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Abstract—This paper proposes a novel asynchronous 
design template, Blade, that uses single-rail logic, a 
reconfigurable delay line, and error detecting latches to reliably 
detect and recover from timing violations due to process 
variations and delay faults of single event upsets. The template 
employs a novel speculative handshaking paradigm that 
improves average-case performance by taking advantage of the 
fact that errors occur with low probability.  We will 
analytically compares the performance of this template with 
both traditional synchronous designs and the state-of-the-art 
synchronous resiliency strategy Bubble Razor. Our results 
demonstrate the potential benefit of our approach as well as 
provide insight into how asynchronous designs should be 
optimized to achieve these benefits. 

Keywords—Resilient design, variability, performance analysis. 

I.  Introduction 
Traditional synchronous design must incorporate timing 

margin to ensure the correct operation under worst-case delay 
conditions. However, the ongoing increase in process variation 
compounded with aging effects is causing progressively larger 
delay variations, requiring more substantial timing margins 
reducing the performance and energy efficiency of traditional 
designs. To address this problem, many synchronous design 
techniques for resilient designs have been proposed that 
address delay variations. For example, canary FFs predict when 
the design is close to a timing failure (see e.g., [1]). Designs 
can then adjust their supply voltage or clock frequency either 
statically or dynamically to ensure correct operation at the edge 
of failure. In addition, Razor circuits [2] [3] [4] [5] have been 
proposed that feature in situ timing violation detection 
mechanisms, which allow recovery from timing errors via 
architectural replay or automatic pipeline stalling, further 
reducing margin.   

Asynchronous circuits have been identified as a potentially 
more effective approach, particularly in the near-threshold 
regime (see e.g., [6] [7] [8]). The basic difference between 
asynchronous and synchronous design is that asynchronous 
designs utilize additional circuitry that indicates when 
individual blocks have finished computing instead of a global 
clock signal. There are two common asynchronous design 
styles that achieve this goal in very different manners. The first 
relies on dual-rail quasi-delay-insensitive (QDI) logic to embed 
the completion signal into the data representation. The basic 
problem with this design style is that implementations are 
much larger than the synchronous counterpart (often 4x larger) 
and have very high switching activity due to a return to zero 
paradigm (see e.g., [9]). The second design style, bundled-data 
(or micropipelines [10]), relies on delay lines that are matched 
to individual clouds of combinational single-rail logic. The 
advantage of this approach is that the switching activity within 
a logic cloud is essentially the same as in synchronous design 
and can be quite low. Moreover, the total area of the delay lines 
is similar to that of a clock tree and thus the overall area of 
bundled-data style is comparable to that of synchronous 
designs (see e.g., [11]). The Achilles heel of this design style is 
that the delay line must be conservatively designed to be longer 

than its corresponding logic under all possible process, 
temperature, and voltage corners. Consequently, in the 
presence of aggregated on-chip variations in the near threshold 
domain, the delay lines must be implemented with huge 
margins, taking away most if not all the advantages of 
asynchronous design.   

The ideal ultra-low-power asynchronous design style would 
have the area close to that of bundled-data with the variation-
tolerance and high-performance of QDI designs, and for many 
years this has been an elusive goal of asynchronous 
researchers. Researchers have proposed bundled-data designs 
coupled with layout techniques to mitigate variability such as 
duplicating the bundled-data delay lines [8] and constraining 
the design to regular structures such as PLAs [12] and soft 
latches [13]. Others suggest current-based completion sensing 
techniques (e.g., [14] [15]) that rely on analog current sensors 
that are themselves tricky to design when there is high 
transistor variability. 

Our proposed approach is an all-digital asynchronous 
design template, Blade, which uses re-configurable delay lines 
that can be tuned and optimized to mitigate the impact of delay 
variations. The template consists of single-rail logic, 
reconfigurable delay lines, and razor-like [2] latches with 
asynchronous sampling circuitry that reliably handles errors 
even under the presence of metastability. The template 
employs a novel speculative handshaking paradigm that 
improves average-case performance by taking advantage of the 
fact that errors will have a low probability of occurrence.  

The focus of this paper is to introduce the Blade template, 
characterize its unique features, and provide useful future 
extensions to this work and the tradeoffs involved in different 
design decisions. We will also provide an analytical model to 
quantify Blade’s benefit over both traditional synchronous 
designs and the state-of-the-art synchronous resiliency strategy 
Bubble Razor. Finally, we will compare these analytical 
models to a Verilog model of the proposed template. 

The remainder of this paper is organized as follows. Section 
2 provides relevant background on Bubble Razor and its 
performance. Section 3 provides details of our proposed 
templates and their operation. Section 4 describes potential 
improvements to the Blade template. Sections 5 and 6 explain 
our model of performance and quantifies the potential benefits 
over both traditional synchronous design and Bubble Razor. 
Section 7 summarizes our results and outlines future work.  

II. Background 
A. Bubble Razor 

Bubble Razor (BR) inherits the features of previous Razor 
techniques enabling real-time error detection and correction [4] 
[5]. Unlike other Razor architecture, it is based on a two-phase 
latch-based design, in which each traditional flip-flop is 
replaced with two latches that undergo retiming to have 
approximately equal amount of logic between each latch. It 
uses a novel bubble propagation algorithm that makes the 
approach applicable to any architecture and enables the 



automatic application of this technique to legacy flip-flop 
based RTL designs, significantly reducing barriers to adoption. 

Bubble Razor flags a timing violation when the data 
arriving at a latch varies after the latch opens using an error 
detecting latch (EDL). Upon detecting a timing violation, the 
circuit automatically recovers by stalling the subsequent latch, 
giving it an additional clock cycle to process the data. Half of 
the additional clock cycle is used to compensate for the 
unexpectedly large delay from the previous latch and the other 
half accounts for the delay from the current latch to the 
subsequent one. Thus timing violations are corrected as long as 
the real delay of each half clock-cycle step never exceeds one 
clock cycle of time. 

However to ensure correct operation, stalling the 
subsequent latch is not sufficient. Upstream stages must be 
stalled to ensure valid data is not overrun and downstream 
stages must be stalled to ensure corrupt data is not accidently 
interpreted as valid. Previous Razor structures use counter-flow 
pipelining or architectural replay to recover from the stall [2] 
[16]; however, both techniques require the RTL to be designed 
with Razor in mind. The latch-based scheme in BR enables an 
automatic local stall propagation algorithm.  

Consider the 2-stage ring in Figure 1 that consists of 4 
latches with associated clock gating logic that implements the 
stall propagation algorithm. A timing violation causes an error 
signal to be sent to its Right Neighbor (RN) to tell it to stall. 
Then, the stalling spreads both forward and backward 
directions around the ring in a wave-like pattern. For example, 
in Figure 1, the timing violation occurs in latch 2 and this 
triggers a stall in latch 3. The clock gating logic for latch 3 then 
spreads the stall forward to stage 4 and backward to latch 2. 
Clock gating logic that receives stalls from both directions 
terminates the spreading of stalls. This is called stall 
annihilation.  For example, in Figure 1, the stall is terminated 
by the clock gating logic of latch 1 because it receives stalls 
from both of its neighbors, i.e., latches 2 and 4. 

Unlike other Razor schemes, one significant weakness of 
Bubble Razor is that it does not consider the impact of 
metastability in the error detecting logic. As the shadow latch 
closes at a time when errors are expected to happen at some 
frequency, metastability at the output of the shadow latch may 
occur. The metastable state may propagate through the error 
detection logic (XOR followed by a dynamic OR gate). If this 
state persists for longer than half a clock cycle, it will be 
latched into the control logic resulting in a system failure. This 
oversight significantly reduces the mean time before failure for 
many applications.   

B. Performance analysis of Bubble Razor 

To analyze the performance of Bubble Razor, the bubble 
propagation algorithm can be modeled using a Markov Chain. 
In particular, [17] considered an N-stage ring containing 2N 
latches with no primary inputs or outputs. There are two 
categories of states for a latch (and its corresponding clock 
gating logic): working and stalling. In a working state, the latch 
closes and opens normally in the current cycle. A latch in a 
stalling state does not open which prevents new data from 
propagating and keeps the output fixed in during the clock 

cycle. In other words, a latch can pass data only when it is in a 
working state. 

 The authors in [17] model the timing cost for error 
correction with the notion of an Effective Clock Cycle Time 
defined as the average time to process each instruction. 
Consider M clock cycles with a real clock cycle time C and a 
total time period of	M ∗ C. The effective clock cycle time (EC) 
can be expressed as follows: 

�� = � ∗ �
� ∗ 	(��
����) =

�
	(��
����) (1) 

where π(working)  is the steady state probability of a latch 
being in a working state obtained from their Markov Chain 
analysis. 

It may be insightful to review the lower and upper bounds 
on EC. If every combinational cloud delay is shorter than half a 
clock cycle time (0.5C), no timing violation happens. This 
means π(working) = 1 and consequently the lower bound on 
EC = C. The upper bound on EC occurs when all 
combinational cloud delays are longer than 0.5C, but shorter 
than C to guarantee the circuit’s correctness. In this case, 
	(��
����) = 0.5 because every latch of the circuit stalls and 
works alternately, making EC = 2C. 

C. Delay Distribution 

Based on the Markov Chain model, EC can be expressed as 
a function of C (real clock cycle time), p (probability of timing 
violation for a latch) and N (number of stages referring to 2N 
latches in BR or N registers in traditional register-based 
circuits). It’s obvious that p is influenced by C. The variable d 
is used to represent the real delay of a step, i.e., the logic delay 
from one latch to its Right Neighbor. So p can be expressed as 
follows: 

� = ��{� >
�
2} 

(2) 

 When considering process variation and aging, the variable 
d is a random variable with some distribution. We follow the 
approach in [17] and consider two different distributions – 

 
 

Figure 1. Bubble Razor block and timing diagrams 



normal and log-normal. Both require only two variables to 
describe them, i.e. a mean μ and standard deviation	σ. The log-
normal distribution has a heavy tail that has a basis in the 
underlying technology in near-threshold domains [18] [19]. 

In particular, we will explore the performance of 
traditional, bubble-razor, and Blade circuits with different 
amounts of variability, as quantified by different σ/μ ratios. 
The larger this ratio is, the higher the variation. However, when 
comparing BR and blade circuits to traditional synchronous 
circuits, i.e. circuits in which there is no dynamic error 
correction mechanism, we must also compare distributions for 
circuits that have different delay lengths, which is correlated to 
different mean delay lengthμ . Fortunately, reference [20] 
observes that for die-to-die variations σ/μ ratio is almost a 
constant for different logic depths, i.e. different delay lengths. 
For circuits with significant within-die variation, on the other 
hand, σ/μ ratio decreases for longer paths, i.e., larger μ (e.g., 
see [20]). Moreover to analyze the lower bound of C, it will 
also be important to reason about the distribution of the sum of 
two normal/log-normal variables. References [19] [21] prove 
that it is reasonable to use another normal/log-normal variable 
to represent the sum of two normal/log-normal variables. 

D. Bubble Razor Systematic Error Rate 

It is important to recognize that C cannot be too small 
because bubble razor must guarantee that every actual delay 
between adjacent latches must be shorter than one clock cycle 
or the additional timing compensation would not be sufficiently 
long to ensure correctness. Since normal/log-normal 
distributions do not have an upper limit, the authors set a rule 
that the systematic error rate (SER) should be smaller than 
some small fixed amount. For example, in their results, they 
assume SER ≤ 0.1%.  

When comparing BR circuits to their traditional circuits, 
the authors ensure that their SER is the same. For traditional 
circuits, SER is calculated as: 

&�' = 1 − [��{+ ≤ �}]. ≤ 0.1% (3) 

where D is a random variable with a mean twice as much as 
that of d, the delay between neighboring latches in BR circuits. 
For BR circuits, reference [17] showed that the error rate could 
be conservatively estimated to be 

1 − [��{� ≤ �}]2. ≤ 0.1% (4) 

III. Proposed Blade Templates 
A. Template Overview 

The proposed Blade templates are based on the pipeline 
block diagram shown in Figure 2. The templates use single-
rail logic followed by error detecting latches and two 
reconfigurable delay lines. The first delay line is of length δ 
and controls when the error-detecting latch first samples the 
data at the output of the combinational logic. In particular, it 
samples the data δ time units after the input request is received 
assuming no error has occurred in the previous stage.  
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Figure 2. The Blade template 

 The second delay line is of length Δ and defines a time 
window during which errors are allowed, referred to as the 
resiliency window. If the combinational output changes during 
the resiliency window, the latches flag a timing violation by 
asserting the Err signal, which is sampled by the controller. 
The asynchronous control circuit then uses a novel protocol to 
communicate with its right neighbors to recover from the error 
by delaying the opening of the next latch until the new data has 
propagated through the combinational logic, as will be 
described in more detail later. 

 Each stage has four asynchronous channels that operate 
using a two-phase protocol. The first channel, L, is a typical 
bundled-data channel, comprised of Req, Ack, and Data. The 
second channel, LE, is a pull channel the handshaking 
controller uses to check if the previous stage suffered an error. 
It too has a Req and Ack, but no data value is required. Two 
additional channels, R and RE, will become the L and LE of 
the next stage.  

B. Error Detecting Latch 

 As in bubble-razor [4], we propose using error-detecting 
latches that detect if signals are not valid upon the latch going 
transparent, and if so, generate an associated error signal to the 
controller. The latched value is valid as long as the data 
becomes valid before the latch becomes opaque. In other 
words, the pulse width of the latch, Δ, determines how much 
timing resiliency is allowed.  

 While there are many possible implementations of EDLs 
(e.g., [3] [22] [23] [24] [25] [26] [27] ), we will focus on 
latches with the following properties: 1. The EDL is more 
sensitive than the combinational logic datapath to ensure small 
glitches are properly recorded as errors; 2. Once an error is 
detected, the Err signal will stay asserted for the remainder of 
the clock period; and 3. The latch will not enter a metastable 
state during the resiliency window. The TDTB latch in [26], 
with some minor modifications, fits these criteria. A general 
structure of an EDL is shown in Figure 3, consisting of a latch, 
error detector, and sampling circuit.  

Metastability (MS) in the latch is not a concern as we will 
ensure Δ is set sufficiently large as to avoid sampling while 
the datapath is still evaluating. However, the possibility of the 
error signal itself becoming MS cannot be avoided. Therefore, 
a sampling circuit is used to ensure the Err output is always 
stable, even in the presence of MS, by coupling it with a MS 



filter. MS filters are typically implemented using dual-rail 
outputs that remain neutral until MS has resolved. An example 
of such a circuit is the Q-Flop [28]. In rare cases, the output of 
the Q-Flop will take a long time to resolve while either its 
internal nodes are metastable due to an input transition as the 
flop closes or if the input itself is metastable. In a robust 
synchronous design, this resolution delay would translate into 
increased margins or extra clock cycles and synchronizers to 
wait-out this rare occurrence. However, because our design is 
asynchronous, it will gracefully wait for the MS state to resolve 
before allowing the next stage to open its latch, effectively 
stalling the stage and ensuring correct operation. 

C. Speculative Handshaking Protocol 

 The proposed Blade template implements a new form of 
asynchronous handshaking called speculative handshaking, 
illustrated in Figure 4. A request signal between blocks is 
speculatively asserted assuming the delay line of length δ is 
sufficiently long and no timing violation occurs. A secondary 
extend channel, LE in Figure 2, is used to relay the error signal 
to the next stage which indicates if this assumption was 
incorrect and a violation was detected. Using this return 
channel, the previous stage, which in error, is in control of how 
long the next stage will need to wait for a clean data input. To 
implement this delay, we make use of the Req/Ack handshake 
that occurs on the extend channel. More specifically, the delay 
in receiving a request on the extend channel to sending an 
acknowledgement is variable: when no error occurs, the delay 
will be zero and the acknowledgement occurs immediately, 
while the acknowledgement will be delayed by Δ  when a 
timing violation has occurred, as illustrated in Figure 4(a) and 
(b), respectively.  

We propose two templates that employ these two delay 
lines differently. The first template called Blade-O is designed 
to tolerate mild to moderate variations and the second template 
called Blade-OC is designed to tolerate higher variations. 

D. Blade-O: Delay Opening of Latch 

The simplest Blade controller, referred to as Blade-O, is 
based on an assumption that each stage communicates on its 
extend channel before it opens its own latch and asserts its own 
output request signal. In particular, if the extend channel 

indicates that the input data was invalid when the initial request 
was asserted, the control circuit will delay both the opening of 
the latch and the assertion of the output request by Δ  as 
illustrated in Figure 5. The timing violation is identified at the 
falling edge of latch 2 and is used to delay the subsequent 
opening of latch 3 by Δ. 

The underlying assumption in this template is that the 
previous stage knows if an error occurred before the short 
delay line δ is completed. Otherwise, the controller would not 
know whether or not to delay opening of the next latch. 
Because the Err signal is sampled Δ time units after the short 
delay line of length δ is triggered, this assumption can be 
formally stated as Δ ≤ δ.  More precisely, in order to use all of 
the time Δ to capture a timing violation, δ  ̶ Δ must be greater 
than the propagation delay of the error and extend signals. 

E. Blade-OC: Delay Opening or Closing of Latch 

For systems with high-variance, the assumption of Blade-O 
that Δ ≤ δ can limit average-case performance. That is, for 
systems with high-variance the ideal nominal delay might be 
significantly less than half of the worst-case delay. For such 
systems, we propose a more complex Blade controller called 
Blade-OC.  

In Blade-OC, the communication channels between 
controllers remain the same, but the controller itself becomes 
more complex. Instead of checking the previous stage for 
errors once, the Blade-OC controller makes two handshakes on 
the extend channel with the previous stage’s controller. We 
will first describe the second handshake, as the first handshake 
is similar to Blade-O. Take for example the simple 3-stage 
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pipeline in Figure 6. A request generated by Stage A arrives at 
Stage B after δ. Stage B’s controller will accept the request and 
speculatively open its latch while speculatively forwarding the 
request to Stage C. Before the controller in Stage B closes its 
latch, it will send a request on its LE channel to Stage A. If 
Stage A has detected an error in its EDL, it will delay the 
acknowledgement of the extend request by Δ, which in turn 
delays the closing of Stage B’s latch by Δ. This allows enough 
time for the correct data to propagate through the 
combinational logic between A and B, through B’s latch, and 
into the B to C datapath. However, the request from B to C has 
already been speculatively sent at this time, so to ensure Stage 
C latches the correct data, the opening of its latch must be 
delayed in a manner similar to the Blade-O template. This is 
implemented using an additional handshake on the LE channel 
just as the request arrives through the nominal delay line. 
When Stage C receives the request, it will initiate a handshake 
on its LE channel to Stage B, which will then acknowledge the 
extend channel quickly if its latch closed on time (no error in 
Stage A) or Δ later if Stage A forced Stage B’s latch to close 
late. 
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 Therefore, the difference between Blade-O and Blade-OC 
is twofold. First, the controller must delay the closing of its 
latch if the previous stage suffered an error. Second, the 
controller must delay the opening of its latch if the previous 
stage delayed the closing of its latch, or in other words, if an 
error occurred two stages prior to the current stage. 

The timing diagram of the Blade-OC template is illustrated 
in Figure 7. A timing violation is identified at the falling edge 
of latch 2. This causes both the subsequent falling edge of latch 
3 as well as the rising edge of latch 4 to be delayed by Δ. 
More specifically, latch 3’s controller sends an extend request 
before closing latch 3, but latch 2’s controller will delay the 
acknowledgement by Δ, forcing latch 3 to remain open for 

another Δ.  Latch 4’s controller then sends an extend request 
to latch 3’s controller, which delays the acknowledgement by 
Δ, forcing latch 4 to remain closed for an additional Δ.Notice 
that the underlying assumption of the Blade-OC template is 
that Δ ≤ 2δ which guarantees the subsequent blade controller 
has time to delay the opening of its latch. In addition, we 
assume delaying latch 3 by Δ is sufficient to satisfy our basic 
SER assumption. Letting the delay of the three stages be d1, d2, 
d3, with the same mean and variance, we assume that: 

��{�3 + �2 + �5 ≤ 3δ + 2Δ} ≤ ��{�3 ≤ δ +Δ} (5) 

 Because of this assumption, as in the Blade-O template, the 
delay of a pipeline stage, as measured by the delay from input 
request to output request, is either set to δ or to δ + Δ. The 
difference is that the assertion of the extend signal from the 
Blade-OC controller that causes this extension can arise when 
the combinational delay of two stages back is larger than its 
nominal delay δ.  
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Figure 7. Timing diagram of the Blade-OC template 

The advantage of Blade-OC over Blade-O is that the timing 
requirement Δ  ≤ 2δ is more relaxed than the Blade-O 
requirement that Δ ≤ δ. In particular, it offers significantly 
more flexibility in design because it allows the nominal delay 
of a pipeline stage δ to be as little as 1/3 of the worst-case delay 
δ + Δ.   

In addition to a more complex controller, for the Blade-OC 
system to hide hold time and backward delay overheads, every 
loop in the design has to have at least three asynchronous 
pipeline stages. Otherwise, when a timing violation occurs, the 
stage that delays opening its latch would need to be further 
delayed to avoid violating the hold times of its right 
neighbor/predecessor whose latch closes much later.  In a 
typical translation from a flop-based synchronous design, this 
means that each synchronous block of combinational logic 
(making up one synchronous pipeline stage) would be finer-
grained pipelined into up to three blocks of logic, making up to 
three back-to-back asynchronous pipeline stages. This is why 
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Figure 5. Timing diagram of the Blade-O template 



Figure 7, the timing of a Blade-OC implementation of a 2-stage 
synchronous pipeline, shows the timing of six latches. Each of 
these stages will have its own bank of error-detecting latches. 
This costs a significant amount of area and power and thus 
should only be used when the higher resiliency to variations is 
required. That said, another benefit of this more complex 
architecture is that the nominal delay of each stage, δ, is now 
one-third the nominal delay of the comparable synchronous 
pipeline stage and thus the backward latency associated with 
the asynchronous handshaking protocol can take up to two-
thirds of the nominal cycle time before becoming a bottleneck 
to the nominal handshaking scenario.  Given the backward 
latency can often be reduced to a few gate delays (e.g., [29]), 
this can be easy to meet in practice. 

F. Petri Net of Blade-O Controller 

The Blade-O controller can be automatically synthesized 
using a number of techniques (e.g., [30] [31] [32] [33] ). One 
common method is to describe the controller as a Petri Net 
(PN), which can be formally analyzed for correctness and 
delay sensitivity. PNs can also be synthesized to library gates 
and C-Elements using well-known methods and tools, such as 
Petrify [31].  

The PN in Figure 8 shows just one of many possible 
realizations of the Blade-O controller. Unlabeled transitions 
are internal states and shown only for completeness. Places 
with delay due to the Blade protocol are labeled with Δ, while 
unlabeled places have no additional delay. The place between 
LE.req and LE.ack is labeled “0 or Δ ” to indicate the 
environment’s variable delay of acknowledging the request on 
the extend channel, which is dependent on an error occurring in 
the previous stage, as described in Section III.C. This particular 
implementation uses a dual-rail Err input to the controller, 
which allows the stage to stall when resolving metastability as 
explained in Section III.B. We have implemented and tested 
this controller in behavioral Verilog to verify the protocol and 
analyze its performance. Synthesizing the Blade-O controller 
to gate-level PN is left for future work. In addition, the PN in 
Figure 8 can be adapted to describe the Blade-OC controller 
without much difficulty.   

IV. Proposed	Improvements	

A. Reuse of Delay Lines 

Delay lines are typically responsible for a significant 
portion of the area overhead associated with bundled-data 
designs. To mitigate this concern, we propose implementing 
only two tunable delay lines per stage, Δ and δ. A careful 
inspection of the Blade-O timing diagram will show that while 
there is a possibility of using a total delay of 2Δ per stage in 
the same cycle when an error occurs, each Δ delay occurs in 
series and does not overlap. Therefore, a single Δ delay line 
may be reused twice to implement the 2Δ delay.  

Reusing delay lines in Blade-OC is not as straightforward. 
A single Δ delay line per controller may be reused twice: once 
to implement the initial resiliency window and a second time to 
delay the closing of the next stage. However, a second Δ delay 
line would be required to implement the Blade-O fallback 
feature to prevent the opening of the next stage’s latch. With 
enough effort, a smaller delay line that is an integer factor of Δ 
may be used repeatedly to remove this extra delay line at the 
cost of a more complex controller. Furthermore, by making 
some reasonable timing assumptions, we may be able to 
remove this requirement in an entirely different way, as 
explained in the next section. 

By the same argument, it may also be possible to re-use a 
single, short delay line in conjunction with a counter to 
repeatedly propagate signals through the delay line and create 
both the Δ and δ delays required in both Blade-O and Blade-
OC. The tradeoff would once again be a more complex control Figure 8. Petri Net description of the Blade-O controller 



scheme versus increased area due to multiple delay lines. 
Depending on the implementation, fork-join structures between 
stages may also be more complicated to realize. 

B. Use local delay line 

The operation of Blade-O and Blade-OC as described 
Section III assumes that the Δ delay line used to detect an 
error is the same delay used to extend the next stage. This 
property allows for the value of Δ to vary amongst stages 
while maintaining correct operation in all cases. If we relax this 
requirement and assume all stages have roughly equal Δ 
delays, it then becomes possible to use the local delay line in 
each controller to implement the latch open/closing delays 
instead of relying on the delayed acknowledgement of the 
extend signal from the previous stage. For example, a Blade-
OC stage could use its internal Δ delay once when an error is 
preventing the opening of its latch, again to regulate the width 
of the timing resiliency window, and finally to delay the 
closing of the latch when the previous stage detects an error. 
This optimization also allows for simplification of the extend 
channel, as it is no longer necessary to have a separate 
acknowledgement signal. 

C. Online Tuning of delay lines 

We envision each delay line (Δ and δ) to be post-silicon 
adjustable using well known techniques of building tunable 
delay lines in combination with at-speed or built-in test circuits 
[34] that monitor the collective or local error count in the 
system by recording the Err signal produced by the EDLs. 
Such a system could be activated infrequently to save power, 
only retuning the delay lines when it is suspected operating 
conditions have changed or at some predetermined regular rate. 
The simplest approach would be maintaining a difference in 
error count over a fixed period of time or number of 
asynchronous cycles. If the error rate exceeds the optimal 
threshold (as described in Section V), the delay between stages 
could be lengthened to ensure peak performance. Likewise, if 
the error rate is lower than expected, decreasing the delay of 
the system will also improve performance. Other 
implementations can be drawn from previous BIST and scan 
circuitry that have been extensively studied to implement delay 
testing in both synchronous [35] and asynchronous designs [36] 
[37]. 

D. Alternative handshaking signals 

The proposed templates utilize two two-phase channels on 
each side of the controller for a total of 8 handshaking wires. 
Many physical implementations are possible while still 
implementing the same basic concept of the speculative 
handshaking protocol. For example, altering the protocol to use 
four-phase handshaking would be trivial.  

Alternatively, the extend channel could also be flipped 
around to operate as a push channel and implemented using 
dual-rail signaling. Each stage would then send a “1” or “0” to 
its right neighbor stage to indicate when an error occurs. In this 
case, the subsequent controller must wait for a value to be 
received on the extend channel before making a decision to 
open the latch (Blade-O/OC) or close the latch (Blade-OC). In 

this particular implementation, the main channel’s 
acknowledgement signal could possibly be reused to 
acknowledge both the normal request and the extend channel’s 
data simultaneously, maintaining the same number of 
handshaking wires (8) as the proposed design. 

Furthermore, the extend channel could even be 
implemented as a single wire with an associated timing 
assumption (the value of Extend must be stable at the next 
stage within δ time units), reducing the total number of wires 
from 8 to 6; however, ensuring this design meets all required 
timing assumptions can be difficult. It would also not be 
possible to allow extra time for metastability to resolve in the 
Q-Flop with a 1-bit extend signal. 

V. Performance	Model	

A. Systematic error rate 

The combination of δ and Δ should be set to ensure that all 
errors are caught. As in the analysis of bubble-razor, since 
normal/log-normal distributions do not have an upper limit, we 
set a rule that the combination of δ and Δ should satisfy the 
systematic error rate (SER). For example, in our results, we 
assume SER ≤ 0.1%.   

In an N-stage ring using the Blade-O template with 2N 
latches, the equation that governs the SER is similar to that of 
bubble-razor: 

SER = 1 − 8�� 9δ	 + 	Δ	 ≤ :
2;<

2.
≤ 0.1% (6) 

In N-stage ring using the Blade-OC systems with 3N latches, 
the SER depends on a similar constraint  

SER = 1 − 8�� 9δ +Δ	 ≤ :
5;	<

5.
≤ 0.1% (7) 
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Figure 9. Two-valued discrete distribution of Blade 



B. Optimal setting of the delay lines 

A tradeoff in setting the delay lines emerges as decreasing δ 
allows the system to operate faster in the case of no errors, but 
the error rate increases so the subsequent pipeline stages spend 
more time being delayed by  an amount ∆.  To quantify this 
optimization problem, consider a delay distribution of a 
combination logic block between two latches as shown in 
Figure 9.  

The area under the blue curve represents the probability 
that an error in a Blade system occurs at a previous output 
latch, referred to as p, such that the effective delay of this 
pipeline stage is δ+∆. The area under the green curve is thus 1-
p.  We propose to model the performance of a pipeline stage as 
a discrete two-valued distribution as shown at the bottom of 
Figure 9. 

 It is important to notice that there is a fundamental tradeoff 
between the mean and the variance of these distributions. As 
described in Section II.D, because the weighted sum of δ and 
Δ  should be set to achieve the desired SER, increasing δ 
causes the mean to increase and Δ to decrease.  This decrease 
reduces the difference between the two discrete delay values 
and thus decreases the variance of the distribution.  In complex 
systems the optimal setting of these delays is an interesting 
challenge, as latency-critical stages should be optimized to 
minimize average delay whereas non-latency-critical stages 
may be best set with a somewhat higher average delay that has 
lower variance. 

Ignoring the interaction between different tokens in the 
ring, the optimal performance of an N-stage ring occurs when 
each latch stage’s average-case delay is minimized. This can be 
formulated as 

Min δ (δ + p Δ) (8) 

Modeling the impact of the interaction between different 
tokens in the ring is left as future work. 

Unfortunately, for normal and log-normal distributions this 
expression involves a transcendental equation for which we 
could find no closed form solution. However, for given 
parameters, numerical solutions are readily achievable. 

 

VI. Performance	Comparisons	
This section compares the performance of Blade to both 

traditional synchronous and bubble-razor circuits. In particular, 
as in [17], we examine an N-stage ring. The traditional circuits 
have N flip-flops and bubble-razor and blade circuits have 2N 
or 3N latches.  

All designs are set to have the same 0.1% SER. Moreover, 
without loss of generality we assume the nominal traditional 
clock cycle time is 1.0. To maintain a fair comparison, as in 
[17], the impact of the error/extend signal propagation delay on 
the error detection window is ignored. As mentioned above, we 
also assume the asynchronous ring is well pipelined such that 
the local handshaking and interaction of tokens in the Blade 
template is not a bottleneck. 

Figure 10. Blade-O comparisons with normally distributed 
delays 

Figure 11. Blade-O comparisons with log-normally distributed 
delays 

 
Figure 12. Blade-O performance improvement versus variability 
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A. Blade-O comparisons 

Figure 10 and Figure 11 compare the Blade-O template 
with both traditional and BR when the underlying delays are 
normally and log-normally distributed with a moderate amount 
of variance (σ/µ = 0.2) for rings of one to four traditional 
stages, i.e., N = 1 to 4.  Curves corresponding to the same 
number of stages are drawn with the same color. 

The horizontal lines represent the performance of 
traditional synchronous design restricted by the same SER.  
The solid curves represent the performance of bubble razor. 
Notice how the effective cycle time EC versus C curves have a 
slope of 2 for small C because when C is small timing 
violations always occur so that EC is twice as long as C. The 
curve is colored grey when the error rate exceeds that of the 
desired SER. The curve’s slope is 1 for a very large C when the 
circuit is error-free. It is obvious that we should choose the 
point with the least EC while ensuring C meets the SER. These 
points are marked as large dots in Figure 10 and represent the 
operation points that achieve the best performance of the BR 
circuit for various ring lengths. The dashed somewhat v-shaped 
curves represent the performance of the proposed Blade 
template as a function of C = 2δ. For example, when δ = 0, 
each stage always delays the next stage and the cycle time is δ 
+ Δ. The gray portion of the dashed line represents the portion 
of the line in which δ <Δ that as described in Section V.B is 
not feasible. Figure 10 shows that for normal distributed delays 
at this variance the improvement Blade provides for a 4-state 
pipeline is 23% over bubble-razor and 35% over traditional 
synchronous designs. Figure 11 shows that for log-normally 
distributed delays with the same variance the improvement is 
13.1% over bubble-razor and 44.7% over traditional 
synchronous design.  

Figure 12 plots the performance improvement of Blade-O 
versus variance for a 4-stage (8-latch) ring. The chart shows 
that, compared to bubble razor, the potential performance 
improvement increases as the variance increases peaking at 
about 20% with σ/µ of about 25%.  At this variance the δ is 
set such that the nominal delay is 65% of the worst-case delay. 
This is in contrast to bubble razor that is forced to have the 
nominal delay set to 50% of the worst-case delay. That is, at 
this point, the timing margin offered by bubble-razor is larger 
than it need be to achieve the SER. However, the performance 
improvement for log-normal distributions drops as variances 
further increase. This occurs because at such high-variances of 
the heavy tail of the log-normal distribution forces Blade-O to 
operate at its resilience limit, with its nominal delay δ set to 
50% of the worst-case delay.  In this region, Blade-O can offer 
no additional tolerance to variation over bubble razor and the 
improvement gains diminish. 

B. Blade-OC comparisons 

Comparisons of the Blade-OC templates show similar 
trends for moderate variations. Figure 13 and Figure 14 
compare the Blade-OC template with both traditional and BR 
when the underlying delays are normally and log-normally 
distributed with a moderate amount of variance (σ/µ = 0.2) for 
rings of one to four traditional stages, i.e., N = 1 to 4. Note here 
that the X-axis for Blade-OC is set such that C = 3δ.Note that 
the systematic limits are higher than the Blade-O template 

Figure 13. Blade-OC comparisons with normal distributions 

 

Figure 14. Blade-OC comparisons with log-normal distributions 

 

Figure 15. Blade-OC performance improvement versus 
variability 
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because of the presence of 3N latches instead of 2N.  Also 
notice how the Blade curves change from grey to non-grey at a 
lower δ than in the Blade-O template. This is because this 
template allows for the nominal delay δ to be as little as 1/3rd of 
the worst-case delay δ + Δ.   

This extra flexibility helps when the design has high 
variability. To illustrate this, Figure 15 shows how the 
performance improvement of Blade-OC varies over a wide 
range of variances for a 4-stage (12-latch) ring.  Unlike the 
Blade-O template, the performance improvement does not drop 
with higher variability.  It is this region of the curve where the 
optimal nominal delay δ is less than ½ of the total delay δ + Δ. 

VII. Conclusions	and	Future	Work	

This paper proposes two novel asynchronous design 
templates that use a bundled-data datapath with error-detecting 
latches as well as a new speculative handshaking paradigm that 
allows high average-case performance while maintaining low 
systematic error rates. The paper analytically compares the 
performance of this template with both traditional synchronous 
designs and the state-of-the-art synchronous resiliency strategy 
Bubble Razor for both normal and log-normally distributed 
delays. Our results demonstrate the potential benefit of our 
approach is significant.  

Our future work includes gate-level designs of the proposed 
controllers and delay lines. Minimizing their complexity will 
be critical when trying to translate the performance 
improvements into power savings.  

We believe that the benefits of the proposed template 
extend beyond that of the potential performance improvements 
shown in this paper. Namely, the observability that the 
proposed error-detecting latches provide offers several other 
advantages. First, the error signal not only can guide on-line 
tuning of the delay lines during test but also can enable on-the-
fly re-configuration of the delay lines to account for temperate 
variations, aging, and/or changing workloads. Secondly, the 
increased observability and resilience makes the use of more 
complex delay lines whose delays depend on other data 
signals such as op-codes (e.g., Speculative Completion 
Sensing [38]) more practical, offering additional opportunities 
to optimize for the average case.  Lastly, these templates 
inherently provide resilience to single event upsets in the 
datapath and assuming the control circuits can be efficiently 
designed to be single-event-upset tolerant, they can enable 
comprehensive resilience at a reasonable cost. 

VIII. References	
 

[1]  T. Sato and Y. Kunitake, "A Simple Flip-Flop Circuit for Typical-Case 
Designs for DFM," in 8th International Symp. on Quality Electronic 
Design (ISQED), 2007.  

[2]  D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. 
Blaauw, T. Austin, K. Flautner and T. Mudge, "Razor: A low-power 
pipelined based on circuit-level timing speculation," in Proc. 36th 
IEEE/ACM Int'l. Symp. on Microarchitecture (Micro-36), 2003.  

[3]  S. Kim, I. Kwon, D. Fick, M. Kim, Y.-P. Chen and D. Sylvester, "Razor-
lite: A side-channel error-detection register for timing-margin recovery 
in 45nm SOI CMOS," in ISSCC, 2013.  

[4]  M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw and D. 
Sylvester, "Bubble Razor: An Architecture-independent Approach to 
Timing-error Detection and Correction," in ISSCC, 2012.  

[5]  M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw and D. 
Sylvester, "Bubble Razor: Eliminating Timing Margins in an ARM 
Cortex-M3 Processor in 45 nm CMOS Using Architecturally 
Independent Error Detection and Correction," IEEE Journal of Solid-
State Circuits, vol. 48, no. 1, pp. 66-81, 2013.  

[6]  I. J. Chang, S. P. Park and K. Roy, "Exploring Asynchronous Design 
Techniques for Process-Tolerant and Energy-Efficient Subthreshold 
Operation," IEEE Journal of Solid State Circuits, vol. 45, pp. 401-410, 
2010.  

[7]  C. Junchao, C. Kwen-Siong, G. Bah-Hwee and J. S. Chang, "An Ultra-
low Power Asynchronous Quasi-delay-insensitive (QDI) Sub-threshold 
Memory with Bit-interleaving and Completion Detection," in 8th IEEE 
Int'l. NEWCAS Conference (NEWCAS), 2010.  

[8]  C. I. Joon, P. S. Phill and K. Roy, "Exploring Asynchronous Design 
Techniques for Process-Tolerant and Energy-Efficient Subthreshold 
Operation," IEEE Journal of Solid-State Circuits, vol. 45, pp. 401-410, 
2010.  

[9]  P. A. Beerel, R. O. Ozdag and M. Ferretti, A Designer's Guide to 
Asynchronous VLSI, Cambridge University Press, 2010.  

[10] I. E. Sutherland, "Micropipelines," Communications of the ACM, vol. 32, 
pp. 720-738, 1989.  

[11] J. Cortadella, A. Kondratyev, L. Lavagno and C. P. Sotiriou, 
"Desynchronization: Synthesis of Asynchronous Circuits From 
Synchronous Specifications," IEEE Trans. on Computer-Aided Design of 
Integrated Circuits and Systems, vol. 25, p. and Systems, 2006.  

[12] N. Jayakumar, R. Garg, B. Gamache and S. P. Khatri, "A PLA-based 
Asynchronous Micropipelining Approach for Subthreshold Circuit 
Design," in 43rd ACM/IEEE Design Automation Conf., 2006.  

[13] J. Liu, S. Nowick and M. Seok, "Soft MOUSETRAP: A Bundled-Data 
Asynchronous Pipeline Scheme Tolerant to Random Variations at Ultra-
Low Supply Voltages," in IEEE International Symp. on Asynchronous 
Circuits and Systems (ASYNC), 2013.  

[14] O. C. Akgun, Y. Leblebici and E. A. Vittoz, "Current Sensing 
Completion Detection for Subthreshold Asynchronous Circuits," in 18th 
European Conf. on Circuit Theory and Design (ECCTD), 2007.  

[15] L. Tsung-Te, L. P. Alarcon, M. D. Pierson and J. M. Rabaey, 
"Asynchronous Computing in Sense Amplifier-Based Pass Transistor 
Logic," in IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 
2009.  

[16] C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull and D. 
Blaauw, "Razor II: In Situ Error Detection and Correction for PVT and 
SER Tolerance," IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 
32-48, 2009.  

[17] G. Zhang and P. A. Beerel, "Stochastic Analysis of Bubble Razor," in 
Design, Automation & Test in Europe Conf., 2014.  

[18] B. Zhai, S. Hanson, D. Blaauw and D. Sylvester, "Analysis and 
Mitigation of Variability in Subthreshold Design," in ISLPED, 2005.  

[19] A. Chandrakasan and J. Kwong, "Variation-driven Device Sizing for 
Minimum Energy Sub-threshold Circuits," in ISLPED, 2006.  

 



[20] T.-T. Liu and J. Rabaey, "Statistical Analysis and Optimization of 
Asynchronous Digital Circuits," in 18th IEEE International Symp. on 
Asynchronous Circuits and Systems (ASYNC), 2012.  

[21] Y. S. Schwartz and S. C. Yeh, "On the Distribution Function and 
Moments of Power Sums with Log-normal Components," Bell Syst. 
Tech. J., vol. 61, no. 7, 1982.  

[22] A. J. Drake, A. Kleinosowski and A. K. Martin, "A Self-Correcting Soft 
Error Tolerant Flop-Flop," in 12th NASA Symp. on VLSI Design, Coeur 
d’Alene, 2005.  

[23] A. Jagirdar, R. Oliveira and T. J. Chakraborty, "Efficient Flip-Flop 
Designs for SET/SEU Mitigation with Tolerance to Crosstalk Induced 
Signal Delays," in IEEE Workshop Silicon Errors Logic System Effects, 
2007.  

[24] R. Naseer and J.Draper, "The DF-dice storage element for immunity to 
soft errors," in 48th Midwest Symp. on Circuits and Systems, 2005.  

[25] M. Choudhury, V. Chandra, K. Mohanram and R. Aitken, "TIMBER: 
Time borrowing and error relaying for online timing error resilience," in 
Design, Automation & Test in Europe Conf. & Exhibition (DATE), 2010.  

[26] K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S. Lu, T. 
Karnik and V. De, "Energy-Efficient and Metastability-Immune Resilient 
Circuits for Dynamic Variation Tolerance," IEEE Journal of Solid State 
Circuits, vol. 44, no. 1, pp. 49-63, 2009.  

[27] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull 
and D. Blaauw, "RazorII: In Situ Error Detection and Correction for PVT 
and SER Tolerance," IEEE Journal of Solid State Circuits, vol. 44, no. 1, 
pp. 32-48, 2009.  

[28] F. U. RosenBerger, C. E. Molnar, T. J. Chaney and T.-P. Fang, "Q-
Modules: Internally Clocked Delay Insensitive Modules," IEEE 
Transactions on Computers, vol. 37, no. 9, pp. 1005-1018, 1988.  

[29] M. Singh and S. Nowick, "MOUSETRAP: Ultra-high-speed Transition-
signaling Asynchronous Pipelines," IEEE Trans. on Very Large Scale 
Integration (VLSI) Systems, vol. 16, no. 6, pp. 684-698, 2007.  

  

[30] P. Beerel, C. Myers and T. Meng, "Covering Conditions and Algorithms 
for the Synthesis of Speed-Independent Circuits," IEEE Trans. on 
Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 
3, pp. 205-219, 1998.  

[31] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno and A. 
Yakovlev, "Methodology and Tools For State Encoding In 
Asynchronous Circuit Synthesis," in Design Automation Conference, 
1996.  

[32] R. M. Fuhrer, S. M. Nowick and M. Theobald, "Minimalist: An 
Environment for the Synthesis, Verification, and Testability of Burst-
Mode Asynchronous Machines," CUCS-020-99, Columbia University, 
NY, 1999. 

[33] K. Y. Yun and D. L. Dill, "Automatic Synthesis of Extended Burst-Mode 
Circuits: Part II (Automatic Synthesis)," IEEE Trans. Computer-Aided 
Design, vol. 18, no. 2, pp. 118-132, 1999.  

[34] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems 
Testing and Testable Design, Wiley, 1994.  

[35] B. I. Dervisoglu and G. E. Stong, "Design for Testability using Scanpath 
Techniques for Path-Delay Test and Measurement," in Int'l. Test Conf., 
1991.  

[36] O. A. Petlin and S. B. Furber, "Built-in Self-testing of Micropipelines," 
in Third International Symp. on Advanced Research in Asynchronous 
Circuits and Systems, 1997.  

[37] M. Krstic and E. Grass, "BIST Technique for GALS systems," in 8th 
Euromicro Conf. on Digital System Design, 2005.  

[38] S. M. Nowick, "Design of a Low-latency Asynchronous Adder using 
Speculative Completion," IEE Proceedings, vol. 143, no. 5, pp. 301-307, 
1996.  

 

 


