis) and resynthesis is
performed to optimize the design based on the constraints set
by the designer (Design Optimization). Settings related to DEs
insertion (Prepare for RTC Loop) take place before the RTCs
are loaded and fulfilled (LS RTC Fulfillment Loop). Finally,
the design is stored at the end of the logic synthesis flow
(Store Design) These steps are performed within the Synopsys
Design Compiler (DC) tool. After logic synthesis, the design
is loaded into IC Compiler (Import Design) and the physical
synthesis library settings are carried out (PS ACDC Initial
Settings). Next, traditional physical synthesis steps take place

80

����� �����

�	
��� �	
���
��

��
��

���

�����

(�(�

Fig. 2. BD asynchronous pipeline fragment, with DEs on Req and Ack paths.

(Floorplan, Placement, and Routing), followed by an ACDC
specific step to verify the RTCs and adjust DEs, if needed (PS
RTC Fulfillment Loop). Finally, the design is stored (Store
Design). The next Sections detail each step of the flow.

In general, synthesis tools enforce maximum delay con-
straints, defined by the target operating frequency, and perform
setup and hold verification on storage elements. Maximum
delay constraints are usually applied on the logic path between
registers to ensure the circuit can operate under a given
clock period. In addition, some tools also support minimum
delay constraints. Commercial tools support both types of
constraints, but only allow assigning constant values to these.
RTCs, on the other hand, relate delays across two paths, which
are not constant values and depend on gate mapping, fan-in and
fan-out, physical placement and routing, among other factors.
Since RTCs are not required for synchronous circuits and due
to their higher degree of complexity, commercial synthesis
tools do not offer support to such constraints.

A. Relative timing constraints (RTCs)

Bundled-data circuits rely on carefully tuned DEs to ensure
that handshake events take place only when data is valid – that
is, the request signal must arrive only after the data signal is
stable. RTCs define signal arrival order, and can be used to
fulfill such requirements. In the context of BD circuits, these
constraints relate data path and control path: the minimum
control path delay must be greater than the maximum data
path delay; if it is not, a DE must be inserted in the control
path to satisfy that requirement. In addition to DEs on the
request path, it may be necessary to add DEs on acknowledge
paths as well, to guarantee hold constraints of registers are
met.

Figure 2 shows a fragment of a linear BD pipeline, where
data coming from Reg1 goes through some combinational logic
before arriving at Reg2. Request (Req) and acknowledgment
(Ack) paths contain each a DE (D1 and D2). In this example,
the request signal must only arrive at Ctrl2 after data at the
input of Reg2 is valid and stable. Equation 1 models this
relationship: the minimum delay of D1 must be equal to or
greater than the maximum delay of the data signal propagating
from Reg1 to Reg2 (logic path) added to the setup time of
Reg2. Likewise, the minimum delay of D2 must be defined to
respect the hold constraint of Reg2, as defined by Equation 2.
Accordingly, this delay must be greater than or equal to the
minimum delay of the data signal propagating from Reg1 to
Reg2 subtracted from the sum of the hold constraint of Reg2
and the maximum delay from the Ctrl2 to Reg2. For simplicity
sake, this model accounts for wire delays of control paths as
part of the DEs’ delay.x

��

�����

���	��

�����������	��

�
��
��

� �
� ���
��

� � !!

Fig. 3. Example of a bundled-data control circuit where there is a shared
path between the data signal (phase select i) and the control signal (req i).
ACDC DE req i 1 and ACDC DE req i show, respectively, the start and end
points of the DE.

min delay(D1) ≥max delay(Reg1, Reg2)+ (1)

setup(Reg2)

min delay(D2) ≥ max delay(Ctrl2.req,Reg2.en)+ (2)

hold(Reg2)−min delay(Reg1, Reg2)

The complexity RTCs present to circuit design greatly
depends on the circuit topology. Linear pipelines such as
the one in Figure 2 have a very regular structure and no
overlap between control and data signals. This makes their
constraints easy to extract. In fact, when assuming a pipeline
designed with a template such as Mousetrap [10], there are two
constraints present on each pipeline stage: one forward (going
from stage i to stage i+1), similar to the one characterized
by Equation 1, and one backward (from stage i to stage i-
1), described by Equation 2. On non-linear pipelines (e.g.
pipelines with forks and joins), also supported by Mouse-
trap, a more careful analysis and planning is necessary. For
example, Figure 3 shows a fragment of the control logic
for the bundled-data circular FIFO proposed in [6]. In this
circuit, the phase select i signal must propagate to the input
pin of latch full reg before req i does – that is, following
the RTC naming, phase select i behaves as the data signal,
and req i as the control signal. Careful positioning of the
DE is mandatory in this circuit, as incorrect placement can
prevent correct operation. If the DE is inserted after either
one of the logic gates shown in the Figure 3 (U8, U9, or
U10), increasing the delay of the control path line would also
increase the delay of the data path, creating contention between
data and control paths, rendering the constraint impossible
to be fulfilled. Therefore, req i needs to be delayed before
arriving to the combinational logic that precedes the latch.
To guarantee correct placement, a pair of inverters, named
ACDC DE req i 1 and ACDC DE req i, are inserted in the
req i path. These inverters act, respectively, as the start and
end points of the DE – i.e. additional delay elements required
by this constraint are only inserted between these two cells.

The RTC model employed by ACDC does not make any
assumption regarding circuit implementation style, allowing
the creation of timing relationships between any two signal
paths on the design. Each RTC comprises one base and one
enforced path, and it is fulfilled if the minimum delay of the
enforced path is equal to or greater than the maximum delay
of the base path, as Equation 3 defines. Regarding Figure 2,
the base path is the logic path between the registers, and the
enforced path is that of the Req signal. Each signal path is the
path going from a start point to an end point, where the start
and end points are cell pins or circuit ports. To increase the
flexibility when modeling RTCs, enforced and base paths can
be defined either by a single path or by a set of paths – which
are referred as base set and enforced set.

81

<?xml version="1.0" encoding="UTF-8"?>1
2
<design name="input_interface">3

4
<constraint type="relative" name="wr_ctrl:: req_i vs. phase_select ">5

<description>data_o vs. wr/full_o to fifo/req_rd for all registers </description>6
7

<base>8
<path>9

<startpoint>phase_select_i</startpoint>10
<endpoint>full_reg/D*</endpoint>11

</path>12
</base>13

14
<enforced>15

<set action="sum">16
<path>17

<startpoint>req_i</startpoint>18
<endpoint>ACDC_DE_req_i_1/A</endpoint>19

</path>20
<path delayTarget="true">21

<startpoint>ACDC_DE_req_i_1/A</startpoint>22
<endpoint>ACDC_DE_req_i/Z</endpoint>23

</path>24
<path>25

<startpoint>ACDC_DE_req_i/Z</startpoint>26
<endpoint>full_reg/D*</endpoint>27

</path>28
</set>29

</enforced>30
31

</constraint>32
33

</design>34

Fig. 4. XML file format accepted by ACDC. Example describes constraints
of the circuit presented in Figure 3.

min delay(enforced) ≥ max delay(base) (3)

ACDC expects descriptions of RTCs in the XML format
illustrated in Figure 4, which describes the constraints of the
example circuit of Figure 3. Each constraint has a unique name,
a base group, an enforced group, and an optional description
string. A single path can describe each group, as illustrated
by the base group in Figure 4. Alternatively it is possible to
define a set with several paths and sets nested, as the enforced
group in Figure 4 depicts. Each set has an associated action
property, which defines how to compute the delay of each set.
Action max makes the set delay equal to the largest path delay
contained in the set, enabling the grouping of several parallel
paths in one constraint. Action sum computes the set delay by
summing all path delays contained in the set, allowing the easy
description of a group of paths in series (see an example in
Figure 4). The use of nested sets and actions allows constraint
grouping and the description of complex signal relationships,
reducing the number of RTCs needed to describe the circuit.

In addition, to increase description flexibility, it is possi-
ble to use wildcards, such as asterisk, when defining paths.
Wildcards are directly interpreted by DC and IC Compiler,
and follow the behaviour defined for Synopsys tools. To avoid
issues with incorrect placement of DEs, the DE insertion point
needs to be explicitly set to one of the paths in the enforced
set. This path is identified by the delayTarget attribute. As
STA tools cannot compute timing across DEs, this construct
needs to be used to compute the delay in paths with DEs. This
happens because the synthesis tool can only apply the timing
constraints needed to create the DE at the start and end point
of a timing path. Therefore, the timing path at the beginning
and end of the DEs is broken during synthesis.

B. Initial Logic Synthesis

The initial synthesis maps the design to a standard-cell
library and prepares it for ACDC. The flow assumes the input
design to be the hardware description of a bundled-data circuit,
which could be a circuit originally handcrafted, or the output
of a flow like [9]. First, DC reads, elaborates, and applies the
initial constraints to the design. At this level, the constraints
set false paths and define the output loads and input driving
cells of the circuit, without setting timing-related constraints.
In asynchronous systems, not only the logic function, but also
the structure of the circuit defines the system behavior [6]. To

guarantee that DC does not make structural changes during
synthesis, logic optimizations are disabled with the command
set structure. Depending on the used cell libraries, it may
be necessary to limit which cells can are to be employed
for synthesis – for instance, core libraries are interesting
for implementing logic and control circuits, whereas clock
libraries, due to presence of delay cells and balanced buffers
and inverters, are good candidates for DEs. Such settings can
also be applied during this step. After these initial settings,
the design can be synthesized and mapped to the target cell
library. To ensure that the circuit’s hierarchical structure is kept
all synthesis are performed with the no autoungroup option
enabled.

C. Optimization and DE Insertion

After the initial mapping, obtained at the end of the Initial
Logic Synthesis step, ACDC executes a series of tasks to
optimize the circuit and fulfill RTCs. A timing loop is a
combinational circuit with an unregistered feedback signal –
e.g. a Mousetrap [10] handshake control creates a timing loop
where the done signal is fed back as the latch enable signal,
after passing through an XNOR gate. Since such loops prevent
DC from performing STA, DC normally inserts extra buffers
in the feedback path and disables the timing analysis through
them, breaking the feedback path. Such buffers are called loop
breakers. The insertion of loop breakers in a path with an
RTC can prevent the STA tool to compute the path delay,
which may render the constraint impossible to be fulfilled.
Accordingly, in ACDC timing loops need to be disabled to
avoid the insertion of loop breakers. This can be achieved by
disabling the register’s timing arc that causes the loop – in the
case of a Mousetrap controller, the loop must be broken at the
latch, by disabling the arc from the enable pin to the output.

The next step is the optimization of the circuit to fulfill per-
formance constraints. This is done by setting maximum delay
constraints on the data paths of the circuit and performing
an incremental synthesis. Contrary to synchronous systems,
each path can present different max delay constraints, allowing
different levels of optimizations throughout the circuit. This
increases the freedom a designer has to meet constraints, as
important modules can be made fast, at the expense of added
area, while non-critical modules can remain slower. After
meeting performance constraints, the preparation of the design
for DE insertion takes place. As previously mentioned, ACDC
requires explicit delimiters to constrain where to insert DEs.
Therefore, as in the example of Figure 3, a pair of inverters
may need to be inserted in the circuit to create such delimiters.
The instance names of the delimiters must match the start and
end points of the delay target path specified in the XML file
that describes the RTC. Delimiter insertion takes place after
the max delay optimization, and can be easily automated for
designs with a regular structure. To avoid changes in circuit
structure after optimization, the flag size only is set for the
whole design. This flag allows DC to change the driving
strength of gates, but prevents logic optimizations, i.e. that
parts of the circuit be replaced by logically equivalent parts.
Before RTCs are loaded, the command set prefer -min allows
to set the preferred cells to use as DEs. Additionally, using
command set cost priority allows increasing the priority of
minimum delay constraints, used by ACDC to create DEs.

Next, DC loads the XML file that describes the RTCs. The
ACDC environment uses a set of in-house scripts to parse and
validate the constraints file, and to check for non-existing paths
and malformed constraints. If an issue is detected, ACDC dis-

82

AC_set_constraints Function (Generated Automatically)1
2
proc AC_set_constraints {} {3

Get Delays4
set AC_path0 [custom_get_delay req_i ACDC_DE_req_i_1/A]5
set AC_path0_min [custom_get_delay req_i ACDC_DE_req_i_1/A min]6
set AC_path1 [custom_get_delay phase_select_i full_reg/D*]7
set AC_path1_min [custom_get_delay phase_select_i full_reg/D* min]8
set AC_path2 [custom_get_delay ACDC_DE_req_i_1/A ACDC_DE_req_i/Z]9
set AC_path2_min [custom_get_delay ACDC_DE_req_i_1/A ACDC_DE_req_i/Z min]10
set AC_path3 [custom_get_delay ACDC_DE_req_i/Z full_reg/D*]11
set AC_path3_min [custom_get_delay ACDC_DE_req_i/Z full_reg/D* min]12

13
Set Constraints14
echo "\n** "15
echo " Setting min_delay Constraints: "16

17
Set Constraints18
Constraint 'wr_ctrl:: req_i vs. phase_select ' :19
set AC_aux_base [expr $AC_path1]20
set AC_aux_enforced [expr [expr $AC_path0_min + $AC_path2_min + $AC_path3_min]]21
set AC_aux_delta [expr $AC_aux_base - $AC_aux_enforced + $AC_path2_min]22
set AC_cnst0 $AC_aux_delta23
echo "\tConstraint 'wr_ctrl:: req_i vs. phase_select ' set. "24

25
set AC_aux $AC_cnst026
custom_set_min_delay ACDC_DE_req_i_1/A ACDC_DE_req_i/Z $AC_aux27

}28

Fig. 5. Fragment of the TCL file generated by ACDC to set the constraints
defined in the XML file illustrated by Figure 4.

ables the associated constraint and reports this to the user. The
integration between DC and the ACDC environment occurs
seamlessly through TCL functions that behave similarly to the
native functions of DC, but internally access ACDC resources
in a user-transparent way. The ACDC function to load the
XML constraints file calls an in-house tool, which processes
the data and generates a new TCL file with the result. The
RTC model is constructed inside this tool, which is described
in Python and supports sophisticated data structures, allowing
levels of abstraction higher than TCL, which facilitates the
manipulation of complex constraints.

The output of the flow is a set of TCL functions to
compute, report, and set the minimum delay constraints based
on the RTCs defined in the XML file. An example of one
of the resulting functions appears in Figure 5, where the
minimum DE delay for the circuit in Figure 3 is computed
and a minimum delay constraint is set accordingly. Initially,
the minimum and maximum delays of the paths related to
the constraint are extracted using STA. A modified get delay
function that is part of ACDC (custom get delay) is used to
allow the delays to be computed from intermediate pins in the
path, and not just from timing start-points to timing end-points,
as in the original function. Next, the maximum delay of the
base path and the minimum delay of the enforced path are
calculated, as specified in the XML file. Finally, the minimum
DE delay is computed as defined in Equation 4 and applied as
a minimum delay constraint on the DE.

delay line =max(base)−min(enforced)+ (4)

min(delay line)

DE creation is an iterative process that computes and
applies the minimum delay constraints on the DE paths,
resynthesizes the circuit and checks if constraints were met.
Except in situations where the path is both a control and a data
path for different constraints, one iteration is usually enough to
fulfill the RTCs. Once the design is ready, the flow exports the
design netlist and the new Synopsys Design Constraints (SDC)
file (containing the min, DEs, and max, datapath optimization,
constraints). The flow then continues with the IC Compiler
tool to implement the physical layout of the circuit.

D. Physical Synthesis

The physical synthesis phase of ACDC is very similar
to a regular flow. After the design and SDC constraints are
loaded, ACDC-related settings are performed. These settings

�����

���	��

��	���	�����

��	���	���

����� ��� ���

����

����� �����
!������

"""""""""

���	�� ���	��

���#�*

��
#�* """"""

Fig. 6. The 8-bit shift-and-add multiplier implemented in a linear pipeline.

are analogous to the ones on the logic synthesis, such as setting
preferred cells to be used as DEs and increasing the priority
of minimum delay constraints. Next, a regular floorplan, P&R
flow is executed.

Even though RTCs were fulfilled during logic synthesis,
after P&R some constraints may require DE adjustments, as
DC does not provide a placement-aware delay estimation.
Therefore, after the initial physical flow, RTCs must be loaded
again through the ACDC environment, and checked for vi-
olations. If violations occur, an iterative process to fulfill the
constraints must be invoked to fix the DEs. In IC Compiler, the
process consists of setting the new constraints using ACDC-
generated functions, performing incremental P&R, and fixing
possible DRC violations. Since new cells will be added, it is
important to set a smaller area utilization ratio when creating
the initial floorplan, to accommodate extra DE cells.

IV. CASE STUDIES

A. Pipelined Multiplier (Linear Pipeline)

An 8-bit, pipelined, shift-and-add, natural numbers multi-
plier was used to validate ACDC. The circuit implements a lin-
ear pipeline, as Figure 6 illustrates, where each stage performs
an addition and a shift operation. The design employs a 2-
phase bundled-data template implemented with Mousetrap [10]
pipelines. The multiplier takes as input 8-bit multiplicand and
multiplier, which are processed through 8 pipeline stages to
generate the 16-bit product. This circuit comprises two types
of RTCs: request and acknowledge. The request RTC is similar
to that presented in Section III (Equation 1), and ensures that a
request signal can only arrive at the next pipeline control after
the data input on the next register is stable. The acknowledge
RTC guarantees that an Ack signal can only be received by the
previous pipeline control block after the current pipeline stage
has successfully stored the data – e.g. Ack[1] only arrives at
Ctrl0 after the input data of Reg1 is successfully stored.

On the circuit optimization step of the synthesis, a maxi-
mum delay constraint of 200ps was set on the logic path of
each stage (the base path of the request constraint). Addition-
ally, a 100ps maximum delay constraint was applied to the
base path of the acknowledge constraint, which comprises the
control logic from the request input, at the pipeline controller,
to the register’s enable pin. To help reducing the DE slack, a
maximum delay constraint 20% above the DE’s target delay
was added. This helps the tool bounding which cells will be
selected to create each DE, reducing performance penalties
due to oversized DEs. Table I shows a summary of timing
reports for some of the RTCs enforced on the multiplier.
Each constraint can be characterized by three values: enforced-
path delay, base-path delay, and slack. Slack is the difference
between enforced- and base-path delays. A negative slack
indicates a constraint violation: the base-path delay is larger

83

TABLE I. ABSTRACT OF TIMING REPORTS FOR RTCS AT THE END OF

SOME SYNTHESIS STEPS OF THE MULTIPLIER CIRCUIT.

Constraint
Pre Logic Post Logic Pre Physical Post Physical

(ns) (ns) (ns) (ns)

Req[1]
Enforced 0.05294 0.08689 0.08613 0.11236
Base 0.08678 0.08678 0.09718 0.09147
Slack −0.03384 0.00011 −0.01105 0.02089

Req[3]
Enforced 0.05294 0.22376 0.33025 0.21191
Base 0.20810 0.20810 0.21136 0.20504
Slack −0.15516 0.01566 0.11889 0.00687

Ack[3]
Enforced 0.08676 0.16083 0.10193 0.14493
Base 0.09945 0.09944 0.08465 0.09306
Slack −0.01269 0.06139 0.01728 0.05187

Req[9]
Enforced 0.03104 0.03104 0.13165 0.10296
Base 0.0 0.0 0.00057 0.00058
Slack 0.03104 0.03104 0.13108 0.10238

than the enforced-path delay. The delay figures presented on
the table were extracted via STA at the following moments of
the synthesis flow:

Pre Logic Before the RTC Fulfillment Loop step of
logic synthesis (refer to Figure 1). In this
moment, the circuit is already optimized to
meet the performance requirements – i.e.
maximum delay constraints were success-
fully applied to the circuit’s logic path.

Post Logic At the end of the logic synthesis, when all
RTCs have been fulfilled.

Pre Physical After the initial P&R, where delay figures
are more reliable as STA takes into account
the interconnection delay.

Post Physical At the end of ACDC, after all RTCs have
been successfully fulfilled at the physical
synthesis level.

Delay variation between Post Logic and Pre Physical are
due to interconnection and cell placement. Delay figures may
increase or decrease as the synthesis tool further optimizes
the design trying to meet all constraints – this may change
delay margins for already fulfilled constraints. In some cases,
as illustrated by constraint Req[1], the delay margin left by
the logic synthesis is not enough to fulfill all RTCs, requiring
a new RTC Fulfillment Loop during physical synthesis. Some
constraints, however, are fulfilled in the initial synthesis and
do not require further synthesis iterations, as exemplified by
Req[9] in the last line of Table I. The RTC Req[9] relates the
product output of the circuit with its associated request signal.
During logic synthesis, since no interconnect delay is being
considered, the base path for this RTC is zero. The enforced
path is composed by the gate delays of buffers added to create
the DE boundary (the Prepare for RTC Loop step of ACDC).
However, when the first steps of the physical synthesis execute,
the wire delay referring to the request signal is computed, as
column Pre Physical shows. The final delay margins (slack
values in column Post Physical) are in the range of almost 7
to around 100 picoseconds. The 20% maximum delay margin
mentioned earlier can help controlling these slacks, but the
final result depends on the synthesis tools ability to fulfill all
maximum delay constraints set.

For comparison purposes, a synchronous multiplier was
synthesized, evaluating its performance metrics. The syn-
chronous implementation uses the same VHDL description
as the asynchronous one, except for the control and latches,
which were replaced by a clock signal and flip-flops in the for-
mer. Synthesis targets the minimum clock period that present
zero slack and employs clock gating. Thus, the design had
relaxed timing constraints that enabled a good area, power and
performance compromise, and allowed a fair comparison. To

TABLE II. PERFORMANCE METRICS OF THE ASYNCHRONOUS

MULTIPLIER, COMPARED TO ITS SYNCHRONOUS COUNTERPART.

Metric Asynchronous Synchronous
Forward Latency 2.6ns 4.5ns
Cycle Time 579ps 500ps
Burst Time 37,947.365ns 32,772.0ns
Burst Power 2.0417mW 2.5216mW
Burst Power-Delay Product 77.477nJ 82.637nJ

Area 900.538μm2 971.856μm2

analyze the circuits performance, the method utilizes exported
post-layout netlists. Also, the method employs annotated nets
and gate delays, as well as timing simulations of the designs
for a burst operation, where each multiplier computes 65,025
successive multiplications. Simulation allowed computing the
switching activity of the circuits, exporting this to a VCD
file, which is the source to conduct our power analysis on the
Synopsys Framework. The environment allows extracting area,
performance and power results. A summary of the obtained
results appears in Table II.

Forward latency represents the time to compute a product
when the pipeline is empty – that is, without taking into
account contentions that could be created by the handshake
protocol when the pipeline is full. The asynchronous imple-
mentation allows data to flow to the next pipeline stage as soon
as the computation on the current stage is ready, reducing the
initial latency. The synchronous implementation, on the other
hand, is bound by the critical path delay and can only move
data to the next stage at the end of each clock cycle. The cycle
time of the asynchronous implementation is the average delay
between successive request events issued on the output of the
circuit, assuming a consumer that is always accepting data and
never stalls the pipeline. In the synchronous implementation,
the cycle time is the clock period.

The reduced cycle time of the synchronous circuit presents
and advantage regarding the time to complete multiplications,
as the forward latency advantage of the asynchronous im-
plementation is rapidly amortized by the large number of
operations. However, when analyzing power, the asynchronous
implementation performs better due to the local handshaking
that does not require the fixed switching of a global clock
signal. To more fairly analyze these parameters, the overall
energy-efficiency of each implementation was computed as
the power-delay product. This measure correlates to energy
efficiency as it accounts for power and time to compute the
product jointly. The asynchronous implementation achieved
a smaller power-delay product, suggesting a more energy-
efficient circuit that, however, presents a smaller throughput.

B. Circular FIFO Buffer (Non-linear Pipeline)

The transition signaling circular FIFO proposed in [6] for
a network-on-chip input buffer allows evaluating ACDC as
applied to a hierarchical design with complex constraints.
Differently from the multiplier circuit, this design has con-
straints inside control blocks, in addition to data-path related
constraints. The former are more complex to resolve. Figure 7
shows the block diagram for a 2-place FIFO, composed of
four main blocks: read (rd ctrl) and write (wr ctrl) controllers,
address pointers (read counter and write counter), and regis-
ters. The synthesized version is an 8-place FIFO with 16-bit
words. Read and write addresses use one-hot encoding with
pointers generated by ring counters and level-sensitive latches
store data.

In this FIFO, each buffer position has dedicated read
and write control circuits. These connect to each other with

84

����

����	�

���	������	�� ���
�����	��

����	�

�
��	�

�
��	�

� �
��

� �
��

���

�	�
�

���
�

����
�
����
�

���
�

�	�
�

Fig. 7. Architecture of the Circular FIFO circuit, adapted from [6]. The reset
signal is omitted.

���������	�

� �
��

����	��
�
����

�����

	������

�������	

��
��

����

��

������
��	�

� �

�������	 �����

��
�	������
� �

�

��
Fig. 8. Circular FIFO control circuits: a) write control circuit and b) read
control circuit. Adapted from [6]. The reset signal is omitted.

transition signalling that indicates when each register is empty
or full. Figure 8 details the control circuits. When the buffer
position is empty and selected to be written, the associated
latch becomes transparent (the write controller asserts its
signal reg en o). Once new data arrives (req i transition),
the latch becomes opaque to store the data, and the signal
full o transitions to indicate to the read controller the register
is full. The transition indicating the buffer position is full
propagates through the req o signal once the address pointer
selects the read controller. At the same time, the MUX selects
the appropriate register and propagates its data to the data o
output. A transition on ack i indicates that data has been
read. This transition propagates to the write controller via a
transition of the empty o signal, to indicate the buffer position
is ready to accept new data. Since all control is based on transi-
tion signaling, phase matching between internal and top-level
control signals is required. XOR gates are good candidates
for this, as each input transition on the gate results in an
output transition. More details about the transition signaled
FIFO design are available in [6].

TABLE III. ABSTRACT OF TIMING REPORTS FOR RTCS AT THE END OF

SOME SYNTHESIS STEPS OF THE CIRCULAR FIFO CIRCUIT.

Constraint
Pre Logic Post Logic Pre Physical Post Physical

(ns) (ns) (ns) (ns)

wr ctrl
phase

Enforced 0.02692 0.03811 0.06143 0.04815
Base 0.03183 0.03186 0.03511 0.03361
Slack −0.00491 0.00625 0.02632 0.01454

rd ctrl
phase

Enforced 0.02684 0.03811 0.05419 0.04656
Base 0.03183 0.03186 0.03348 0.03388
Slack −0.00498 0.00625 0.02071 0.01268

req i
data i

Enforced 0.08699 0.09859 0.14657 0.13109
Base 0.0 0.0 0.00251 0.00397
Slack 0.08699 0.09859 0.14405 0.12713

req o
data o

Enforced 0.10011 0.12723 0.17532 0.22059
Base 0.10939 0.11064 0.13369 0.13467
Slack −0.00927 0.01659 0.04163 0.08591

full
reg en

Enforced 0.04840 0.09087 0.09144 0.08557
Base 0.06795 0.06794 0.07176 0.07408
Slack −0.01955 0.02292 0.01968 0.01150

Table III illustrates the fulfillment of selected RTCs for the
circular FIFO circuit at the same synthesis points used in the
multiplier circuit. All constraints in this Table refer to buffer
position 0. Besides RTCs related to data propagation from
input to registers (req i data i), and from registers to output
(req o data o), this circuit has constraints inside and between
control blocks. In fact, some top level constraints take into
account the delay on the controller’s enforced path to compute
their base and enforced paths, creating overlapping constraints
across the circuit hierarchy. Read and write controller blocks
have one RTC each: the phase i signal must arrive at the latch
to which it is connected before the req/ack i signal does –
this is similar to the example depicted in Figure 3, which is a
fragment of the write controller (the difference lies in the fact
that the reset i signal is omitted in Figure 8 and in the way
the synthesis implements the XOR gate). These constraints
correspond to wr ctrl phase and rd ctrl phase in the Table.
The constraint full reg en guarantees that data is properly
stored at the latch (latch enable signal propagation) before the
full signal propagates to the read controller, which indicates
that data is available. This is an example of a constraint
that crosses hierarchical boundaries, as it starts on the write
controller, takes into account delay propagation on the top
level, and finishes on the read controller. Other constraints
exist and were enforced during synthesis, but were omitted
from this discussion for the sake of clarity and simplicity.

A hierarchical bottom-up flow was used to synthesize the
circular FIFO. Initially, controllers were synthesized and their
constraints were fulfilled. Next, the post-synthesis controller
netlists were instantiated and the top-level buffer was synthe-
sized. This technique optimizes the use of DE in situations
of constraint overlap, as previously mentioned, allowing top
level constraints to take into account realistic delays of the
inner modules. Maximum delay constraints of 100ps were
added to the input and output data paths in the optimization
step of the flow. The delays presented in Table III illustrate
the same synthesis behaviour depicted in the synthesis of the
multiplier, where delays are matched during logic synthesis
and further refinements are made in the physical synthesis to
take into account placement and interconnect delays. Changes
from Pre Physical to Post Physical columns are due to further
optimizations made by the synthesis tool to fulfill constraint
violations that are not shown in the Table. Post synthesis results
appear in Table IV. Power measurements were made with a
full FIFO operating at maximum throughput.

C. Discussion and Guidelines

DEs are critical in BD systems, as there is a large number
of them throughout the circuit and they directly impact the

85

performance of the system. With the evolution of silicon
technology and the trend for low power design, it becomes very
difficult to find buffers and inverters with balanced rise and
fall time on core libraries, as they are typically power hungry.
Also, unbalanced DEs may result in performance degradation,
specially for 2-phase BD circuits, as all constraint calculations
are performed considering the minimum delay of the cells.
Cells from clock tree libraries, on the other hand, are balanced
to reduce clock skew, and can be leveraged when creating DEs.
Additionally, clock libraries contain delay cells that usually
present a smaller area footprint than a series of buffers adding
to the same delay, and such cells can be used to create more
efficient circuits. In the experiments performed here, the tool
was set up to prefer the use of cells from the clock library for
minimum delay constraints (i.e. DEs). Therefore, we advise
employing these cells for BD designs.

A strategy to ease the description and fulfillment of RTCs
is to keep the design hierarchical. Asynchronous circuits can
be generalized as modules that exchange information through
handshake. By keeping clear boundaries between components,
as in the multiplier example, the minimum and maximum
timing constraints affect only that block, easing the fulfilment
of constraints. The same approach can be applied to ease
manipulation of constraints for more complex control circuits,
such as the FIFO control logic. These can be split in smaller
circuits with simpler constraints, synthesized and then assem-
bled together hierarchically. In hierarchical designs, however,
higher level RTCs may be constrained by enforced paths of
lower level constraints. This constraint overlap may cause
redundant DEs to be added at the top level of the design due to
constraints not yet fulfilled in the inner modules. In such cases,
a bottom-up synthesis flow becomes an interesting approach.
In fact, this approach was taken for the circular FIFO synthesis,
where controllers were synthesized individually, before the
top-level circuit synthesis. By guaranteeing the RTC fulfillment
at lower level design blocks, constraints that depend on paths
on those blocks may be already fulfilled, avoiding the insertion
of extra delays in the circuit.

The synthesis results for both circuits showed the ability of
ACDC to model and fulfill RTCs using the Synopsys Frame-
work, considering different degrees of constraint complexity.
The flow could be extended to support other EDA frameworks
as long as they support minimum delay constraints. Note that
if the design requires special cells, such as C-elements or
MUTEXes, ACDC assumes that a library of such components
[17] is available. Currently, the designer has to provide the
XML file that describes the RTCs, which means that a deep
understanding of the circuit behaviour is required. This process
can be easily automated for linear pipelines, such as the
multiplier. However, for complex circuits such as the circular
FIFO, extraction of RTCs is not a trivial task. Nonetheless
ACDC stands off by allowing the automatic fulfilment of these
constraints.

V. CONCLUSIONS

This paper proposed ACDC, a synthesis flow to enable
the description and fulfillment of RTCs in BD circuits using
a commercial EDA framework. The flow provides a generic
way to specify RTCs, increasing the degree of automation
when designing BD asynchronous circuits without the need
for ad hoc solutions. Two circuits of different complexity
were successfully synthesized using ACDC and targeting a
28nm technology node, at both logic and physical levels. The
multiplier circuit represents the relevant class of linear pipeline

TABLE IV. PERFORMANCE METRICS FOR THE TRANSITION

SIGNALING, 16-BIT WORD, CIRCULAR FIFO WITH DEPTH 8.

Metric Asynchronous Circular FIFO
Forward Latency 399ps
Average Cycle Time 634ps
Power @ Max. Rate 0.4577mW

Area 728.362μm2

circuits, and the buffer design illustrates how the flow is able
to fulfill constraints in both data and control paths of the
circuit. The proposed flow stands off by allowing the automatic
fulfillment of RTCs in a template-agnostic manner, increasing
the degree of automation for bundled-data circuit designers. As
future work, enabling automated RTC extraction will further
improve the capabilities of this synthesis flow and ease the
process of designing BD circuits. Also, an analysis of how the
circuit behaves under variability will help determine the level
of delay margins required on DEs.

REFERENCES

[1] M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L. Lavagno,
“Asynchronous On-chip Networks,” IEE Proceedings - Computers and
Digital Techniques, vol. 152, no. 2, pp. 273–283, Mar 2005.

[2] T. Verhoeff, “Delay-insensitive Codes - An overview,” Distributed
Computing, vol. 3, no. 1, pp. 1–8, 1988.

[3] A. Martin and M. Nystrom, “Asynchronous Techniques for System-on-
chip Design,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1089–1120,
2006.

[4] P. Beerel, R. Ozdag, and M. Ferretti, A Designer’s Guide to Asyn-
chronous VLSI. Cambridge University Press, 2010.

[5] K. Stevens, D. Gebhardt, J. You, Y. Xu, V. Vij, S. Das, and K. Desai,
“The Future of Formal Methods and GALS Design,” Electronic Notes
in Theoretical Computer Science, vol. 245, no. 0, pp. 115–134, 2009.

[6] A. Ghiribaldi, D. Bertozzi, and S. Nowick, “A transition-signaling
bundled data NoC switch architecture for cost-effective GALS multicore
systems,” in DATE, March 2013, pp. 332–337.

[7] M. Amde, I. Blunno, and C. Sotiriou, “Automating the Design of an
Asynchronous DLX Microprocessor,” in DATE, June 2003, pp. 502–
507.

[8] D. Hand, M. Moreira, H. Huang, D. Chen, F. Butzke, Z. Li, M. Gibiluka,
B. M., N. Calazans, and P. Beerel, “Blade - A Timing Violation Resilient
Asynchronous Template,” in ASYNC, May 2015.

[9] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “Desyn-
chronization: Synthesis of asynchronous circuits from synchronous
specifications,” IEEE Transactions on Computer-Aided Design, vol. 25,
no. 10, pp. 1904–1921, Oct 2006.

[10] M. Singh and S. Nowick, “Mousetrap: High-speed transition-signaling
asynchronous pipelines,” IEEE Transactions on VLSI Systems, vol. 15,
no. 6, pp. 684–698, June 2007.

[11] A. Saifhashemi, D. Hand, P. Beerel, W. Koven, and W. Hong, “Per-
formance and Area Optimization of a Bundled-Data Intel Processor
through Resynthesis,” in ASYNC, May 2014, pp. 110–111.

[12] M. Iizuka, N. Hamada, H. Saito, R. Yamaguchi, and M. Yoshinaga, “A
Tool Set for the Design of Asynchronous Circuits with Bundled-data
Implementation,” in ICCD, Oct 2011, pp. 78–83.

[13] J. Liu, S. Nowick, and S. Mingoo, “Soft MOUSETRAP: A Bundled-
Data Asynchronous Pipeline Scheme Tolerant to Random Variations at
Ultra-Low Supply Voltages,” in ASYNC, May 2013, pp. 1–7.

[14] S. Gupta and S. Sapatnekar, “Variation-Aware Variable Latency De-
sign,” IEEE Transactions on VLSI Systems, vol. 22, no. 5, pp. 1106–
1117, May 2014.

[15] K. Stevens, R. Ginosar, and S. Rotem, “Relative Timing,” in ASYNC,
1999, pp. 208–218.

[16] C. Sotiriou, “Implementing Asynchronous Circuits using a Conventional
EDA Tool-flow,” in DAC, 2002, pp. 415–418.

[17] M. Trevisan Moreira, M. Arendt, A. Ziesemer, R. Reis, and N. Vi-
lar Calazans, “Automated synthesis of cell libraries for asynchronous
circuits,” in Integrated Circuits and Systems Design (SBCCI), 2014 27th
Symposium on, Sept 2014, pp. 1–7.

86

