
Managing QoS Flows at Task Level

in NoC-Based MPSoCs

Everton Carara, Ney Calazans, Fernando Moraes
Faculdade de Informática - Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS- Porto Alegre, Brazil

{everton.carara, ney.calazans, fernando.moraes}@pucrs.br

Abstract—The use of NoCs in complex MPSoCs is a reality in

academic researches and industrial designs. A lot of research

effort has been conducted in the last years in NoC and MPSoC

designs, but few works address the gap between the NoC

infrastructure and the MPSoC software applications. An

important issue in MPSoC design is QoS, since applications

running in such systems may have tight timing constraints, as

video processing or fast communication protocols. This work

bridges the hardware/software gap, exploring the integration

of low-level NoC services into an application programming

interface (API). Such API hides the interconnection complexity

from programmer and provides efficient design space

exploration to meet the QoS application requirements. Results

shows that, even with the huge available bandwidth offered by

NoCs, such interconnection architecture is not capable to meet

QoS constraints when flows compete for common resources

inside the NoC. Using the priority scheme developed in this

work, applications executing in the MPSoC achieve the

performance requirements. This work highlights the need to

integrate NoC and MPSoC design efforts in a unified

framework. (Abstract)

Keywords-MPSoC; NoC; QoS; API (key words)

I. INTRODUCTION

Multiprocessor systems-on-chips (MPSoCs) provide a

huge design space exploration for applications with high

computational demands. MPSoCs are used in applications

such as networking, signal processing, and multimedia.

Increasing its programmability makes them more flexible,

allowing its use in a wide range of digital systems. In this

way, the MPSoC lifetime increases, reducing the price for

the final consumer.

Since the platform computational power is distributed in

several processing elements (PEs), its synchronization and

message passing have a crucial role in the system

performance. As the number of PEs trends to increase to

dozens in a near future, an unscalable interconnection

architecture, such as traditional busses, are not

recommended to be used in such systems. Networks-on-chip

(NoCs) support the communication requirements of modern

MPSoCs, due to features as scalability, QoS support,

parallel transactions, and high aggregated throughput.

Increasing MPSoCs flexibility also imply new

applications added to the systems at run time. Therefore,

design time approaches to support QoS, such as network

dimensioning, reduce the NoC-based MPSoC flexibility,

since the NoC resources cannot be managed. To support

QoS in a dynamic environment, applications should have

access to the NoC services. Thus, the programmer can

manage the NoC resources to meet the application

requirements at run-time.

This paper shows the need to expose NoC services at the
task level in NoC-based MPSoCs. A complete system is
presented, enabling the management of QoS flows through a
dedicated API.

This paper is organized as follows. Section II presents
related work in resource management in NoC-based
MPSoCs. Section III gives an overview of the target NoC-
based platform. Section IV describes the implemented
support to QoS in the reference NoC. Section V describes the
QoS integration from the NoC physical level up to the task
level. Section VI presents evaluation results. Finally, Section
VII presents conclusions and directions for future work.

II. RELATED WORK

With the shifting in the interconnection architecture

from busses to NoCs, modern MPSoCs need to jointly

manage computation and communication resources to

ensure QoS to specific flows. The abstraction of the

communication or the computation architectures to higher

abstraction levels (e.g. through an API), hides the hardware

complexity, allowing the system programmer to explore the

design space in an efficient way.

The Tilera TILE64 [1] MPSoC consists of an 8x8 grid

of tiles connected by five overlapped 2D mesh NoCs

(iMesh). To take advantage of the whole bandwidth

afforded by the on-chip integration of multiple mesh net-

works, Tilera provides a C-based user-level API library

called iLib. There are two broad categories of communica-

tion in iLib: socket-like channels for streaming algorithms

and a MPI-like message passing for ad hoc messaging. iLib

provides several channel APIs, each optimized for a

different communication needs such as low latency and high

throughput. Through several communication primitives, it

lets the programmer to use the best communication interface

for the application being developed.

Winter and Fetteweis [2] present a global

communication resource allocator working at the task level.

The Guaranteed Traffic (GT) provided by the employed

NoC is managed by a unity called NoC Manager (NoCM).

This unit finds, allocates and releases channels between two

PEs, providing deterministic latency and bandwidth. NoCM

has knowledge about all links in the MPSoC, and where

they are available or not. As soon as a PE needs a GT path

to another PE, it requests a path reservation to the NoCM.

This, in turn, performs the resources allocation and notifies

the PEs about the connection establishment. To speed up

resources allocation, the NoCM has direct connections with

all NoC routers, which is an incompatible design decision

considering the distributed NoC paradigm.

Moreira et al. [3] present a similar resource allocation

approach based on a global unit. For each set of tasks

belonging to an application, resource budgets are computed

offline (compilation time) such that the application meets

the timing constraints. For hard real-time applications, an

exhaustive temporal analysis is performed to determine

these budgets. For soft real-time applications, a combination

of temporal analysis and simulation may be used. When an

application is requested to start, resources that meet the

required resource budgets have to be found by the resource

allocator. To meet the application constraints the resource

allocator ensures: (i) admission control – an application is

only allowed to start if the system can allocate upon request

the resource budget it requires to meet its timing

requirements; and (ii) guaranteed resource provisions - the

access of a running application to its allocated resources

cannot be denied by any other application.

Pastrnak et al. [4] describe a hierarchical QoS model for

managing multimedia applications running on a MPSoC.

The target application is a MPEG-4 shape-texture decoder

that is fully object based, using arbitrary object shapes. The

work considers a class of QoS systems that relies on

predicting the execution times of the application at run-time,

while also taking into account the data dependencies. The

architecture of the proposed QoS concept is based on two

negotiating managers, instead of a conventional single

resource manager. A Global QoS manager controls the total

system performance involving all applications and a Local

QoS manager controls an individual application within the

assigned resources.

The trend in MPSoCs design is to have dozens of PEs in

a near future. Therefore, centralized approaches to ensure

QoS to flows is a non scalable method, inappropriate to be

used in large systems. An exception to centralized

implementation is the Tilera MPSoC, which uses a

distributed approach. However, the article describing the

Tilera architecture does not present the iMesh QoS features

and the integration of the NoC services at the task level.

Several mechanisms must be used jointly to ensure QoS, as

task mapping, resource reservation, traffic monitoring and

task migration.

The contribution of this work is to expose NoC

features, as a priority scheme to transmit packets, up to the

task level, to ensure QoS to specific application flows. This

paper is a starting effort on bridging the gap between NoC

services and MPSoC software tasks aiming to increase the

overall system programmability.

III. MPSOC ARCHITECTURE OVERVIEW

Our target architecture is a homogeneous NoC-based

MPSoC platform called HeMPS [8]. Figure 1 presents a

HeMPS instance using a 2x3 mesh NoC. The main

hardware components are the HERMES NoC [6] and the

mostly-MIPS processor Plasma [9]. A PE, called Plasma-IP,

wraps each Plasma processor, attaching it to the NoC. This

IP also contains a private memory, a network interface, and

a DMA module.

Figure 1 - HeMPS instance using a 2x3 mesh NoC.

Typical applications running in MPSoCs, such as

multimedia and networking, often present dynamic

workload needs. This implies a varying number of tasks

running simultaneously, and their number or load often

exceeds the available resources. To tackle this issue,

HeMPS assumes: (i) applications are modeled using task

graphs; (ii) only the kernels (the kernel is in effect a

minimal operating system, one per Plasma) are initially

loaded into the system. All application tasks are stored in an

external memory, named task repository. Each application

has at least one initial task, being the remaining tasks

requested by the initial task, or other task already loaded

into the system. Figure 2 shows a synthetic application,

modeled using a task graph, with one initial task (task 0).

00 2

1

8

3 4 5

7 6

Figure 2 – Task graph modeling a synthetic application, being

‘0’ the initial task.

The system contains a master processor (Plasma-IP

MP), responsible for managing system resources. This is the

only processor having access to the task repository. When

HeMPS starts execution, the master processor allocates

initial tasks to the slave processors. The user defines the

mapping of the initial tasks. The remaining tasks are

mapped at run time according to some mapping heuristic,

targeting e.g. congestion minimization.

Each slave processor (Plasma-IP SL) runs a kernel,

supporting multitasking and task communication. The kernel

segments memory in pages, which it allocates for itself (first

pages) and tasks (subsequent pages). The memory pages are

protected and all communication among tasks occurs

through message passing. During execution, tasks are

dynamically loaded from the task repository to the slave

processors on demand. In addition, resources may become

available when a given task finishes execution. Such

dynamic behavior enables smaller systems, since only those

tasks effectively required are loaded into the system at any

given moment.

To achieve high performance, the Plasma-IP architec-

ture separates communication from computation. The

network interface and DMA modules are responsible for

sending and receiving packets, while the Plasma processor

performs task computation and wrapper management. The

local RAM is a true dual port memory allowing

simultaneous processor and DMA accesses, avoiding extra

hardware for elements as mutex or cycle stealing techniques.

IV. QOS SUPPORT AT THE NOC LEVEL

Most NoC implementations only provide support to best

effort (BE) services [10], even those proposed by NoC

companies like Arteris [11]. BE services guarantee delivery

of all packets from a source to a target, but provide no

bounds for throughput, jitter, or latency. This kind of service

usually assigns the same priority to all packets, leading to

unpredictable transmission delays. The term Quality of

Service (QoS) refers to the capacity of a network to control

traffic constraints to meet design requirements of an

application or some of its specific modules. Thus, BE

services are inadequate to satisfy QoS requirements for

applications/modules with tight performance requirements,

as in the case of multimedia streams. To meet performance

requirements and thus guarantee QoS, the network needs to

include specific characteristics at some level in its protocol

stack. Accessing the relative priority and requirements of

each flow enables an efficient assignment of resources to

flows [12]. Current NoC designs employ at least one of

three methods to provide QoS: (i) dimensioning the network

to provide enough bandwidth to satisfy all IP requirements;

(ii) providing support to circuit switching for all or selected

PEs; (iii) making available priority scheduling for packet

transmission.

The Hermes NoC employs a 2D mesh topology.

Routers have input buffers, a control logic shared by all

router ports, an internal crossbar and up to five bi-

directional ports. The main modification in the original

router to give support to some QoS level is the duplication

of the physical channels (bi-directional ports), which

connect neighbor routers. The physical channels were

duplicated in all four directions (North, South, East and

West), resulting in a router supporting up to nine bi-

directional ports. Thus, priority mechanisms can be used to

differentiate flows. Channel replication was preferred to

virtual channels due to its as smaller area overhead,

increased router bandwidth and reliability, and simpler

implementation [7]. Besides, priority mechanisms based on

virtual channels lack on QoS support when more than one

high priority packet requires the same output port, since the

packets share the link bandwidth. Figure 3 illustrates the

QoS router architecture.

Router

Control Logic

Crossbar 9x9

North1

North0

South1

South0

East1

East0

West1

West0

Local

N
o
rth

1

N
o
rth

0

S
o
u
th
1

S
o
u
th
0

E
a
s
t1

E
a
s
t0

W
e
s
t1

W
e
s
t0

L
o
c
a
l

Input buffers

: High priority buffer (reserved)

: Hight/Low priority buffer

Figure 3 – QoS router architecture with duplicated physical

channels.

In the present work, the implemented QoS support

relies on fixed priorities mechanism. Two prioritized best

effort (BE) traffic classes are distinguished inside the NoC:

(i) high priority packets and (ii) low priority packets. One

physical channel (channel 0) is reserved to transmit

exclusively high priority packets, whereas channel 1 may

transmit both packet classes. Sharing one of the two

physical channels provides higher support to high priority

traffics, since two high priority flows can share common

paths. The priorities mechanism provides a soft guaranteed

service (latency and bandwidth) to high priority traffics

through a virtual resource reservation.

The packets are injected into the NoC through the router

Local port (not duplicated), which is shared by high and low

priority packets. To differentiate incoming flows, besides

the target address, the packet header flit has a priority bit.

Each time a new packet enters the router, the control logic

reads the priority bit and executes the routing algorithm and

physical channel allocation. A high priority packet allocates

the first free physical channel available in the direction

selected by the routing algorithm, whereas a low priority

one can allocates only the physical channel 0 in the selected

direction.

In this architecture, when more than two flows compete

for common paths inside the NoC, QoS guarantees are

affected, reducing the application performance. In fact,

NoCs employing priority mechanism to ensure some QoS

level tend to perform like BE NoCs as the amount of higher

priority traffic increases. Priority mechanisms are simple

and low cost solutions to ensure QoS for traffics with no

rigid time constraints.

A second modification in the original Hermes NoC, not

related to QoS, is the routing algorithm. Packets are routed

according to the Hamiltonian routing algorithm, which

supports the dual path multicast [13] enabling the

transmission of multicast and broadcast messages.

V. INTEGRATING QOS SUPPORT FROM NOC TO TASK

LEVEL

Computational systems are layered in different

abstraction levels in an effort to master its complexity. Each

layer has a given functionality and communicates with

adjacent levels (above/below it). Therefore, each layer uses

the services of the lower layers and supplies them to the

upper layer. Figure 4 shows the HeMPS system layers and

the corresponding entities.

Network-on-Chip

NI/DMA

Kernel

T
a
s
k
 1

T
a
s
k
 2

T
a
s
k
 n

Kernel

T
a
s
k
 1

T
a
s
k
 2

T
a
s
k
 n

Kernel

T
a
s
k
 1

T
a
s
k
 2

T
a
s
k
 n

. . .

NI/DMA NI/DMA

App 1

Network

Transport

OS

Task

Application App 2 App n

Figure 4 – HeMPS system layers.

Each layer is responsible for:

• Application layer: this level contains the description of
each application to be mapped into the system. Each

application is described as a task graph;

• Task layer: this level contains the description of each
task, using the synchronization and communication

primitives available in the HeMPS API, provided by the

OS layer;

• OS layer: is a set of drivers responsible for task
scheduling, task loading, memory management, DMA

management, packet assembly/disassembly, and

provides to the task layer the HeMPS API;

• Transport layer: execute packet injection/reception and
flow control;

• Network layer: responsible for BE and QoS data

transmission.

The C-based HeMPS API provides two MPI-like

communication primitives to allow inter-tasks message

passing: (i) Send and (ii) Receive. These two primitives

implement the message passing between tasks, which can be

located in the same processor or different ones. The local

communication is performed through the kernel area

memory while the remote communication uses the NoC.

Each kernel has a task-table with the location of local and

remote tasks. Tasks location is transparent to the

programmer, and the kernel is responsible for setting the

NoC packet address where the target task is located.

The Send primitive, available at the task level, has a

dedicated parameter to set the message priority. The Send

syntax is:

Send(Message *msg, int target_task, int priority)

where:

• message *msg: points a message structure in the task

memory;

• int target_task: the message target task identifier;

• int priority: the message priority (0-HIGH or 1-LOW).

Each time the Send primitive is called, the kernel is

scheduled to execute. The raw message is copied to the

kernel area and tagged with a NoC header. To set the header

with the target address, the kernel access its task table and

searches the target task location using its identifier (Send 2
nd

parameter). Then, the NoC packet priority is set filling the

priority bit in the header with the 3
rd
 Send parameter.

Therefore, a memory image of the NoC packet is created.

This is the only function of the Send primitive: create a

packet image in the kernel area. Once this image is created,

the task resumes its execution. This approach allows the

parallel task execution and message transmission.

A Receive primitive, executed by the consumer task,

fires a packet transmission. The Receive primitive generates

a message request packet to the producer task. An incoming

message request interrupts the executing task and the kernel

is scheduled. Then, the kernel configures the DMA module

(DMA_Send()) to transmit the packet and the interrupted

task is rescheduled. Since a true dual-port memory is used,

packet transmission and task execution are carried out in

parallel. All the implicit inter-kernel communication

(control messages, e.g. message request) are transmitted in

high priority packets. These messages are commonly short

and do not disturb the high priority flows. Figure 5

illustrates the Send sequence diagram.

Task Kernel DMA

Send(msg,T2,HIGH)

DMA_Send(msg)

Copy msg to
kernel area

Reads packet
image

Send() return

Task
processing

Kernel
handling a
system call

PLASMA

: idle : executing

NI

Save context

Restore context

int (MSG_REQUEST)

Inject packet
into NoC

Task
processing

Kernel
handling an
interruption

Figure 5 – Send() sequence diagram.

Figure 6 illustrates the Plasma-IP modules interaction

during a Send-Receive processing. The illustrated steps are:

1. The Plasma processor copies the message (msg) from

the task memory area to the kernel memory area. The

packet image is created in the kernel area.

2. The DMA module is programmed to transmit the

packet when the NI interrupts the Plasma-IP due to a

message request.

3. DMA module reads the packet image from the kernel

memory area and sends it through the NoC using the NI

module (the processor is not disturbed in this step). As

the priority information is part of the packet header,

there is no extra DMA pinout to inform the NI about

the packet priority.

Payload
(msg)

Header DMA

NI

PLASMA

Kernel
area

Packet
image

Tasks
area RAM

PLASMA-IP

1

2

3

3

msg

Figure 6 – Modules interaction.

This inter-task communication scheme, non-blocking

writing (if there is available memory space in the kernel

area), and blocking reading has the following advantages:

• A producer task may continues its execution,

independently of the consumer status;

• Network traffic is reduced, since the consumer task

enters in wait state after a Receive execution until the

producer task has data to transmit (there is no polling);

• If a blocking Send and a non-blocking Receice was

chosen, messages must be stored in the consumer side,

or they may block the NoC if the consumer side has no

available memory space. Also, if the consumer task is

not yet allocated in the system, the producer task stalls

for a large amount of time (until the consumer task be

allocated).

VI. RESULTS

Two simulation scenarios are evaluated in a 4x4

HeMPS instance. In the first one all involved flows are

generated by Plasma-IPs, simulating a homogeneous

MPSoC. The second one simulates a heterogeneous MPSoC

with two traffic generators flows disturbing the Plasma-IP

QoS flows. To speed up simulations, Plasma processor and

RAM memories are modeled in SystemC (cycle accurate

simulation), whereas the remainder system is described in

synthesizable VHDL RTL.

A. Homogeneous MPSoC QoS evaluation

The goal of the first simulation scenario is to show the

NoC behavior as the number of QoS flows increases. Figure

7 presents the spatial distribution of the flows. Flows F1 and

F2 (dotted lines) are QoS flows (higher priority) and the

remainders (F3, F4, F5 and F6) are disturbing flows (lower

priority). A flow is composed by burst packets (524 flits)

interleaved by idle times. The injection rate of flows F1 and

F2 is 30% of the link bandwidth, and the disturbing flows

has an average injection rate of 18.5%. All flows are

generated by the software executing in the Plasma

processors.
F1

F2

F3

F4

F5

F6

0 1 2 3

4567

8 9 10 11

12131415

Figure 7 – Spatial distribution of flows. F1 and F2 are QoS

flows. F3, F4, F5 and F6 are disturbing flows.

Figure 8 presents the throughput of each flow, as the

number of QoS flows increases. Since the disturbing flows

pairs F3-F4 and F5-F6 have the same target, the calculated

pair throughput is the target throughput divided by 2.

Initially only F1 and F2 are QoS flows and its throughputs

are close to the injection rate. As the disturbing flows

become QoS flows, the throughput of flows F1 and F2

reduces. When all disturbing flows became QoS flows, all

six flows have the same priority and the NoC acts as a BE

NoC. In this condition, F1 and F2 throughput decays from

29.91% and 28.83% to 21.95% and 20.91%, respectively.

BE NoCs underutilize its resources, since there is no

effective QoS management.

0

5

10

15

20

25

30

35

1 2 3 4 5 6

Number of QoS flows

T
h
ro
u
g
h
p
u
t
(%

)

F1

F2

F3-F4

F5-F6

Figure 8 – QoS flows deterioration.

This experiment demonstrates that:

• When the number of QoS flows competing for resources

do not exceed the designed QoS support, the soft QoS is

guaranteed (in this experiment the NoC supports up to 2

competing QoS flows);

• The huge bandwidth provided by NoCs is not sufficient

to ensure QoS when the number of concurrent QoS

flows increases, even in an homogeneous scenario, with

all flows being generated by processors (remember that

each processor has the kernel overhead and sequential

instruction execution, which reduces the injection rate);

• Even do not exceeding the total NoC bandwidth, the

flows may disturb each others;

• The HeMPS API ensures soft QoS to the flows from the

task level. Using it, flows F1 and F2 achieved a

throughput equal 29.91% and 28.83% respectively.

B. Heterogenous MPSoC QoS evaluation

The second experiment shows that the QoS support,

based on priorities, can efficiently guarantee throughput to a

flow even under disturbing flows with high injection rates.

Figure 9 presents the spatial distribution of the flows. The

QoS flow F1 (dotted line) is generated by a Plasma-IP while

the disturbing flows F2 and F3 (low priority) are generated

by traffic generators. F1 injection rate is 30% of the NoC

link bandwidth, and flows F2 and F3 have an injection rate

of 100%.
F1

F2

F3

0 1 2 3

4567

8 9 10 11

12131415

Figure 9 – Flows spatial distribution. F1 is QoS flow.

F2 and F3 are disturbing flows.

In this scenario, considering a BE NoC, the F1

throughput is 10.5%. Considering a QoS NoC, QoS flow F1

achieves a throughput of 29.8%. This result is due to the

virtual reservation, where QoS resources are available

exclusively for high priority packets.

VII. CONCLUSIONS AND FUTURE WORK

A lot of research effort has been conducted in the last

years in NoC and MPSoC designs, but few works address

the gap between the NoC services and the MPSoC software

tasks. This research work presented the design of a simple

priority mechanism to ensure soft QoS for the MPSoC at the

NoC level. This feature is integrated at the kernel level

(HeMPS API) and it is available to application tasks

executing in the MPSoC. This integration increases the

overall system programmability and enables system

programmers to manage QoS flows at the task level. Thus,

design space exploration can be accomplished in an efficient

way, due to the abstraction of interconnection architecture

details.

Results have shown that even with duplicated physical

channels (higher bandwidth), the concurrence for resource

may degrade the performance of QoS flows. Therefore,

having a massive amount of interconnect resources is not

sufficient to provide QoS, if these cannot be effectively

utilized. This highlights the need to integrate NoC and

MPSoC design efforts in a unified framework.

Future work includes the addition of new services in the

NoC, such as multicast/broadcast and circuit switching to

provide hard QoS to flows with tight time constraints. As

presented in this paper, these services will be exposed at

task level, enriching the HeMPS API, and increasing the

system programmability.

VIII. ACKNOWLEDGMENTS

This research was supported partially by CNPq

(Brazilian Research Agency), projects 300774/2006-0 (PQ)

and 471134/2007-4 (Universal).

IX. REFERENCES

[1] Wentzlaff, D.; et al “On-Chip Interconnection Architecture of
the Tile Processor”. IEEE Micro, 27(5), Sept.-Oct. 2007, pp.
15-31.

[2] Winter, M.; Fettweis, G. P. “A Network-on-Chip Allocator for
Run-Time Task Scheduling in Multi-Processor System-on-
Chip”. In: Euromicro Conference on Digital System Design
Architectures, Methods and Tools, 2008, pp. 133-140.

[3] Moreira, O.; Mol, J.; Bekooij, M. “Online Resource
Management in a Multiprocessor with a Network-on-Chip”,
In: Symposium on Applied Computing, 2007, pp.1557-1564.

[4] Pastrnak, M.; et al “Novel QoS Model for Mapping of
MPEG-4 coding onto MP-NoC”, In: International Symposium
on Consumer Eletronics, 2005, pp. 93-98.

[5] Joven, J.; Carrabina, J.; et al “xENOC – An eXperimental
Network-on-Chip Environment for Parallel Distributed
Computing on NoC-based MPSoC Architectures”. In:
Euromicro Conference on Parallel, Distributed and Network-
Based Processing, 2008, pp. 141-148.

[6] Moraes, F.; et al. “HERMES: an Infrastructure for Low Area
Overhead Packet-switching Networks on Chip”. Integration
the VLSI Journal, 38(1), Oct. 2004, pp. 69-93.

[7] Carara, E.; et al “A New Router Architecture for High-
performance Intrachip Networks”, Journal of Integrated
Circuits and Systems, 3(1), Mar. 2008, pp. 23-31.

[8] Carara, E. et al “HeMPS - A Framework for NoC-Based
MPSoC Generation”, In: International Symposium on
Circuits and Systems, 2009 (to be published)

[9] OpenCores, www.opencores.org.

[10] Rijpkema, E.; Goossens, K.; Rădulescu, A. “Trade-offs in the
Design of a Router with Both Guaranteed and Best-Effort
Services for Networks on Chip”. In: Design, Automation and
Test in Europe, 2003, pp. 350-355.

[11] Arteris. “Arteris Network on Chip Company”. 2005. Available
at http://www.arteris.net.

[12] Duato, J.; Yalamanchili, S.; Ni, L. “Interconnection
Networks”. Elsevier Science, 2002, 600 p.

[13] Lin, X.; McKinley, P. K.; Ni, L. M. “Deadlock-free Multicast
Wormhole Routing in 2-D Mesh Multicomputers”. IEEE
Transactions on Parallel and Distributed Systems, 5(8), 1994,
pp. 793-804.

