

Blade – A Timing Violation Resilient Asynchronous Design Template
Dylan Hand, Benmao Cheng1, Melvin Breuer, Peter A. Beerel

Computer Engineering Technical Report Number CENG-2014-04

Ming Hsieh Department of Electrical Engineering – Systems
University of Southern California

Los Angeles, California 90089-2562

May 10th, 2014

1 Benmao Cheng is a visiting scholar from China.

Abstract—This paper proposes a novel asynchronous
design template, Blade, that uses single-rail logic, a
reconfigurable delay line, and error detecting latches to reliably
detect and recover from timing violations due to process
variations and delay faults of single event upsets. The template
employs a novel speculative handshaking paradigm that
improves average-case performance by taking advantage of the
fact that errors occur with low probability. We will
analytically compares the performance of this template with
both traditional synchronous designs and the state-of-the-art
synchronous resiliency strategy Bubble Razor. Our results
demonstrate the potential benefit of our approach as well as
provide insight into how asynchronous designs should be
optimized to achieve these benefits.

Keywords—Resilient design, variability, performance analysis.

I. Introduction
Traditional synchronous design must incorporate timing

margin to ensure the correct operation under worst-case delay
conditions. However, the ongoing increase in process variation
compounded with aging effects is causing progressively larger
delay variations, requiring more substantial timing margins
reducing the performance and energy efficiency of traditional
designs. To address this problem, many synchronous design
techniques for resilient designs have been proposed that
address delay variations. For example, canary FFs predict when
the design is close to a timing failure (see e.g., [1]). Designs
can then adjust their supply voltage or clock frequency either
statically or dynamically to ensure correct operation at the edge
of failure. In addition, Razor circuits [2] [3] [4] [5] have been
proposed that feature in situ timing violation detection
mechanisms, which allow recovery from timing errors via
architectural replay or automatic pipeline stalling, further
reducing margin.

Asynchronous circuits have been identified as a potentially
more effective approach, particularly in the near-threshold
regime (see e.g., [6] [7] [8]). The basic difference between
asynchronous and synchronous design is that asynchronous
designs utilize additional circuitry that indicates when
individual blocks have finished computing instead of a global
clock signal. There are two common asynchronous design
styles that achieve this goal in very different manners. The first
relies on dual-rail quasi-delay-insensitive (QDI) logic to embed
the completion signal into the data representation. The basic
problem with this design style is that implementations are
much larger than the synchronous counterpart (often 4x larger)
and have very high switching activity due to a return to zero
paradigm (see e.g., [9]). The second design style, bundled-data
(or micropipelines [10]), relies on delay lines that are matched
to individual clouds of combinational single-rail logic. The
advantage of this approach is that the switching activity within
a logic cloud is essentially the same as in synchronous design
and can be quite low. Moreover, the total area of the delay lines
is similar to that of a clock tree and thus the overall area of
bundled-data style is comparable to that of synchronous
designs (see e.g., [11]). The Achilles heel of this design style is
that the delay line must be conservatively designed to be longer

than its corresponding logic under all possible process,
temperature, and voltage corners. Consequently, in the
presence of aggregated on-chip variations in the near threshold
domain, the delay lines must be implemented with huge
margins, taking away most if not all the advantages of
asynchronous design.

The ideal ultra-low-power asynchronous design style would
have the area close to that of bundled-data with the variation-
tolerance and high-performance of QDI designs, and for many
years this has been an elusive goal of asynchronous
researchers. Researchers have proposed bundled-data designs
coupled with layout techniques to mitigate variability such as
duplicating the bundled-data delay lines [8] and constraining
the design to regular structures such as PLAs [12] and soft
latches [13]. Others suggest current-based completion sensing
techniques (e.g., [14] [15]) that rely on analog current sensors
that are themselves tricky to design when there is high
transistor variability.

Our proposed approach is an all-digital asynchronous
design template, Blade, which uses re-configurable delay lines
that can be tuned and optimized to mitigate the impact of delay
variations. The template consists of single-rail logic,
reconfigurable delay lines, and razor-like [2] latches with
asynchronous sampling circuitry that reliably handles errors
even under the presence of metastability. The template
employs a novel speculative handshaking paradigm that
improves average-case performance by taking advantage of the
fact that errors will have a low probability of occurrence.

The focus of this paper is to introduce the Blade template,
characterize its unique features, and provide useful future
extensions to this work and the tradeoffs involved in different
design decisions. We will also provide an analytical model to
quantify Blade’s benefit over both traditional synchronous
designs and the state-of-the-art synchronous resiliency strategy
Bubble Razor. Finally, we will compare these analytical
models to a Verilog model of the proposed template.

The remainder of this paper is organized as follows. Section
2 provides relevant background on Bubble Razor and its
performance. Section 3 provides details of our proposed
templates and their operation. Section 4 describes potential
improvements to the Blade template. Sections 5 and 6 explain
our model of performance and quantifies the potential benefits
over both traditional synchronous design and Bubble Razor.
Section 7 summarizes our results and outlines future work.

II. Background
A. Bubble Razor

Bubble Razor (BR) inherits the features of previous Razor
techniques enabling real-time error detection and correction [4]
[5]. Unlike other Razor architecture, it is based on a two-phase
latch-based design, in which each traditional flip-flop is
replaced with two latches that undergo retiming to have
approximately equal amount of logic between each latch. It
uses a novel bubble propagation algorithm that makes the
approach applicable to any architecture and enables the

automatic application of this technique to legacy flip-flop
based RTL designs, significantly reducing barriers to adoption.

Bubble Razor flags a timing violation when the data
arriving at a latch varies after the latch opens using an error
detecting latch (EDL). Upon detecting a timing violation, the
circuit automatically recovers by stalling the subsequent latch,
giving it an additional clock cycle to process the data. Half of
the additional clock cycle is used to compensate for the
unexpectedly large delay from the previous latch and the other
half accounts for the delay from the current latch to the
subsequent one. Thus timing violations are corrected as long as
the real delay of each half clock-cycle step never exceeds one
clock cycle of time.

However to ensure correct operation, stalling the
subsequent latch is not sufficient. Upstream stages must be
stalled to ensure valid data is not overrun and downstream
stages must be stalled to ensure corrupt data is not accidently
interpreted as valid. Previous Razor structures use counter-flow
pipelining or architectural replay to recover from the stall [2]
[16]; however, both techniques require the RTL to be designed
with Razor in mind. The latch-based scheme in BR enables an
automatic local stall propagation algorithm.

Consider the 2-stage ring in Figure 1 that consists of 4
latches with associated clock gating logic that implements the
stall propagation algorithm. A timing violation causes an error
signal to be sent to its Right Neighbor (RN) to tell it to stall.
Then, the stalling spreads both forward and backward
directions around the ring in a wave-like pattern. For example,
in Figure 1, the timing violation occurs in latch 2 and this
triggers a stall in latch 3. The clock gating logic for latch 3 then
spreads the stall forward to stage 4 and backward to latch 2.
Clock gating logic that receives stalls from both directions
terminates the spreading of stalls. This is called stall
annihilation. For example, in Figure 1, the stall is terminated
by the clock gating logic of latch 1 because it receives stalls
from both of its neighbors, i.e., latches 2 and 4.

Unlike other Razor schemes, one significant weakness of
Bubble Razor is that it does not consider the impact of
metastability in the error detecting logic. As the shadow latch
closes at a time when errors are expected to happen at some
frequency, metastability at the output of the shadow latch may
occur. The metastable state may propagate through the error
detection logic (XOR followed by a dynamic OR gate). If this
state persists for longer than half a clock cycle, it will be
latched into the control logic resulting in a system failure. This
oversight significantly reduces the mean time before failure for
many applications.

B. Performance analysis of Bubble Razor

To analyze the performance of Bubble Razor, the bubble
propagation algorithm can be modeled using a Markov Chain.
In particular, [17] considered an N-stage ring containing 2N
latches with no primary inputs or outputs. There are two
categories of states for a latch (and its corresponding clock
gating logic): working and stalling. In a working state, the latch
closes and opens normally in the current cycle. A latch in a
stalling state does not open which prevents new data from
propagating and keeps the output fixed in during the clock

cycle. In other words, a latch can pass data only when it is in a
working state.

 The authors in [17] model the timing cost for error
correction with the notion of an Effective Clock Cycle Time
defined as the average time to process each instruction.
Consider M clock cycles with a real clock cycle time C and a
total time period of	M ∗ C. The effective clock cycle time (EC)
can be expressed as follows:

�� = � ∗ �
� ∗ 	(��
����) =

�
	(��
����) (1)

where π(working) is the steady state probability of a latch
being in a working state obtained from their Markov Chain
analysis.

It may be insightful to review the lower and upper bounds
on EC. If every combinational cloud delay is shorter than half a
clock cycle time (0.5C), no timing violation happens. This
means π(working) = 1 and consequently the lower bound on
EC = C. The upper bound on EC occurs when all
combinational cloud delays are longer than 0.5C, but shorter
than C to guarantee the circuit’s correctness. In this case,
	(��
����) = 0.5 because every latch of the circuit stalls and
works alternately, making EC = 2C.

C. Delay Distribution

Based on the Markov Chain model, EC can be expressed as
a function of C (real clock cycle time), p (probability of timing
violation for a latch) and N (number of stages referring to 2N
latches in BR or N registers in traditional register-based
circuits). It’s obvious that p is influenced by C. The variable d
is used to represent the real delay of a step, i.e., the logic delay
from one latch to its Right Neighbor. So p can be expressed as
follows:

� = ��{� >
�
2}

(2)

 When considering process variation and aging, the variable
d is a random variable with some distribution. We follow the
approach in [17] and consider two different distributions –

Figure 1. Bubble Razor block and timing diagrams

normal and log-normal. Both require only two variables to
describe them, i.e. a mean μ and standard deviation	σ. The log-
normal distribution has a heavy tail that has a basis in the
underlying technology in near-threshold domains [18] [19].

In particular, we will explore the performance of
traditional, bubble-razor, and Blade circuits with different
amounts of variability, as quantified by different σ/μ ratios.
The larger this ratio is, the higher the variation. However, when
comparing BR and blade circuits to traditional synchronous
circuits, i.e. circuits in which there is no dynamic error
correction mechanism, we must also compare distributions for
circuits that have different delay lengths, which is correlated to
different mean delay lengthμ . Fortunately, reference [20]
observes that for die-to-die variations σ/μ ratio is almost a
constant for different logic depths, i.e. different delay lengths.
For circuits with significant within-die variation, on the other
hand, σ/μ ratio decreases for longer paths, i.e., larger μ (e.g.,
see [20]). Moreover to analyze the lower bound of C, it will
also be important to reason about the distribution of the sum of
two normal/log-normal variables. References [19] [21] prove
that it is reasonable to use another normal/log-normal variable
to represent the sum of two normal/log-normal variables.

D. Bubble Razor Systematic Error Rate

It is important to recognize that C cannot be too small
because bubble razor must guarantee that every actual delay
between adjacent latches must be shorter than one clock cycle
or the additional timing compensation would not be sufficiently
long to ensure correctness. Since normal/log-normal
distributions do not have an upper limit, the authors set a rule
that the systematic error rate (SER) should be smaller than
some small fixed amount. For example, in their results, they
assume SER ≤ 0.1%.

When comparing BR circuits to their traditional circuits,
the authors ensure that their SER is the same. For traditional
circuits, SER is calculated as:

&�' = 1 − [��{+ ≤ �}]. ≤ 0.1% (3)

where D is a random variable with a mean twice as much as
that of d, the delay between neighboring latches in BR circuits.
For BR circuits, reference [17] showed that the error rate could
be conservatively estimated to be

1 − [��{� ≤ �}]2. ≤ 0.1% (4)

III. Proposed Blade Templates
A. Template Overview

The proposed Blade templates are based on the pipeline
block diagram shown in Figure 2. The templates use single-
rail logic followed by error detecting latches and two
reconfigurable delay lines. The first delay line is of length δ
and controls when the error-detecting latch first samples the
data at the output of the combinational logic. In particular, it
samples the data δ time units after the input request is received
assuming no error has occurred in the previous stage.

EDL
(Error

Detecting

Latch)

R.Data
Combinational

Logic

Speculative

Handshaking

Control

L.Data

Re-configurable Delay Line (δ)
Err

Δ

L.Ack

L.Req

LE.Req

LE.Ack

R.Ack

RE.Ack

R.Req

RE.Req

S
a

m
p

le

C
LK

Figure 2. The Blade template

 The second delay line is of length Δ and defines a time
window during which errors are allowed, referred to as the
resiliency window. If the combinational output changes during
the resiliency window, the latches flag a timing violation by
asserting the Err signal, which is sampled by the controller.
The asynchronous control circuit then uses a novel protocol to
communicate with its right neighbors to recover from the error
by delaying the opening of the next latch until the new data has
propagated through the combinational logic, as will be
described in more detail later.

 Each stage has four asynchronous channels that operate
using a two-phase protocol. The first channel, L, is a typical
bundled-data channel, comprised of Req, Ack, and Data. The
second channel, LE, is a pull channel the handshaking
controller uses to check if the previous stage suffered an error.
It too has a Req and Ack, but no data value is required. Two
additional channels, R and RE, will become the L and LE of
the next stage.

B. Error Detecting Latch

 As in bubble-razor [4], we propose using error-detecting
latches that detect if signals are not valid upon the latch going
transparent, and if so, generate an associated error signal to the
controller. The latched value is valid as long as the data
becomes valid before the latch becomes opaque. In other
words, the pulse width of the latch, Δ, determines how much
timing resiliency is allowed.

 While there are many possible implementations of EDLs
(e.g., [3] [22] [23] [24] [25] [26] [27]), we will focus on
latches with the following properties: 1. The EDL is more
sensitive than the combinational logic datapath to ensure small
glitches are properly recorded as errors; 2. Once an error is
detected, the Err signal will stay asserted for the remainder of
the clock period; and 3. The latch will not enter a metastable
state during the resiliency window. The TDTB latch in [26],
with some minor modifications, fits these criteria. A general
structure of an EDL is shown in Figure 3, consisting of a latch,
error detector, and sampling circuit.

Metastability (MS) in the latch is not a concern as we will
ensure Δ is set sufficiently large as to avoid sampling while
the datapath is still evaluating. However, the possibility of the
error signal itself becoming MS cannot be avoided. Therefore,
a sampling circuit is used to ensure the Err output is always
stable, even in the presence of MS, by coupling it with a MS

filter. MS filters are typically implemented using dual-rail
outputs that remain neutral until MS has resolved. An example
of such a circuit is the Q-Flop [28]. In rare cases, the output of
the Q-Flop will take a long time to resolve while either its
internal nodes are metastable due to an input transition as the
flop closes or if the input itself is metastable. In a robust
synchronous design, this resolution delay would translate into
increased margins or extra clock cycles and synchronizers to
wait-out this rare occurrence. However, because our design is
asynchronous, it will gracefully wait for the MS state to resolve
before allowing the next stage to open its latch, effectively
stalling the stage and ensuring correct operation.

C. Speculative Handshaking Protocol

 The proposed Blade template implements a new form of
asynchronous handshaking called speculative handshaking,
illustrated in Figure 4. A request signal between blocks is
speculatively asserted assuming the delay line of length δ is
sufficiently long and no timing violation occurs. A secondary
extend channel, LE in Figure 2, is used to relay the error signal
to the next stage which indicates if this assumption was
incorrect and a violation was detected. Using this return
channel, the previous stage, which in error, is in control of how
long the next stage will need to wait for a clean data input. To
implement this delay, we make use of the Req/Ack handshake
that occurs on the extend channel. More specifically, the delay
in receiving a request on the extend channel to sending an
acknowledgement is variable: when no error occurs, the delay
will be zero and the acknowledgement occurs immediately,
while the acknowledgement will be delayed by Δ when a
timing violation has occurred, as illustrated in Figure 4(a) and
(b), respectively.

We propose two templates that employ these two delay
lines differently. The first template called Blade-O is designed
to tolerate mild to moderate variations and the second template
called Blade-OC is designed to tolerate higher variations.

D. Blade-O: Delay Opening of Latch

The simplest Blade controller, referred to as Blade-O, is
based on an assumption that each stage communicates on its
extend channel before it opens its own latch and asserts its own
output request signal. In particular, if the extend channel

indicates that the input data was invalid when the initial request
was asserted, the control circuit will delay both the opening of
the latch and the assertion of the output request by Δ as
illustrated in Figure 5. The timing violation is identified at the
falling edge of latch 2 and is used to delay the subsequent
opening of latch 3 by Δ.

The underlying assumption in this template is that the
previous stage knows if an error occurred before the short
delay line δ is completed. Otherwise, the controller would not
know whether or not to delay opening of the next latch.
Because the Err signal is sampled Δ time units after the short
delay line of length δ is triggered, this assumption can be
formally stated as Δ ≤ δ. More precisely, in order to use all of
the time Δ to capture a timing violation, δ ̶ Δ must be greater
than the propagation delay of the error and extend signals.

E. Blade-OC: Delay Opening or Closing of Latch

For systems with high-variance, the assumption of Blade-O
that Δ ≤ δ can limit average-case performance. That is, for
systems with high-variance the ideal nominal delay might be
significantly less than half of the worst-case delay. For such
systems, we propose a more complex Blade controller called
Blade-OC.

In Blade-OC, the communication channels between
controllers remain the same, but the controller itself becomes
more complex. Instead of checking the previous stage for
errors once, the Blade-OC controller makes two handshakes on
the extend channel with the previous stage’s controller. We
will first describe the second handshake, as the first handshake
is similar to Blade-O. Take for example the simple 3-stage

L.Data

L.Req

L.Ack

Speculative Committed

LE.Req

LE.Ack
No Extension

(a)

L.Data

L.Req

L.Ack

Speculative Committed

LE.Req

LE.Ack

Useful Calculation

Extension Needed

(b)

Figure 4. Two-Phase Speculative handshaking protocol when (a)

no timing error and (b) a timing error occurs

Latch
Out

Err

Error

Detector

Sampler w/

Metastability

Filter

CLK

In

Sample

EDL

Controller

Figure 3. General structure of Error Detecting Latch

pipeline in Figure 6. A request generated by Stage A arrives at
Stage B after δ. Stage B’s controller will accept the request and
speculatively open its latch while speculatively forwarding the
request to Stage C. Before the controller in Stage B closes its
latch, it will send a request on its LE channel to Stage A. If
Stage A has detected an error in its EDL, it will delay the
acknowledgement of the extend request by Δ, which in turn
delays the closing of Stage B’s latch by Δ. This allows enough
time for the correct data to propagate through the
combinational logic between A and B, through B’s latch, and
into the B to C datapath. However, the request from B to C has
already been speculatively sent at this time, so to ensure Stage
C latches the correct data, the opening of its latch must be
delayed in a manner similar to the Blade-O template. This is
implemented using an additional handshake on the LE channel
just as the request arrives through the nominal delay line.
When Stage C receives the request, it will initiate a handshake
on its LE channel to Stage B, which will then acknowledge the
extend channel quickly if its latch closed on time (no error in
Stage A) or Δ later if Stage A forced Stage B’s latch to close
late.

Stage

A

Comb.

Logic

Controller

Err

Δ

δ

Stage

B

Comb.

Logic

Controller

Err

Δ

δ

Stage

C

Comb.

Logic

Controller

Err

Δ

δ

Figure 6. Three Blade-OC stages in a pipeline

 Therefore, the difference between Blade-O and Blade-OC
is twofold. First, the controller must delay the closing of its
latch if the previous stage suffered an error. Second, the
controller must delay the opening of its latch if the previous
stage delayed the closing of its latch, or in other words, if an
error occurred two stages prior to the current stage.

The timing diagram of the Blade-OC template is illustrated
in Figure 7. A timing violation is identified at the falling edge
of latch 2. This causes both the subsequent falling edge of latch
3 as well as the rising edge of latch 4 to be delayed by Δ.
More specifically, latch 3’s controller sends an extend request
before closing latch 3, but latch 2’s controller will delay the
acknowledgement by Δ, forcing latch 3 to remain open for

another Δ. Latch 4’s controller then sends an extend request
to latch 3’s controller, which delays the acknowledgement by
Δ, forcing latch 4 to remain closed for an additional Δ.Notice
that the underlying assumption of the Blade-OC template is
that Δ ≤ 2δ which guarantees the subsequent blade controller
has time to delay the opening of its latch. In addition, we
assume delaying latch 3 by Δ is sufficient to satisfy our basic
SER assumption. Letting the delay of the three stages be d1, d2,
d3, with the same mean and variance, we assume that:

��{�3 + �2 + �5 ≤ 3δ + 2Δ} ≤ ��{�3 ≤ δ +Δ} (5)

 Because of this assumption, as in the Blade-O template, the
delay of a pipeline stage, as measured by the delay from input
request to output request, is either set to δ or to δ + Δ. The
difference is that the assertion of the extend signal from the
Blade-OC controller that causes this extension can arise when
the combinational delay of two stages back is larger than its
nominal delay δ.

Latch 1

Latch 2

Latch 3

Latch 4

Timing

Violation

Extend

Instruction 1

δ δ+Δ δ

Instruction 2

δ

Latch 5

Latch 6

Extend

δ δ

Figure 7. Timing diagram of the Blade-OC template

The advantage of Blade-OC over Blade-O is that the timing
requirement Δ ≤ 2δ is more relaxed than the Blade-O
requirement that Δ ≤ δ. In particular, it offers significantly
more flexibility in design because it allows the nominal delay
of a pipeline stage δ to be as little as 1/3 of the worst-case delay
δ + Δ.

In addition to a more complex controller, for the Blade-OC
system to hide hold time and backward delay overheads, every
loop in the design has to have at least three asynchronous
pipeline stages. Otherwise, when a timing violation occurs, the
stage that delays opening its latch would need to be further
delayed to avoid violating the hold times of its right
neighbor/predecessor whose latch closes much later. In a
typical translation from a flop-based synchronous design, this
means that each synchronous block of combinational logic
(making up one synchronous pipeline stage) would be finer-
grained pipelined into up to three blocks of logic, making up to
three back-to-back asynchronous pipeline stages. This is why

Latch 1

Latch 2

Latch 3

Latch 4

Timing

Violation

Extend

Instruction 1

δ δ+Δ δ

Instruction 2

δ

Figure 5. Timing diagram of the Blade-O template

Figure 7, the timing of a Blade-OC implementation of a 2-stage
synchronous pipeline, shows the timing of six latches. Each of
these stages will have its own bank of error-detecting latches.
This costs a significant amount of area and power and thus
should only be used when the higher resiliency to variations is
required. That said, another benefit of this more complex
architecture is that the nominal delay of each stage, δ, is now
one-third the nominal delay of the comparable synchronous
pipeline stage and thus the backward latency associated with
the asynchronous handshaking protocol can take up to two-
thirds of the nominal cycle time before becoming a bottleneck
to the nominal handshaking scenario. Given the backward
latency can often be reduced to a few gate delays (e.g., [29]),
this can be easy to meet in practice.

F. Petri Net of Blade-O Controller

The Blade-O controller can be automatically synthesized
using a number of techniques (e.g., [30] [31] [32] [33]). One
common method is to describe the controller as a Petri Net
(PN), which can be formally analyzed for correctness and
delay sensitivity. PNs can also be synthesized to library gates
and C-Elements using well-known methods and tools, such as
Petrify [31].

The PN in Figure 8 shows just one of many possible
realizations of the Blade-O controller. Unlabeled transitions
are internal states and shown only for completeness. Places
with delay due to the Blade protocol are labeled with Δ, while
unlabeled places have no additional delay. The place between
LE.req and LE.ack is labeled “0 or Δ ” to indicate the
environment’s variable delay of acknowledging the request on
the extend channel, which is dependent on an error occurring in
the previous stage, as described in Section III.C. This particular
implementation uses a dual-rail Err input to the controller,
which allows the stage to stall when resolving metastability as
explained in Section III.B. We have implemented and tested
this controller in behavioral Verilog to verify the protocol and
analyze its performance. Synthesizing the Blade-O controller
to gate-level PN is left for future work. In addition, the PN in
Figure 8 can be adapted to describe the Blade-OC controller
without much difficulty.

IV. Proposed	Improvements	

A. Reuse of Delay Lines

Delay lines are typically responsible for a significant
portion of the area overhead associated with bundled-data
designs. To mitigate this concern, we propose implementing
only two tunable delay lines per stage, Δ and δ. A careful
inspection of the Blade-O timing diagram will show that while
there is a possibility of using a total delay of 2Δ per stage in
the same cycle when an error occurs, each Δ delay occurs in
series and does not overlap. Therefore, a single Δ delay line
may be reused twice to implement the 2Δ delay.

Reusing delay lines in Blade-OC is not as straightforward.
A single Δ delay line per controller may be reused twice: once
to implement the initial resiliency window and a second time to
delay the closing of the next stage. However, a second Δ delay
line would be required to implement the Blade-O fallback
feature to prevent the opening of the next stage’s latch. With
enough effort, a smaller delay line that is an integer factor of Δ
may be used repeatedly to remove this extra delay line at the
cost of a more complex controller. Furthermore, by making
some reasonable timing assumptions, we may be able to
remove this requirement in an entirely different way, as
explained in the next section.

By the same argument, it may also be possible to re-use a
single, short delay line in conjunction with a counter to
repeatedly propagate signals through the delay line and create
both the Δ and δ delays required in both Blade-O and Blade-
OC. The tradeoff would once again be a more complex control Figure 8. Petri Net description of the Blade-O controller

scheme versus increased area due to multiple delay lines.
Depending on the implementation, fork-join structures between
stages may also be more complicated to realize.

B. Use local delay line

The operation of Blade-O and Blade-OC as described
Section III assumes that the Δ delay line used to detect an
error is the same delay used to extend the next stage. This
property allows for the value of Δ to vary amongst stages
while maintaining correct operation in all cases. If we relax this
requirement and assume all stages have roughly equal Δ
delays, it then becomes possible to use the local delay line in
each controller to implement the latch open/closing delays
instead of relying on the delayed acknowledgement of the
extend signal from the previous stage. For example, a Blade-
OC stage could use its internal Δ delay once when an error is
preventing the opening of its latch, again to regulate the width
of the timing resiliency window, and finally to delay the
closing of the latch when the previous stage detects an error.
This optimization also allows for simplification of the extend
channel, as it is no longer necessary to have a separate
acknowledgement signal.

C. Online Tuning of delay lines

We envision each delay line (Δ and δ) to be post-silicon
adjustable using well known techniques of building tunable
delay lines in combination with at-speed or built-in test circuits
[34] that monitor the collective or local error count in the
system by recording the Err signal produced by the EDLs.
Such a system could be activated infrequently to save power,
only retuning the delay lines when it is suspected operating
conditions have changed or at some predetermined regular rate.
The simplest approach would be maintaining a difference in
error count over a fixed period of time or number of
asynchronous cycles. If the error rate exceeds the optimal
threshold (as described in Section V), the delay between stages
could be lengthened to ensure peak performance. Likewise, if
the error rate is lower than expected, decreasing the delay of
the system will also improve performance. Other
implementations can be drawn from previous BIST and scan
circuitry that have been extensively studied to implement delay
testing in both synchronous [35] and asynchronous designs [36]
[37].

D. Alternative handshaking signals

The proposed templates utilize two two-phase channels on
each side of the controller for a total of 8 handshaking wires.
Many physical implementations are possible while still
implementing the same basic concept of the speculative
handshaking protocol. For example, altering the protocol to use
four-phase handshaking would be trivial.

Alternatively, the extend channel could also be flipped
around to operate as a push channel and implemented using
dual-rail signaling. Each stage would then send a “1” or “0” to
its right neighbor stage to indicate when an error occurs. In this
case, the subsequent controller must wait for a value to be
received on the extend channel before making a decision to
open the latch (Blade-O/OC) or close the latch (Blade-OC). In

this particular implementation, the main channel’s
acknowledgement signal could possibly be reused to
acknowledge both the normal request and the extend channel’s
data simultaneously, maintaining the same number of
handshaking wires (8) as the proposed design.

Furthermore, the extend channel could even be
implemented as a single wire with an associated timing
assumption (the value of Extend must be stable at the next
stage within δ time units), reducing the total number of wires
from 8 to 6; however, ensuring this design meets all required
timing assumptions can be difficult. It would also not be
possible to allow extra time for metastability to resolve in the
Q-Flop with a 1-bit extend signal.

V. Performance	Model	

A. Systematic error rate

The combination of δ and Δ should be set to ensure that all
errors are caught. As in the analysis of bubble-razor, since
normal/log-normal distributions do not have an upper limit, we
set a rule that the combination of δ and Δ should satisfy the
systematic error rate (SER). For example, in our results, we
assume SER ≤ 0.1%.

In an N-stage ring using the Blade-O template with 2N
latches, the equation that governs the SER is similar to that of
bubble-razor:

SER = 1 − 8�� 9δ	 + 	Δ	 ≤ :
2;<

2.
≤ 0.1% (6)

In N-stage ring using the Blade-OC systems with 3N latches,
the SER depends on a similar constraint

SER = 1 − 8�� 9δ +Δ	 ≤ :
5;	<

5.
≤ 0.1% (7)

Prob

Delay

Probility of

Timing violation

Logic Delay

Prob

Delay

δ δ+∆

δ δ+∆

Stage Delay

Pr (d≤δ)

1-Pr (d≤δ)

Figure 9. Two-valued discrete distribution of Blade

B. Optimal setting of the delay lines

A tradeoff in setting the delay lines emerges as decreasing δ
allows the system to operate faster in the case of no errors, but
the error rate increases so the subsequent pipeline stages spend
more time being delayed by an amount ∆. To quantify this
optimization problem, consider a delay distribution of a
combination logic block between two latches as shown in
Figure 9.

The area under the blue curve represents the probability
that an error in a Blade system occurs at a previous output
latch, referred to as p, such that the effective delay of this
pipeline stage is δ+∆. The area under the green curve is thus 1-
p. We propose to model the performance of a pipeline stage as
a discrete two-valued distribution as shown at the bottom of
Figure 9.

 It is important to notice that there is a fundamental tradeoff
between the mean and the variance of these distributions. As
described in Section II.D, because the weighted sum of δ and
Δ should be set to achieve the desired SER, increasing δ
causes the mean to increase and Δ to decrease. This decrease
reduces the difference between the two discrete delay values
and thus decreases the variance of the distribution. In complex
systems the optimal setting of these delays is an interesting
challenge, as latency-critical stages should be optimized to
minimize average delay whereas non-latency-critical stages
may be best set with a somewhat higher average delay that has
lower variance.

Ignoring the interaction between different tokens in the
ring, the optimal performance of an N-stage ring occurs when
each latch stage’s average-case delay is minimized. This can be
formulated as

Min δ (δ + p Δ) (8)

Modeling the impact of the interaction between different
tokens in the ring is left as future work.

Unfortunately, for normal and log-normal distributions this
expression involves a transcendental equation for which we
could find no closed form solution. However, for given
parameters, numerical solutions are readily achievable.

VI. Performance	Comparisons	
This section compares the performance of Blade to both

traditional synchronous and bubble-razor circuits. In particular,
as in [17], we examine an N-stage ring. The traditional circuits
have N flip-flops and bubble-razor and blade circuits have 2N
or 3N latches.

All designs are set to have the same 0.1% SER. Moreover,
without loss of generality we assume the nominal traditional
clock cycle time is 1.0. To maintain a fair comparison, as in
[17], the impact of the error/extend signal propagation delay on
the error detection window is ignored. As mentioned above, we
also assume the asynchronous ring is well pipelined such that
the local handshaking and interaction of tokens in the Blade
template is not a bottleneck.

Figure 10. Blade-O comparisons with normally distributed
delays

Figure 11. Blade-O comparisons with log-normally distributed
delays

Figure 12. Blade-O performance improvement versus variability

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

C

E
C

EC versus C

N = 1
N = 2
N = 3
N = 4

35%

23%

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

C

E
C

EC versus C

N = 1
N = 2
N = 3
N = 4

44.7%

13.1%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

σ/µ

A
ve

ra
ge

 T
h

ro
u

gh
p

ut
 Im

p
ro

m
e

nt
 (

%
)

Blade-O versus Bubble Razor & Traditional Sync

vs. BR (normal)

vs. Traditional (normal)
vs. BR (lognormal)

vs. Traditional (lognormal)

A. Blade-O comparisons

Figure 10 and Figure 11 compare the Blade-O template
with both traditional and BR when the underlying delays are
normally and log-normally distributed with a moderate amount
of variance (σ/µ = 0.2) for rings of one to four traditional
stages, i.e., N = 1 to 4. Curves corresponding to the same
number of stages are drawn with the same color.

The horizontal lines represent the performance of
traditional synchronous design restricted by the same SER.
The solid curves represent the performance of bubble razor.
Notice how the effective cycle time EC versus C curves have a
slope of 2 for small C because when C is small timing
violations always occur so that EC is twice as long as C. The
curve is colored grey when the error rate exceeds that of the
desired SER. The curve’s slope is 1 for a very large C when the
circuit is error-free. It is obvious that we should choose the
point with the least EC while ensuring C meets the SER. These
points are marked as large dots in Figure 10 and represent the
operation points that achieve the best performance of the BR
circuit for various ring lengths. The dashed somewhat v-shaped
curves represent the performance of the proposed Blade
template as a function of C = 2δ. For example, when δ = 0,
each stage always delays the next stage and the cycle time is δ
+ Δ. The gray portion of the dashed line represents the portion
of the line in which δ <Δ that as described in Section V.B is
not feasible. Figure 10 shows that for normal distributed delays
at this variance the improvement Blade provides for a 4-state
pipeline is 23% over bubble-razor and 35% over traditional
synchronous designs. Figure 11 shows that for log-normally
distributed delays with the same variance the improvement is
13.1% over bubble-razor and 44.7% over traditional
synchronous design.

Figure 12 plots the performance improvement of Blade-O
versus variance for a 4-stage (8-latch) ring. The chart shows
that, compared to bubble razor, the potential performance
improvement increases as the variance increases peaking at
about 20% with σ/µ of about 25%. At this variance the δ is
set such that the nominal delay is 65% of the worst-case delay.
This is in contrast to bubble razor that is forced to have the
nominal delay set to 50% of the worst-case delay. That is, at
this point, the timing margin offered by bubble-razor is larger
than it need be to achieve the SER. However, the performance
improvement for log-normal distributions drops as variances
further increase. This occurs because at such high-variances of
the heavy tail of the log-normal distribution forces Blade-O to
operate at its resilience limit, with its nominal delay δ set to
50% of the worst-case delay. In this region, Blade-O can offer
no additional tolerance to variation over bubble razor and the
improvement gains diminish.

B. Blade-OC comparisons

Comparisons of the Blade-OC templates show similar
trends for moderate variations. Figure 13 and Figure 14
compare the Blade-OC template with both traditional and BR
when the underlying delays are normally and log-normally
distributed with a moderate amount of variance (σ/µ = 0.2) for
rings of one to four traditional stages, i.e., N = 1 to 4. Note here
that the X-axis for Blade-OC is set such that C = 3δ.Note that
the systematic limits are higher than the Blade-O template

Figure 13. Blade-OC comparisons with normal distributions

Figure 14. Blade-OC comparisons with log-normal distributions

Figure 15. Blade-OC performance improvement versus
variability

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

C

E
C

EC versus C

N = 1
N = 2
N = 3
N = 4

23%

34%

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

C

E
C

EC versus C

N = 1
N = 2
N = 3
N = 4

50%

22%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140

160

σ/µ

A
ve

ra
ge

 T
hr

ou
gh

pu
t I

n
cr

ea
se

 (%
)

Blade-OC versus Bubble Razor & Traditional Sync

vs. BR (normal)
vs. Traditional (normal)
vs. BR (lognormal)
vs. Traditional (lognormal)

because of the presence of 3N latches instead of 2N. Also
notice how the Blade curves change from grey to non-grey at a
lower δ than in the Blade-O template. This is because this
template allows for the nominal delay δ to be as little as 1/3rd of
the worst-case delay δ + Δ.

This extra flexibility helps when the design has high
variability. To illustrate this, Figure 15 shows how the
performance improvement of Blade-OC varies over a wide
range of variances for a 4-stage (12-latch) ring. Unlike the
Blade-O template, the performance improvement does not drop
with higher variability. It is this region of the curve where the
optimal nominal delay δ is less than ½ of the total delay δ + Δ.

VII. Conclusions	and	Future	Work	

This paper proposes two novel asynchronous design
templates that use a bundled-data datapath with error-detecting
latches as well as a new speculative handshaking paradigm that
allows high average-case performance while maintaining low
systematic error rates. The paper analytically compares the
performance of this template with both traditional synchronous
designs and the state-of-the-art synchronous resiliency strategy
Bubble Razor for both normal and log-normally distributed
delays. Our results demonstrate the potential benefit of our
approach is significant.

Our future work includes gate-level designs of the proposed
controllers and delay lines. Minimizing their complexity will
be critical when trying to translate the performance
improvements into power savings.

We believe that the benefits of the proposed template
extend beyond that of the potential performance improvements
shown in this paper. Namely, the observability that the
proposed error-detecting latches provide offers several other
advantages. First, the error signal not only can guide on-line
tuning of the delay lines during test but also can enable on-the-
fly re-configuration of the delay lines to account for temperate
variations, aging, and/or changing workloads. Secondly, the
increased observability and resilience makes the use of more
complex delay lines whose delays depend on other data
signals such as op-codes (e.g., Speculative Completion
Sensing [38]) more practical, offering additional opportunities
to optimize for the average case. Lastly, these templates
inherently provide resilience to single event upsets in the
datapath and assuming the control circuits can be efficiently
designed to be single-event-upset tolerant, they can enable
comprehensive resilience at a reasonable cost.

VIII. References	

[1] T. Sato and Y. Kunitake, "A Simple Flip-Flop Circuit for Typical-Case
Designs for DFM," in 8th International Symp. on Quality Electronic
Design (ISQED), 2007.

[2] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D.
Blaauw, T. Austin, K. Flautner and T. Mudge, "Razor: A low-power
pipelined based on circuit-level timing speculation," in Proc. 36th
IEEE/ACM Int'l. Symp. on Microarchitecture (Micro-36), 2003.

[3] S. Kim, I. Kwon, D. Fick, M. Kim, Y.-P. Chen and D. Sylvester, "Razor-
lite: A side-channel error-detection register for timing-margin recovery
in 45nm SOI CMOS," in ISSCC, 2013.

[4] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw and D.
Sylvester, "Bubble Razor: An Architecture-independent Approach to
Timing-error Detection and Correction," in ISSCC, 2012.

[5] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw and D.
Sylvester, "Bubble Razor: Eliminating Timing Margins in an ARM
Cortex-M3 Processor in 45 nm CMOS Using Architecturally
Independent Error Detection and Correction," IEEE Journal of Solid-
State Circuits, vol. 48, no. 1, pp. 66-81, 2013.

[6] I. J. Chang, S. P. Park and K. Roy, "Exploring Asynchronous Design
Techniques for Process-Tolerant and Energy-Efficient Subthreshold
Operation," IEEE Journal of Solid State Circuits, vol. 45, pp. 401-410,
2010.

[7] C. Junchao, C. Kwen-Siong, G. Bah-Hwee and J. S. Chang, "An Ultra-
low Power Asynchronous Quasi-delay-insensitive (QDI) Sub-threshold
Memory with Bit-interleaving and Completion Detection," in 8th IEEE
Int'l. NEWCAS Conference (NEWCAS), 2010.

[8] C. I. Joon, P. S. Phill and K. Roy, "Exploring Asynchronous Design
Techniques for Process-Tolerant and Energy-Efficient Subthreshold
Operation," IEEE Journal of Solid-State Circuits, vol. 45, pp. 401-410,
2010.

[9] P. A. Beerel, R. O. Ozdag and M. Ferretti, A Designer's Guide to
Asynchronous VLSI, Cambridge University Press, 2010.

[10] I. E. Sutherland, "Micropipelines," Communications of the ACM, vol. 32,
pp. 720-738, 1989.

[11] J. Cortadella, A. Kondratyev, L. Lavagno and C. P. Sotiriou,
"Desynchronization: Synthesis of Asynchronous Circuits From
Synchronous Specifications," IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, p. and Systems, 2006.

[12] N. Jayakumar, R. Garg, B. Gamache and S. P. Khatri, "A PLA-based
Asynchronous Micropipelining Approach for Subthreshold Circuit
Design," in 43rd ACM/IEEE Design Automation Conf., 2006.

[13] J. Liu, S. Nowick and M. Seok, "Soft MOUSETRAP: A Bundled-Data
Asynchronous Pipeline Scheme Tolerant to Random Variations at Ultra-
Low Supply Voltages," in IEEE International Symp. on Asynchronous
Circuits and Systems (ASYNC), 2013.

[14] O. C. Akgun, Y. Leblebici and E. A. Vittoz, "Current Sensing
Completion Detection for Subthreshold Asynchronous Circuits," in 18th
European Conf. on Circuit Theory and Design (ECCTD), 2007.

[15] L. Tsung-Te, L. P. Alarcon, M. D. Pierson and J. M. Rabaey,
"Asynchronous Computing in Sense Amplifier-Based Pass Transistor
Logic," in IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
2009.

[16] C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull and D.
Blaauw, "Razor II: In Situ Error Detection and Correction for PVT and
SER Tolerance," IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp.
32-48, 2009.

[17] G. Zhang and P. A. Beerel, "Stochastic Analysis of Bubble Razor," in
Design, Automation & Test in Europe Conf., 2014.

[18] B. Zhai, S. Hanson, D. Blaauw and D. Sylvester, "Analysis and
Mitigation of Variability in Subthreshold Design," in ISLPED, 2005.

[19] A. Chandrakasan and J. Kwong, "Variation-driven Device Sizing for
Minimum Energy Sub-threshold Circuits," in ISLPED, 2006.

[20] T.-T. Liu and J. Rabaey, "Statistical Analysis and Optimization of
Asynchronous Digital Circuits," in 18th IEEE International Symp. on
Asynchronous Circuits and Systems (ASYNC), 2012.

[21] Y. S. Schwartz and S. C. Yeh, "On the Distribution Function and
Moments of Power Sums with Log-normal Components," Bell Syst.
Tech. J., vol. 61, no. 7, 1982.

[22] A. J. Drake, A. Kleinosowski and A. K. Martin, "A Self-Correcting Soft
Error Tolerant Flop-Flop," in 12th NASA Symp. on VLSI Design, Coeur
d’Alene, 2005.

[23] A. Jagirdar, R. Oliveira and T. J. Chakraborty, "Efficient Flip-Flop
Designs for SET/SEU Mitigation with Tolerance to Crosstalk Induced
Signal Delays," in IEEE Workshop Silicon Errors Logic System Effects,
2007.

[24] R. Naseer and J.Draper, "The DF-dice storage element for immunity to
soft errors," in 48th Midwest Symp. on Circuits and Systems, 2005.

[25] M. Choudhury, V. Chandra, K. Mohanram and R. Aitken, "TIMBER:
Time borrowing and error relaying for online timing error resilience," in
Design, Automation & Test in Europe Conf. & Exhibition (DATE), 2010.

[26] K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S. Lu, T.
Karnik and V. De, "Energy-Efficient and Metastability-Immune Resilient
Circuits for Dynamic Variation Tolerance," IEEE Journal of Solid State
Circuits, vol. 44, no. 1, pp. 49-63, 2009.

[27] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull
and D. Blaauw, "RazorII: In Situ Error Detection and Correction for PVT
and SER Tolerance," IEEE Journal of Solid State Circuits, vol. 44, no. 1,
pp. 32-48, 2009.

[28] F. U. RosenBerger, C. E. Molnar, T. J. Chaney and T.-P. Fang, "Q-
Modules: Internally Clocked Delay Insensitive Modules," IEEE
Transactions on Computers, vol. 37, no. 9, pp. 1005-1018, 1988.

[29] M. Singh and S. Nowick, "MOUSETRAP: Ultra-high-speed Transition-
signaling Asynchronous Pipelines," IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, vol. 16, no. 6, pp. 684-698, 2007.

[30] P. Beerel, C. Myers and T. Meng, "Covering Conditions and Algorithms
for the Synthesis of Speed-Independent Circuits," IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no.
3, pp. 205-219, 1998.

[31] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A.
Yakovlev, "Methodology and Tools For State Encoding In
Asynchronous Circuit Synthesis," in Design Automation Conference,
1996.

[32] R. M. Fuhrer, S. M. Nowick and M. Theobald, "Minimalist: An
Environment for the Synthesis, Verification, and Testability of Burst-
Mode Asynchronous Machines," CUCS-020-99, Columbia University,
NY, 1999.

[33] K. Y. Yun and D. L. Dill, "Automatic Synthesis of Extended Burst-Mode
Circuits: Part II (Automatic Synthesis)," IEEE Trans. Computer-Aided
Design, vol. 18, no. 2, pp. 118-132, 1999.

[34] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems
Testing and Testable Design, Wiley, 1994.

[35] B. I. Dervisoglu and G. E. Stong, "Design for Testability using Scanpath
Techniques for Path-Delay Test and Measurement," in Int'l. Test Conf.,
1991.

[36] O. A. Petlin and S. B. Furber, "Built-in Self-testing of Micropipelines,"
in Third International Symp. on Advanced Research in Asynchronous
Circuits and Systems, 1997.

[37] M. Krstic and E. Grass, "BIST Technique for GALS systems," in 8th
Euromicro Conf. on Digital System Design, 2005.

[38] S. M. Nowick, "Design of a Low-latency Asynchronous Adder using
Speculative Completion," IEE Proceedings, vol. 143, no. 5, pp. 301-307,
1996.

